/* * S/390 misc helper routines * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2009 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/cutils.h" #include "qemu/main-loop.h" #include "cpu.h" #include "s390x-internal.h" #include "exec/memory.h" #include "qemu/host-utils.h" #include "exec/helper-proto.h" #include "qemu/timer.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "qapi/error.h" #include "tcg_s390x.h" #include "s390-tod.h" #if !defined(CONFIG_USER_ONLY) #include "sysemu/cpus.h" #include "sysemu/sysemu.h" #include "hw/s390x/ebcdic.h" #include "hw/s390x/s390-virtio-hcall.h" #include "hw/s390x/sclp.h" #include "hw/s390x/s390_flic.h" #include "hw/s390x/ioinst.h" #include "hw/s390x/s390-pci-inst.h" #include "hw/boards.h" #include "hw/s390x/tod.h" #endif /* #define DEBUG_HELPER */ #ifdef DEBUG_HELPER #define HELPER_LOG(x...) qemu_log(x) #else #define HELPER_LOG(x...) #endif /* Raise an exception statically from a TB. */ void HELPER(exception)(CPUS390XState *env, uint32_t excp) { CPUState *cs = env_cpu(env); HELPER_LOG("%s: exception %d\n", __func__, excp); cs->exception_index = excp; cpu_loop_exit(cs); } /* Store CPU Timer (also used for EXTRACT CPU TIME) */ uint64_t HELPER(stpt)(CPUS390XState *env) { #if defined(CONFIG_USER_ONLY) /* * Fake a descending CPU timer. We could get negative values here, * but we don't care as it is up to the OS when to process that * interrupt and reset to > 0. */ return UINT64_MAX - (uint64_t)cpu_get_host_ticks(); #else return time2tod(env->cputm - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); #endif } /* Store Clock */ uint64_t HELPER(stck)(CPUS390XState *env) { #ifdef CONFIG_USER_ONLY struct timespec ts; uint64_t ns; clock_gettime(CLOCK_REALTIME, &ts); ns = ts.tv_sec * NANOSECONDS_PER_SECOND + ts.tv_nsec; return TOD_UNIX_EPOCH + time2tod(ns); #else S390TODState *td = s390_get_todstate(); S390TODClass *tdc = S390_TOD_GET_CLASS(td); S390TOD tod; tdc->get(td, &tod, &error_abort); return tod.low; #endif } #ifndef CONFIG_USER_ONLY /* SCLP service call */ uint32_t HELPER(servc)(CPUS390XState *env, uint64_t r1, uint64_t r2) { qemu_mutex_lock_iothread(); int r = sclp_service_call(env, r1, r2); qemu_mutex_unlock_iothread(); if (r < 0) { tcg_s390_program_interrupt(env, -r, GETPC()); } return r; } void HELPER(diag)(CPUS390XState *env, uint32_t r1, uint32_t r3, uint32_t num) { uint64_t r; switch (num) { case 0x500: /* KVM hypercall */ qemu_mutex_lock_iothread(); r = s390_virtio_hypercall(env); qemu_mutex_unlock_iothread(); break; case 0x44: /* yield */ r = 0; break; case 0x308: /* ipl */ qemu_mutex_lock_iothread(); handle_diag_308(env, r1, r3, GETPC()); qemu_mutex_unlock_iothread(); r = 0; break; case 0x288: /* time bomb (watchdog) */ r = handle_diag_288(env, r1, r3); break; default: r = -1; break; } if (r) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC()); } } /* Set Prefix */ void HELPER(spx)(CPUS390XState *env, uint64_t a1) { const uint32_t prefix = a1 & 0x7fffe000; const uint32_t old_prefix = env->psa; CPUState *cs = env_cpu(env); if (prefix == old_prefix) { return; } /* * Since prefix got aligned to 8k and memory increments are a multiple of * 8k checking the first page is sufficient */ if (!mmu_absolute_addr_valid(prefix, true)) { tcg_s390_program_interrupt(env, PGM_ADDRESSING, GETPC()); } env->psa = prefix; HELPER_LOG("prefix: %#x\n", prefix); tlb_flush_page(cs, 0); tlb_flush_page(cs, TARGET_PAGE_SIZE); if (prefix != 0) { tlb_flush_page(cs, prefix); tlb_flush_page(cs, prefix + TARGET_PAGE_SIZE); } if (old_prefix != 0) { tlb_flush_page(cs, old_prefix); tlb_flush_page(cs, old_prefix + TARGET_PAGE_SIZE); } } static void update_ckc_timer(CPUS390XState *env) { S390TODState *td = s390_get_todstate(); uint64_t time; /* stop the timer and remove pending CKC IRQs */ timer_del(env->tod_timer); g_assert(qemu_mutex_iothread_locked()); env->pending_int &= ~INTERRUPT_EXT_CLOCK_COMPARATOR; /* the tod has to exceed the ckc, this can never happen if ckc is all 1's */ if (env->ckc == -1ULL) { return; } /* difference between origins */ time = env->ckc - td->base.low; /* nanoseconds */ time = tod2time(time); timer_mod(env->tod_timer, time); } /* Set Clock Comparator */ void HELPER(sckc)(CPUS390XState *env, uint64_t ckc) { env->ckc = ckc; qemu_mutex_lock_iothread(); update_ckc_timer(env); qemu_mutex_unlock_iothread(); } void tcg_s390_tod_updated(CPUState *cs, run_on_cpu_data opaque) { S390CPU *cpu = S390_CPU(cs); update_ckc_timer(&cpu->env); } /* Set Clock */ uint32_t HELPER(sck)(CPUS390XState *env, uint64_t tod_low) { S390TODState *td = s390_get_todstate(); S390TODClass *tdc = S390_TOD_GET_CLASS(td); S390TOD tod = { .high = 0, .low = tod_low, }; qemu_mutex_lock_iothread(); tdc->set(td, &tod, &error_abort); qemu_mutex_unlock_iothread(); return 0; } /* Set Tod Programmable Field */ void HELPER(sckpf)(CPUS390XState *env, uint64_t r0) { uint32_t val = r0; if (val & 0xffff0000) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC()); } env->todpr = val; } /* Store Clock Comparator */ uint64_t HELPER(stckc)(CPUS390XState *env) { return env->ckc; } /* Set CPU Timer */ void HELPER(spt)(CPUS390XState *env, uint64_t time) { if (time == -1ULL) { return; } /* nanoseconds */ time = tod2time(time); env->cputm = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + time; timer_mod(env->cpu_timer, env->cputm); } /* Store System Information */ uint32_t HELPER(stsi)(CPUS390XState *env, uint64_t a0, uint64_t r0, uint64_t r1) { const uintptr_t ra = GETPC(); const uint32_t sel1 = r0 & STSI_R0_SEL1_MASK; const uint32_t sel2 = r1 & STSI_R1_SEL2_MASK; const MachineState *ms = MACHINE(qdev_get_machine()); uint16_t total_cpus = 0, conf_cpus = 0, reserved_cpus = 0; S390CPU *cpu = env_archcpu(env); SysIB sysib = { }; int i, cc = 0; if ((r0 & STSI_R0_FC_MASK) > STSI_R0_FC_LEVEL_3) { /* invalid function code: no other checks are performed */ return 3; } if ((r0 & STSI_R0_RESERVED_MASK) || (r1 & STSI_R1_RESERVED_MASK)) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra); } if ((r0 & STSI_R0_FC_MASK) == STSI_R0_FC_CURRENT) { /* query the current level: no further checks are performed */ env->regs[0] = STSI_R0_FC_LEVEL_3; return 0; } if (a0 & ~TARGET_PAGE_MASK) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra); } /* count the cpus and split them into configured and reserved ones */ for (i = 0; i < ms->possible_cpus->len; i++) { total_cpus++; if (ms->possible_cpus->cpus[i].cpu) { conf_cpus++; } else { reserved_cpus++; } } /* * In theory, we could report Level 1 / Level 2 as current. However, * the Linux kernel will detect this as running under LPAR and assume * that we have a sclp linemode console (which is always present on * LPAR, but not the default for QEMU), therefore not displaying boot * messages and making booting a Linux kernel under TCG harder. * * For now we fake the same SMP configuration on all levels. * * TODO: We could later make the level configurable via the machine * and change defaults (linemode console) based on machine type * and accelerator. */ switch (r0 & STSI_R0_FC_MASK) { case STSI_R0_FC_LEVEL_1: if ((sel1 == 1) && (sel2 == 1)) { /* Basic Machine Configuration */ char type[5] = {}; ebcdic_put(sysib.sysib_111.manuf, "QEMU ", 16); /* same as machine type number in STORE CPU ID, but in EBCDIC */ snprintf(type, ARRAY_SIZE(type), "%X", cpu->model->def->type); ebcdic_put(sysib.sysib_111.type, type, 4); /* model number (not stored in STORE CPU ID for z/Architecture) */ ebcdic_put(sysib.sysib_111.model, "QEMU ", 16); ebcdic_put(sysib.sysib_111.sequence, "QEMU ", 16); ebcdic_put(sysib.sysib_111.plant, "QEMU", 4); } else if ((sel1 == 2) && (sel2 == 1)) { /* Basic Machine CPU */ ebcdic_put(sysib.sysib_121.sequence, "QEMUQEMUQEMUQEMU", 16); ebcdic_put(sysib.sysib_121.plant, "QEMU", 4); sysib.sysib_121.cpu_addr = cpu_to_be16(env->core_id); } else if ((sel1 == 2) && (sel2 == 2)) { /* Basic Machine CPUs */ sysib.sysib_122.capability = cpu_to_be32(0x443afc29); sysib.sysib_122.total_cpus = cpu_to_be16(total_cpus); sysib.sysib_122.conf_cpus = cpu_to_be16(conf_cpus); sysib.sysib_122.reserved_cpus = cpu_to_be16(reserved_cpus); } else { cc = 3; } break; case STSI_R0_FC_LEVEL_2: if ((sel1 == 2) && (sel2 == 1)) { /* LPAR CPU */ ebcdic_put(sysib.sysib_221.sequence, "QEMUQEMUQEMUQEMU", 16); ebcdic_put(sysib.sysib_221.plant, "QEMU", 4); sysib.sysib_221.cpu_addr = cpu_to_be16(env->core_id); } else if ((sel1 == 2) && (sel2 == 2)) { /* LPAR CPUs */ sysib.sysib_222.lcpuc = 0x80; /* dedicated */ sysib.sysib_222.total_cpus = cpu_to_be16(total_cpus); sysib.sysib_222.conf_cpus = cpu_to_be16(conf_cpus); sysib.sysib_222.reserved_cpus = cpu_to_be16(reserved_cpus); ebcdic_put(sysib.sysib_222.name, "QEMU ", 8); sysib.sysib_222.caf = cpu_to_be32(1000); sysib.sysib_222.dedicated_cpus = cpu_to_be16(conf_cpus); } else { cc = 3; } break; case STSI_R0_FC_LEVEL_3: if ((sel1 == 2) && (sel2 == 2)) { /* VM CPUs */ sysib.sysib_322.count = 1; sysib.sysib_322.vm[0].total_cpus = cpu_to_be16(total_cpus); sysib.sysib_322.vm[0].conf_cpus = cpu_to_be16(conf_cpus); sysib.sysib_322.vm[0].reserved_cpus = cpu_to_be16(reserved_cpus); sysib.sysib_322.vm[0].caf = cpu_to_be32(1000); /* Linux kernel uses this to distinguish us from z/VM */ ebcdic_put(sysib.sysib_322.vm[0].cpi, "KVM/Linux ", 16); sysib.sysib_322.vm[0].ext_name_encoding = 2; /* UTF-8 */ /* If our VM has a name, use the real name */ if (qemu_name) { memset(sysib.sysib_322.vm[0].name, 0x40, sizeof(sysib.sysib_322.vm[0].name)); ebcdic_put(sysib.sysib_322.vm[0].name, qemu_name, MIN(sizeof(sysib.sysib_322.vm[0].name), strlen(qemu_name))); strpadcpy((char *)sysib.sysib_322.ext_names[0], sizeof(sysib.sysib_322.ext_names[0]), qemu_name, '\0'); } else { ebcdic_put(sysib.sysib_322.vm[0].name, "TCGguest", 8); strcpy((char *)sysib.sysib_322.ext_names[0], "TCGguest"); } /* add the uuid */ memcpy(sysib.sysib_322.vm[0].uuid, &qemu_uuid, sizeof(sysib.sysib_322.vm[0].uuid)); } else { cc = 3; } break; } if (cc == 0) { if (s390_cpu_virt_mem_write(cpu, a0, 0, &sysib, sizeof(sysib))) { s390_cpu_virt_mem_handle_exc(cpu, ra); } } return cc; } uint32_t HELPER(sigp)(CPUS390XState *env, uint64_t order_code, uint32_t r1, uint32_t r3) { int cc; /* TODO: needed to inject interrupts - push further down */ qemu_mutex_lock_iothread(); cc = handle_sigp(env, order_code & SIGP_ORDER_MASK, r1, r3); qemu_mutex_unlock_iothread(); return cc; } #endif #ifndef CONFIG_USER_ONLY void HELPER(xsch)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_xsch(cpu, r1, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(csch)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_csch(cpu, r1, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(hsch)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_hsch(cpu, r1, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(msch)(CPUS390XState *env, uint64_t r1, uint64_t inst) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_msch(cpu, r1, inst >> 16, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(rchp)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_rchp(cpu, r1, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(rsch)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_rsch(cpu, r1, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(sal)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_sal(cpu, r1, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(schm)(CPUS390XState *env, uint64_t r1, uint64_t r2, uint64_t inst) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_schm(cpu, r1, r2, inst >> 16, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(ssch)(CPUS390XState *env, uint64_t r1, uint64_t inst) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_ssch(cpu, r1, inst >> 16, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(stcrw)(CPUS390XState *env, uint64_t inst) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_stcrw(cpu, inst >> 16, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(stsch)(CPUS390XState *env, uint64_t r1, uint64_t inst) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_stsch(cpu, r1, inst >> 16, GETPC()); qemu_mutex_unlock_iothread(); } uint32_t HELPER(tpi)(CPUS390XState *env, uint64_t addr) { const uintptr_t ra = GETPC(); S390CPU *cpu = env_archcpu(env); QEMUS390FLICState *flic = s390_get_qemu_flic(s390_get_flic()); QEMUS390FlicIO *io = NULL; LowCore *lowcore; if (addr & 0x3) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra); } qemu_mutex_lock_iothread(); io = qemu_s390_flic_dequeue_io(flic, env->cregs[6]); if (!io) { qemu_mutex_unlock_iothread(); return 0; } if (addr) { struct { uint16_t id; uint16_t nr; uint32_t parm; } intc = { .id = cpu_to_be16(io->id), .nr = cpu_to_be16(io->nr), .parm = cpu_to_be32(io->parm), }; if (s390_cpu_virt_mem_write(cpu, addr, 0, &intc, sizeof(intc))) { /* writing failed, reinject and properly clean up */ s390_io_interrupt(io->id, io->nr, io->parm, io->word); qemu_mutex_unlock_iothread(); g_free(io); s390_cpu_virt_mem_handle_exc(cpu, ra); return 0; } } else { /* no protection applies */ lowcore = cpu_map_lowcore(env); lowcore->subchannel_id = cpu_to_be16(io->id); lowcore->subchannel_nr = cpu_to_be16(io->nr); lowcore->io_int_parm = cpu_to_be32(io->parm); lowcore->io_int_word = cpu_to_be32(io->word); cpu_unmap_lowcore(lowcore); } g_free(io); qemu_mutex_unlock_iothread(); return 1; } void HELPER(tsch)(CPUS390XState *env, uint64_t r1, uint64_t inst) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_tsch(cpu, r1, inst >> 16, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(chsc)(CPUS390XState *env, uint64_t inst) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); ioinst_handle_chsc(cpu, inst >> 16, GETPC()); qemu_mutex_unlock_iothread(); } #endif #ifndef CONFIG_USER_ONLY void HELPER(per_check_exception)(CPUS390XState *env) { if (env->per_perc_atmid) { tcg_s390_program_interrupt(env, PGM_PER, GETPC()); } } /* Check if an address is within the PER starting address and the PER ending address. The address range might loop. */ static inline bool get_per_in_range(CPUS390XState *env, uint64_t addr) { if (env->cregs[10] <= env->cregs[11]) { return env->cregs[10] <= addr && addr <= env->cregs[11]; } else { return env->cregs[10] <= addr || addr <= env->cregs[11]; } } void HELPER(per_branch)(CPUS390XState *env, uint64_t from, uint64_t to) { if ((env->cregs[9] & PER_CR9_EVENT_BRANCH)) { if (!(env->cregs[9] & PER_CR9_CONTROL_BRANCH_ADDRESS) || get_per_in_range(env, to)) { env->per_address = from; env->per_perc_atmid = PER_CODE_EVENT_BRANCH | get_per_atmid(env); } } } void HELPER(per_ifetch)(CPUS390XState *env, uint64_t addr) { if ((env->cregs[9] & PER_CR9_EVENT_IFETCH) && get_per_in_range(env, addr)) { env->per_address = addr; env->per_perc_atmid = PER_CODE_EVENT_IFETCH | get_per_atmid(env); /* If the instruction has to be nullified, trigger the exception immediately. */ if (env->cregs[9] & PER_CR9_EVENT_NULLIFICATION) { CPUState *cs = env_cpu(env); env->per_perc_atmid |= PER_CODE_EVENT_NULLIFICATION; env->int_pgm_code = PGM_PER; env->int_pgm_ilen = get_ilen(cpu_ldub_code(env, addr)); cs->exception_index = EXCP_PGM; cpu_loop_exit(cs); } } } void HELPER(per_store_real)(CPUS390XState *env) { if ((env->cregs[9] & PER_CR9_EVENT_STORE) && (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) { /* PSW is saved just before calling the helper. */ env->per_address = env->psw.addr; env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env); } } #endif static uint8_t stfl_bytes[2048]; static unsigned int used_stfl_bytes; static void prepare_stfl(void) { static bool initialized; int i; /* racy, but we don't care, the same values are always written */ if (initialized) { return; } s390_get_feat_block(S390_FEAT_TYPE_STFL, stfl_bytes); for (i = 0; i < sizeof(stfl_bytes); i++) { if (stfl_bytes[i]) { used_stfl_bytes = i + 1; } } initialized = true; } #ifndef CONFIG_USER_ONLY void HELPER(stfl)(CPUS390XState *env) { LowCore *lowcore; lowcore = cpu_map_lowcore(env); prepare_stfl(); memcpy(&lowcore->stfl_fac_list, stfl_bytes, sizeof(lowcore->stfl_fac_list)); cpu_unmap_lowcore(lowcore); } #endif uint32_t HELPER(stfle)(CPUS390XState *env, uint64_t addr) { const uintptr_t ra = GETPC(); const int count_bytes = ((env->regs[0] & 0xff) + 1) * 8; int max_bytes; int i; if (addr & 0x7) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra); } prepare_stfl(); max_bytes = ROUND_UP(used_stfl_bytes, 8); /* * The PoP says that doublewords beyond the highest-numbered facility * bit may or may not be stored. However, existing hardware appears to * not store the words, and existing software depend on that. */ for (i = 0; i < MIN(count_bytes, max_bytes); ++i) { cpu_stb_data_ra(env, addr + i, stfl_bytes[i], ra); } env->regs[0] = deposit64(env->regs[0], 0, 8, (max_bytes / 8) - 1); return count_bytes >= max_bytes ? 0 : 3; } #ifndef CONFIG_USER_ONLY /* * Note: we ignore any return code of the functions called for the pci * instructions, as the only time they return !0 is when the stub is * called, and in that case we didn't even offer the zpci facility. * The only exception is SIC, where program checks need to be handled * by the caller. */ void HELPER(clp)(CPUS390XState *env, uint32_t r2) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); clp_service_call(cpu, r2, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(pcilg)(CPUS390XState *env, uint32_t r1, uint32_t r2) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); pcilg_service_call(cpu, r1, r2, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(pcistg)(CPUS390XState *env, uint32_t r1, uint32_t r2) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); pcistg_service_call(cpu, r1, r2, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(stpcifc)(CPUS390XState *env, uint32_t r1, uint64_t fiba, uint32_t ar) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); stpcifc_service_call(cpu, r1, fiba, ar, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(sic)(CPUS390XState *env, uint64_t r1, uint64_t r3) { int r; qemu_mutex_lock_iothread(); r = css_do_sic(env, (r3 >> 27) & 0x7, r1 & 0xffff); qemu_mutex_unlock_iothread(); /* css_do_sic() may actually return a PGM_xxx value to inject */ if (r) { tcg_s390_program_interrupt(env, -r, GETPC()); } } void HELPER(rpcit)(CPUS390XState *env, uint32_t r1, uint32_t r2) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); rpcit_service_call(cpu, r1, r2, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(pcistb)(CPUS390XState *env, uint32_t r1, uint32_t r3, uint64_t gaddr, uint32_t ar) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); pcistb_service_call(cpu, r1, r3, gaddr, ar, GETPC()); qemu_mutex_unlock_iothread(); } void HELPER(mpcifc)(CPUS390XState *env, uint32_t r1, uint64_t fiba, uint32_t ar) { S390CPU *cpu = env_archcpu(env); qemu_mutex_lock_iothread(); mpcifc_service_call(cpu, r1, fiba, ar, GETPC()); qemu_mutex_unlock_iothread(); } #endif