/* * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the Open Source and Linux Lab nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/qemu-print.h" #include "qemu/units.h" #include "cpu.h" #include "exec/helper-proto.h" #include "qemu/host-utils.h" #include "exec/exec-all.h" #include "exec/page-protection.h" #define XTENSA_MPU_SEGMENT_MASK 0x0000001f #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000 #define XTENSA_MPU_MEM_TYPE_SHIFT 12 #define XTENSA_MPU_ATTR_MASK 0x001fff00 #define XTENSA_MPU_PROBE_B 0x40000000 #define XTENSA_MPU_PROBE_V 0x80000000 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001 #define XTENSA_MPU_SYSTEM_TYPE_NC 0x0002 #define XTENSA_MPU_SYSTEM_TYPE_C 0x0003 #define XTENSA_MPU_SYSTEM_TYPE_MASK 0x0003 #define XTENSA_MPU_TYPE_SYS_C 0x0010 #define XTENSA_MPU_TYPE_SYS_W 0x0020 #define XTENSA_MPU_TYPE_SYS_R 0x0040 #define XTENSA_MPU_TYPE_CPU_C 0x0100 #define XTENSA_MPU_TYPE_CPU_W 0x0200 #define XTENSA_MPU_TYPE_CPU_R 0x0400 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800 #define XTENSA_MPU_TYPE_B 0x1000 #define XTENSA_MPU_TYPE_INT 0x2000 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr) { /* * Probe the memory; we don't care about the result but * only the side-effects (ie any MMU or other exception) */ probe_access(env, vaddr, 1, MMU_INST_FETCH, cpu_mmu_index(env_cpu(env), true), GETPC()); } void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v) { v = (v & 0xffffff00) | 0x1; if (v != env->sregs[RASID]) { env->sregs[RASID] = v; tlb_flush(env_cpu(env)); } } static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way) { uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG]; switch (way) { case 4: return (tlbcfg >> 16) & 0x3; case 5: return (tlbcfg >> 20) & 0x1; case 6: return (tlbcfg >> 24) & 0x1; default: return 0; } } /*! * Get bit mask for the virtual address bits translated by the TLB way */ static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { bool varway56 = dtlb ? env->config->dtlb.varway56 : env->config->itlb.varway56; switch (way) { case 4: return 0xfff00000 << get_page_size(env, dtlb, way) * 2; case 5: if (varway56) { return 0xf8000000 << get_page_size(env, dtlb, way); } else { return 0xf8000000; } case 6: if (varway56) { return 0xf0000000 << (1 - get_page_size(env, dtlb, way)); } else { return 0xf0000000; } default: return 0xfffff000; } } else { return REGION_PAGE_MASK; } } /*! * Get bit mask for the 'VPN without index' field. * See ISA, 4.6.5.6, data format for RxTLB0 */ static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way) { if (way < 4) { bool is32 = (dtlb ? env->config->dtlb.nrefillentries : env->config->itlb.nrefillentries) == 32; return is32 ? 0xffff8000 : 0xffffc000; } else if (way == 4) { return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2; } else if (way <= 6) { uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way); bool varway56 = dtlb ? env->config->dtlb.varway56 : env->config->itlb.varway56; if (varway56) { return mask << (way == 5 ? 2 : 3); } else { return mask << 1; } } else { return 0xfffff000; } } /*! * Split virtual address into VPN (with index) and entry index * for the given TLB way */ static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb, uint32_t *vpn, uint32_t wi, uint32_t *ei) { bool varway56 = dtlb ? env->config->dtlb.varway56 : env->config->itlb.varway56; if (!dtlb) { wi &= 7; } if (wi < 4) { bool is32 = (dtlb ? env->config->dtlb.nrefillentries : env->config->itlb.nrefillentries) == 32; *ei = (v >> 12) & (is32 ? 0x7 : 0x3); } else { switch (wi) { case 4: { uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2; *ei = (v >> eibase) & 0x3; } break; case 5: if (varway56) { uint32_t eibase = 27 + get_page_size(env, dtlb, wi); *ei = (v >> eibase) & 0x3; } else { *ei = (v >> 27) & 0x1; } break; case 6: if (varway56) { uint32_t eibase = 29 - get_page_size(env, dtlb, wi); *ei = (v >> eibase) & 0x7; } else { *ei = (v >> 28) & 0x1; } break; default: *ei = 0; break; } } *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi); } /*! * Split TLB address into TLB way, entry index and VPN (with index). * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format */ static bool split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb, uint32_t *vpn, uint32_t *wi, uint32_t *ei) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { *wi = v & (dtlb ? 0xf : 0x7); if (*wi < (dtlb ? env->config->dtlb.nways : env->config->itlb.nways)) { split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei); return true; } else { return false; } } else { *vpn = v & REGION_PAGE_MASK; *wi = 0; *ei = (v >> 29) & 0x7; return true; } } static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb, unsigned wi, unsigned ei) { const xtensa_tlb *tlb = dtlb ? &env->config->dtlb : &env->config->itlb; assert(wi < tlb->nways && ei < tlb->way_size[wi]); return dtlb ? env->dtlb[wi] + ei : env->itlb[wi] + ei; } static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env, uint32_t v, bool dtlb, uint32_t *pwi) { uint32_t vpn; uint32_t wi; uint32_t ei; if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) { if (pwi) { *pwi = wi; } return xtensa_tlb_get_entry(env, dtlb, wi, ei); } else { return NULL; } } static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env, xtensa_tlb_entry *entry, bool dtlb, unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte) { entry->vaddr = vpn; entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi); entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff; entry->attr = pte & 0xf; } static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb, unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte) { CPUState *cs = env_cpu(env); xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { if (entry->variable) { if (entry->asid) { tlb_flush_page(cs, entry->vaddr); } xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte); tlb_flush_page(cs, entry->vaddr); } else { qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n", __func__, dtlb, wi, ei); } } else { tlb_flush_page(cs, entry->vaddr); if (xtensa_option_enabled(env->config, XTENSA_OPTION_REGION_TRANSLATION)) { entry->paddr = pte & REGION_PAGE_MASK; } entry->attr = pte & 0xf; } } hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { XtensaCPU *cpu = XTENSA_CPU(cs); uint32_t paddr; uint32_t page_size; unsigned access; if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0, &paddr, &page_size, &access) == 0) { return paddr; } if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0, &paddr, &page_size, &access) == 0) { return paddr; } return ~0; } static void reset_tlb_mmu_all_ways(CPUXtensaState *env, const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE]) { unsigned wi, ei; for (wi = 0; wi < tlb->nways; ++wi) { for (ei = 0; ei < tlb->way_size[wi]; ++ei) { entry[wi][ei].asid = 0; entry[wi][ei].variable = true; } } } static void reset_tlb_mmu_ways56(CPUXtensaState *env, const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE]) { if (!tlb->varway56) { static const xtensa_tlb_entry way5[] = { { .vaddr = 0xd0000000, .paddr = 0, .asid = 1, .attr = 7, .variable = false, }, { .vaddr = 0xd8000000, .paddr = 0, .asid = 1, .attr = 3, .variable = false, } }; static const xtensa_tlb_entry way6[] = { { .vaddr = 0xe0000000, .paddr = 0xf0000000, .asid = 1, .attr = 7, .variable = false, }, { .vaddr = 0xf0000000, .paddr = 0xf0000000, .asid = 1, .attr = 3, .variable = false, } }; memcpy(entry[5], way5, sizeof(way5)); memcpy(entry[6], way6, sizeof(way6)); } else { uint32_t ei; for (ei = 0; ei < 8; ++ei) { entry[6][ei].vaddr = ei << 29; entry[6][ei].paddr = ei << 29; entry[6][ei].asid = 1; entry[6][ei].attr = 3; } } } static void reset_tlb_region_way0(CPUXtensaState *env, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE]) { unsigned ei; for (ei = 0; ei < 8; ++ei) { entry[0][ei].vaddr = ei << 29; entry[0][ei].paddr = ei << 29; entry[0][ei].asid = 1; entry[0][ei].attr = 2; entry[0][ei].variable = true; } } void reset_mmu(CPUXtensaState *env) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { env->sregs[RASID] = 0x04030201; env->sregs[ITLBCFG] = 0; env->sregs[DTLBCFG] = 0; env->autorefill_idx = 0; reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb); reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb); reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb); reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb); } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) { unsigned i; env->sregs[MPUENB] = 0; env->sregs[MPUCFG] = env->config->n_mpu_fg_segments; env->sregs[CACHEADRDIS] = 0; assert(env->config->n_mpu_bg_segments > 0 && env->config->mpu_bg[0].vaddr == 0); for (i = 1; i < env->config->n_mpu_bg_segments; ++i) { assert(env->config->mpu_bg[i].vaddr >= env->config->mpu_bg[i - 1].vaddr); } } else { env->sregs[CACHEATTR] = 0x22222222; reset_tlb_region_way0(env, env->itlb); reset_tlb_region_way0(env, env->dtlb); } } static unsigned get_ring(const CPUXtensaState *env, uint8_t asid) { unsigned i; for (i = 0; i < 4; ++i) { if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) { return i; } } return 0xff; } /*! * Lookup xtensa TLB for the given virtual address. * See ISA, 4.6.2.2 * * \param pwi: [out] way index * \param pei: [out] entry index * \param pring: [out] access ring * \return 0 if ok, exception cause code otherwise */ static int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb, uint32_t *pwi, uint32_t *pei, uint8_t *pring) { const xtensa_tlb *tlb = dtlb ? &env->config->dtlb : &env->config->itlb; const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ? env->dtlb : env->itlb; int nhits = 0; unsigned wi; for (wi = 0; wi < tlb->nways; ++wi) { uint32_t vpn; uint32_t ei; split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei); if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) { unsigned ring = get_ring(env, entry[wi][ei].asid); if (ring < 4) { if (++nhits > 1) { return dtlb ? LOAD_STORE_TLB_MULTI_HIT_CAUSE : INST_TLB_MULTI_HIT_CAUSE; } *pwi = wi; *pei = ei; *pring = ring; } } } return nhits ? 0 : (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE); } uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { uint32_t wi; const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi); if (entry) { return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid; } else { return 0; } } else { return v & REGION_PAGE_MASK; } } uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) { const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL); if (entry) { return entry->paddr | entry->attr; } else { return 0; } } void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { uint32_t wi; xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi); if (entry && entry->variable && entry->asid) { tlb_flush_page(env_cpu(env), entry->vaddr); entry->asid = 0; } } } uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { uint32_t wi; uint32_t ei; uint8_t ring; int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring); switch (res) { case 0: if (ring >= xtensa_get_ring(env)) { return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8); } break; case INST_TLB_MULTI_HIT_CAUSE: case LOAD_STORE_TLB_MULTI_HIT_CAUSE: HELPER(exception_cause_vaddr)(env, env->pc, res, v); break; } return 0; } else { return (v & REGION_PAGE_MASK) | 0x1; } } void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb) { uint32_t vpn; uint32_t wi; uint32_t ei; if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) { xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p); } } /*! * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask. * See ISA, 4.6.5.10 */ static unsigned mmu_attr_to_access(uint32_t attr) { unsigned access = 0; if (attr < 12) { access |= PAGE_READ; if (attr & 0x1) { access |= PAGE_EXEC; } if (attr & 0x2) { access |= PAGE_WRITE; } switch (attr & 0xc) { case 0: access |= PAGE_CACHE_BYPASS; break; case 4: access |= PAGE_CACHE_WB; break; case 8: access |= PAGE_CACHE_WT; break; } } else if (attr == 13) { access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE; } return access; } /*! * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask. * See ISA, 4.6.3.3 */ static unsigned region_attr_to_access(uint32_t attr) { static const unsigned access[16] = { [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT, [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT, [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS, [3] = PAGE_EXEC | PAGE_CACHE_WB, [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB, [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB, [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE, }; return access[attr & 0xf]; } /*! * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask. * See ISA, A.2.14 The Cache Attribute Register */ static unsigned cacheattr_attr_to_access(uint32_t attr) { static const unsigned access[16] = { [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT, [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT, [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS, [3] = PAGE_EXEC | PAGE_CACHE_WB, [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB, [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE, }; return access[attr & 0xf]; } struct attr_pattern { uint32_t mask; uint32_t value; }; static int attr_pattern_match(uint32_t attr, const struct attr_pattern *pattern, size_t n) { size_t i; for (i = 0; i < n; ++i) { if ((attr & pattern[i].mask) == pattern[i].value) { return 1; } } return 0; } static unsigned mpu_attr_to_cpu_cache(uint32_t attr) { static const struct attr_pattern cpu_c[] = { { .mask = 0x18f, .value = 0x089 }, { .mask = 0x188, .value = 0x080 }, { .mask = 0x180, .value = 0x180 }, }; unsigned type = 0; if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) { type |= XTENSA_MPU_TYPE_CPU_CACHE; if (attr & 0x10) { type |= XTENSA_MPU_TYPE_CPU_C; } if (attr & 0x20) { type |= XTENSA_MPU_TYPE_CPU_W; } if (attr & 0x40) { type |= XTENSA_MPU_TYPE_CPU_R; } } return type; } static unsigned mpu_attr_to_type(uint32_t attr) { static const struct attr_pattern device_type[] = { { .mask = 0x1f6, .value = 0x000 }, { .mask = 0x1f6, .value = 0x006 }, }; static const struct attr_pattern sys_nc_type[] = { { .mask = 0x1fe, .value = 0x018 }, { .mask = 0x1fe, .value = 0x01e }, { .mask = 0x18f, .value = 0x089 }, }; static const struct attr_pattern sys_c_type[] = { { .mask = 0x1f8, .value = 0x010 }, { .mask = 0x188, .value = 0x080 }, { .mask = 0x1f0, .value = 0x030 }, { .mask = 0x180, .value = 0x180 }, }; static const struct attr_pattern b[] = { { .mask = 0x1f7, .value = 0x001 }, { .mask = 0x1f7, .value = 0x007 }, { .mask = 0x1ff, .value = 0x019 }, { .mask = 0x1ff, .value = 0x01f }, }; unsigned type = 0; attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT; if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) { type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE; if (attr & 0x80) { type |= XTENSA_MPU_TYPE_INT; } } if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) { type |= XTENSA_MPU_SYSTEM_TYPE_NC; } if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) { type |= XTENSA_MPU_SYSTEM_TYPE_C; if (attr & 0x1) { type |= XTENSA_MPU_TYPE_SYS_C; } if (attr & 0x2) { type |= XTENSA_MPU_TYPE_SYS_W; } if (attr & 0x4) { type |= XTENSA_MPU_TYPE_SYS_R; } } if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) { type |= XTENSA_MPU_TYPE_B; } type |= mpu_attr_to_cpu_cache(attr); return type; } static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring) { static const unsigned access[2][16] = { [0] = { [4] = PAGE_READ, [5] = PAGE_READ | PAGE_EXEC, [6] = PAGE_READ | PAGE_WRITE, [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC, [8] = PAGE_WRITE, [9] = PAGE_READ | PAGE_WRITE, [10] = PAGE_READ | PAGE_WRITE, [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC, [12] = PAGE_READ, [13] = PAGE_READ | PAGE_EXEC, [14] = PAGE_READ | PAGE_WRITE, [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC, }, [1] = { [8] = PAGE_WRITE, [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC, [10] = PAGE_READ, [11] = PAGE_READ | PAGE_EXEC, [12] = PAGE_READ, [13] = PAGE_READ | PAGE_EXEC, [14] = PAGE_READ | PAGE_WRITE, [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC, }, }; unsigned rv; unsigned type; type = mpu_attr_to_cpu_cache(attr); rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >> XTENSA_MPU_ACC_RIGHTS_SHIFT]; if (type & XTENSA_MPU_TYPE_CPU_CACHE) { rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT; } else { rv |= PAGE_CACHE_BYPASS; } return rv; } static bool is_access_granted(unsigned access, int is_write) { switch (is_write) { case 0: return access & PAGE_READ; case 1: return access & PAGE_WRITE; case 2: return access & PAGE_EXEC; default: return 0; } } static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte); static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb, uint32_t vaddr, int is_write, int mmu_idx, uint32_t *paddr, uint32_t *page_size, unsigned *access, bool may_lookup_pt) { bool dtlb = is_write != 2; uint32_t wi; uint32_t ei; uint8_t ring; uint32_t vpn; uint32_t pte; const xtensa_tlb_entry *entry = NULL; xtensa_tlb_entry tmp_entry; int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring); if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) && may_lookup_pt && get_pte(env, vaddr, &pte)) { ring = (pte >> 4) & 0x3; wi = 0; split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei); if (update_tlb) { wi = ++env->autorefill_idx & 0x3; xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte); env->sregs[EXCVADDR] = vaddr; qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n", __func__, vaddr, vpn, pte); } else { xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte); entry = &tmp_entry; } ret = 0; } if (ret != 0) { return ret; } if (entry == NULL) { entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); } if (ring < mmu_idx) { return dtlb ? LOAD_STORE_PRIVILEGE_CAUSE : INST_FETCH_PRIVILEGE_CAUSE; } *access = mmu_attr_to_access(entry->attr) & ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE); if (!is_access_granted(*access, is_write)) { return dtlb ? (is_write ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE) : INST_FETCH_PROHIBITED_CAUSE; } *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi)); *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1; return 0; } static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte) { CPUState *cs = env_cpu(env); uint32_t paddr; uint32_t page_size; unsigned access; uint32_t pt_vaddr = (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc; int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0, &paddr, &page_size, &access, false); if (ret == 0) { qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n", __func__, vaddr, pt_vaddr, paddr); } else { qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n", __func__, vaddr, pt_vaddr, ret); } if (ret == 0) { MemTxResult result; *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { qemu_log_mask(CPU_LOG_MMU, "%s: couldn't load PTE: transaction failed (%u)\n", __func__, (unsigned)result); ret = 1; } } return ret == 0; } static int get_physical_addr_region(CPUXtensaState *env, uint32_t vaddr, int is_write, int mmu_idx, uint32_t *paddr, uint32_t *page_size, unsigned *access) { bool dtlb = is_write != 2; uint32_t wi = 0; uint32_t ei = (vaddr >> 29) & 0x7; const xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); *access = region_attr_to_access(entry->attr); if (!is_access_granted(*access, is_write)) { return dtlb ? (is_write ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE) : INST_FETCH_PROHIBITED_CAUSE; } *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK); *page_size = ~REGION_PAGE_MASK + 1; return 0; } static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n, uint32_t vaddr, unsigned *segment) { unsigned nhits = 0; unsigned i; for (i = 0; i < n; ++i) { if (vaddr >= entry[i].vaddr && (i == n - 1 || vaddr < entry[i + 1].vaddr)) { if (nhits++) { break; } *segment = i; } } return nhits; } void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v) { v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1; if (v != env->sregs[MPUENB]) { env->sregs[MPUENB] = v; tlb_flush(env_cpu(env)); } } void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v) { unsigned segment = p & XTENSA_MPU_SEGMENT_MASK; if (segment < env->config->n_mpu_fg_segments) { env->mpu_fg[segment].vaddr = v & -env->config->mpu_align; env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK; env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v); tlb_flush(env_cpu(env)); } } uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s) { unsigned segment = s & XTENSA_MPU_SEGMENT_MASK; if (segment < env->config->n_mpu_fg_segments) { return env->mpu_fg[segment].vaddr | extract32(env->sregs[MPUENB], segment, 1); } else { return 0; } } uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s) { unsigned segment = s & XTENSA_MPU_SEGMENT_MASK; if (segment < env->config->n_mpu_fg_segments) { return env->mpu_fg[segment].attr; } else { return 0; } } uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v) { unsigned nhits; unsigned segment; unsigned bg_segment; nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments, v, &segment); if (nhits > 1) { HELPER(exception_cause_vaddr)(env, env->pc, LOAD_STORE_TLB_MULTI_HIT_CAUSE, v); } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) { return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V; } else { xtensa_mpu_lookup(env->config->mpu_bg, env->config->n_mpu_bg_segments, v, &bg_segment); return env->config->mpu_bg[bg_segment].attr | XTENSA_MPU_PROBE_B; } } static int get_physical_addr_mpu(CPUXtensaState *env, uint32_t vaddr, int is_write, int mmu_idx, uint32_t *paddr, uint32_t *page_size, unsigned *access) { unsigned nhits; unsigned segment; uint32_t attr; nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments, vaddr, &segment); if (nhits > 1) { return is_write < 2 ? LOAD_STORE_TLB_MULTI_HIT_CAUSE : INST_TLB_MULTI_HIT_CAUSE; } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) { attr = env->mpu_fg[segment].attr; } else { xtensa_mpu_lookup(env->config->mpu_bg, env->config->n_mpu_bg_segments, vaddr, &segment); attr = env->config->mpu_bg[segment].attr; } *access = mpu_attr_to_access(attr, mmu_idx); if (!is_access_granted(*access, is_write)) { return is_write < 2 ? (is_write ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE) : INST_FETCH_PROHIBITED_CAUSE; } *paddr = vaddr; *page_size = env->config->mpu_align; return 0; } /*! * Convert virtual address to physical addr. * MMU may issue pagewalk and change xtensa autorefill TLB way entry. * * \return 0 if ok, exception cause code otherwise */ int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb, uint32_t vaddr, int is_write, int mmu_idx, uint32_t *paddr, uint32_t *page_size, unsigned *access) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { return get_physical_addr_mmu(env, update_tlb, vaddr, is_write, mmu_idx, paddr, page_size, access, true); } else if (xtensa_option_bits_enabled(env->config, XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) | XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) { return get_physical_addr_region(env, vaddr, is_write, mmu_idx, paddr, page_size, access); } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) { return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx, paddr, page_size, access); } else { *paddr = vaddr; *page_size = TARGET_PAGE_SIZE; *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27)); return 0; } } static void dump_tlb(CPUXtensaState *env, bool dtlb) { unsigned wi, ei; const xtensa_tlb *conf = dtlb ? &env->config->dtlb : &env->config->itlb; unsigned (*attr_to_access)(uint32_t) = xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ? mmu_attr_to_access : region_attr_to_access; for (wi = 0; wi < conf->nways; ++wi) { uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1; const char *sz_text; bool print_header = true; if (sz >= 0x100000) { sz /= MiB; sz_text = "MB"; } else { sz /= KiB; sz_text = "KB"; } for (ei = 0; ei < conf->way_size[wi]; ++ei) { const xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); if (entry->asid) { static const char * const cache_text[8] = { [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass", [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT", [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB", [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate", }; unsigned access = attr_to_access(entry->attr); unsigned cache_idx = (access & PAGE_CACHE_MASK) >> PAGE_CACHE_SHIFT; if (print_header) { print_header = false; qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text); qemu_printf("\tVaddr Paddr ASID Attr RWX Cache\n" "\t---------- ---------- ---- ---- --- -------\n"); } qemu_printf("\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %s\n", entry->vaddr, entry->paddr, entry->asid, entry->attr, (access & PAGE_READ) ? 'R' : '-', (access & PAGE_WRITE) ? 'W' : '-', (access & PAGE_EXEC) ? 'X' : '-', cache_text[cache_idx] ? cache_text[cache_idx] : "Invalid"); } } } } static void dump_mpu(CPUXtensaState *env, const xtensa_mpu_entry *entry, unsigned n) { unsigned i; qemu_printf("\t%s Vaddr Attr Ring0 Ring1 System Type CPU cache\n" "\t%s ---------- ---------- ----- ----- ------------- ---------\n", env ? "En" : " ", env ? "--" : " "); for (i = 0; i < n; ++i) { uint32_t attr = entry[i].attr; unsigned access0 = mpu_attr_to_access(attr, 0); unsigned access1 = mpu_attr_to_access(attr, 1); unsigned type = mpu_attr_to_type(attr); char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' '; qemu_printf("\t %c 0x%08x 0x%08x %c%c%c %c%c%c ", env ? ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ', entry[i].vaddr, attr, (access0 & PAGE_READ) ? 'R' : '-', (access0 & PAGE_WRITE) ? 'W' : '-', (access0 & PAGE_EXEC) ? 'X' : '-', (access1 & PAGE_READ) ? 'R' : '-', (access1 & PAGE_WRITE) ? 'W' : '-', (access1 & PAGE_EXEC) ? 'X' : '-'); switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) { case XTENSA_MPU_SYSTEM_TYPE_DEVICE: qemu_printf("Device %cB %3s\n", (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n', (type & XTENSA_MPU_TYPE_INT) ? "int" : ""); break; case XTENSA_MPU_SYSTEM_TYPE_NC: qemu_printf("Sys NC %cB %c%c%c\n", (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n', (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache, (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache, (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache); break; case XTENSA_MPU_SYSTEM_TYPE_C: qemu_printf("Sys C %c%c%c %c%c%c\n", (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-', (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-', (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-', (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache, (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache, (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache); break; default: qemu_printf("Unknown\n"); break; } } } void dump_mmu(CPUXtensaState *env) { if (xtensa_option_bits_enabled(env->config, XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) | XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) | XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) { qemu_printf("ITLB:\n"); dump_tlb(env, false); qemu_printf("\nDTLB:\n"); dump_tlb(env, true); } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) { qemu_printf("Foreground map:\n"); dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments); qemu_printf("\nBackground map:\n"); dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments); } else { qemu_printf("No TLB for this CPU core\n"); } }