/* * RISC-V Vector Extension Helpers for QEMU. * * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/memop.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "fpu/softfloat.h" #include "tcg/tcg-gvec-desc.h" #include "internals.h" #include target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1, target_ulong s2) { int vlmax, vl; RISCVCPU *cpu = env_archcpu(env); uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW); uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV); bool vill = FIELD_EX64(s2, VTYPE, VILL); target_ulong reserved = FIELD_EX64(s2, VTYPE, RESERVED); if ((sew > cpu->cfg.elen) || vill || (ediv != 0) || (reserved != 0)) { /* only set vill bit. */ env->vtype = FIELD_DP64(0, VTYPE, VILL, 1); env->vl = 0; env->vstart = 0; return 0; } vlmax = vext_get_vlmax(cpu, s2); if (s1 <= vlmax) { vl = s1; } else { vl = vlmax; } env->vl = vl; env->vtype = s2; env->vstart = 0; return vl; } /* * Note that vector data is stored in host-endian 64-bit chunks, * so addressing units smaller than that needs a host-endian fixup. */ #ifdef HOST_WORDS_BIGENDIAN #define H1(x) ((x) ^ 7) #define H1_2(x) ((x) ^ 6) #define H1_4(x) ((x) ^ 4) #define H2(x) ((x) ^ 3) #define H4(x) ((x) ^ 1) #define H8(x) ((x)) #else #define H1(x) (x) #define H1_2(x) (x) #define H1_4(x) (x) #define H2(x) (x) #define H4(x) (x) #define H8(x) (x) #endif static inline uint32_t vext_nf(uint32_t desc) { return FIELD_EX32(simd_data(desc), VDATA, NF); } static inline uint32_t vext_mlen(uint32_t desc) { return FIELD_EX32(simd_data(desc), VDATA, MLEN); } static inline uint32_t vext_vm(uint32_t desc) { return FIELD_EX32(simd_data(desc), VDATA, VM); } static inline uint32_t vext_lmul(uint32_t desc) { return FIELD_EX32(simd_data(desc), VDATA, LMUL); } static uint32_t vext_wd(uint32_t desc) { return (simd_data(desc) >> 11) & 0x1; } /* * Get vector group length in bytes. Its range is [64, 2048]. * * As simd_desc support at most 256, the max vlen is 512 bits. * So vlen in bytes is encoded as maxsz. */ static inline uint32_t vext_maxsz(uint32_t desc) { return simd_maxsz(desc) << vext_lmul(desc); } /* * This function checks watchpoint before real load operation. * * In softmmu mode, the TLB API probe_access is enough for watchpoint check. * In user mode, there is no watchpoint support now. * * It will trigger an exception if there is no mapping in TLB * and page table walk can't fill the TLB entry. Then the guest * software can return here after process the exception or never return. */ static void probe_pages(CPURISCVState *env, target_ulong addr, target_ulong len, uintptr_t ra, MMUAccessType access_type) { target_ulong pagelen = -(addr | TARGET_PAGE_MASK); target_ulong curlen = MIN(pagelen, len); probe_access(env, addr, curlen, access_type, cpu_mmu_index(env, false), ra); if (len > curlen) { addr += curlen; curlen = len - curlen; probe_access(env, addr, curlen, access_type, cpu_mmu_index(env, false), ra); } } #ifdef HOST_WORDS_BIGENDIAN static void vext_clear(void *tail, uint32_t cnt, uint32_t tot) { /* * Split the remaining range to two parts. * The first part is in the last uint64_t unit. * The second part start from the next uint64_t unit. */ int part1 = 0, part2 = tot - cnt; if (cnt % 8) { part1 = 8 - (cnt % 8); part2 = tot - cnt - part1; memset((void *)((uintptr_t)tail & ~(7ULL)), 0, part1); memset((void *)(((uintptr_t)tail + 8) & ~(7ULL)), 0, part2); } else { memset(tail, 0, part2); } } #else static void vext_clear(void *tail, uint32_t cnt, uint32_t tot) { memset(tail, 0, tot - cnt); } #endif static void clearb(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot) { int8_t *cur = ((int8_t *)vd + H1(idx)); vext_clear(cur, cnt, tot); } static void clearh(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot) { int16_t *cur = ((int16_t *)vd + H2(idx)); vext_clear(cur, cnt, tot); } static void clearl(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot) { int32_t *cur = ((int32_t *)vd + H4(idx)); vext_clear(cur, cnt, tot); } static void clearq(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot) { int64_t *cur = (int64_t *)vd + idx; vext_clear(cur, cnt, tot); } static inline void vext_set_elem_mask(void *v0, int mlen, int index, uint8_t value) { int idx = (index * mlen) / 64; int pos = (index * mlen) % 64; uint64_t old = ((uint64_t *)v0)[idx]; ((uint64_t *)v0)[idx] = deposit64(old, pos, mlen, value); } static inline int vext_elem_mask(void *v0, int mlen, int index) { int idx = (index * mlen) / 64; int pos = (index * mlen) % 64; return (((uint64_t *)v0)[idx] >> pos) & 1; } /* elements operations for load and store */ typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr, uint32_t idx, void *vd, uintptr_t retaddr); typedef void clear_fn(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot); #define GEN_VEXT_LD_ELEM(NAME, MTYPE, ETYPE, H, LDSUF) \ static void NAME(CPURISCVState *env, abi_ptr addr, \ uint32_t idx, void *vd, uintptr_t retaddr)\ { \ MTYPE data; \ ETYPE *cur = ((ETYPE *)vd + H(idx)); \ data = cpu_##LDSUF##_data_ra(env, addr, retaddr); \ *cur = data; \ } \ GEN_VEXT_LD_ELEM(ldb_b, int8_t, int8_t, H1, ldsb) GEN_VEXT_LD_ELEM(ldb_h, int8_t, int16_t, H2, ldsb) GEN_VEXT_LD_ELEM(ldb_w, int8_t, int32_t, H4, ldsb) GEN_VEXT_LD_ELEM(ldb_d, int8_t, int64_t, H8, ldsb) GEN_VEXT_LD_ELEM(ldh_h, int16_t, int16_t, H2, ldsw) GEN_VEXT_LD_ELEM(ldh_w, int16_t, int32_t, H4, ldsw) GEN_VEXT_LD_ELEM(ldh_d, int16_t, int64_t, H8, ldsw) GEN_VEXT_LD_ELEM(ldw_w, int32_t, int32_t, H4, ldl) GEN_VEXT_LD_ELEM(ldw_d, int32_t, int64_t, H8, ldl) GEN_VEXT_LD_ELEM(lde_b, int8_t, int8_t, H1, ldsb) GEN_VEXT_LD_ELEM(lde_h, int16_t, int16_t, H2, ldsw) GEN_VEXT_LD_ELEM(lde_w, int32_t, int32_t, H4, ldl) GEN_VEXT_LD_ELEM(lde_d, int64_t, int64_t, H8, ldq) GEN_VEXT_LD_ELEM(ldbu_b, uint8_t, uint8_t, H1, ldub) GEN_VEXT_LD_ELEM(ldbu_h, uint8_t, uint16_t, H2, ldub) GEN_VEXT_LD_ELEM(ldbu_w, uint8_t, uint32_t, H4, ldub) GEN_VEXT_LD_ELEM(ldbu_d, uint8_t, uint64_t, H8, ldub) GEN_VEXT_LD_ELEM(ldhu_h, uint16_t, uint16_t, H2, lduw) GEN_VEXT_LD_ELEM(ldhu_w, uint16_t, uint32_t, H4, lduw) GEN_VEXT_LD_ELEM(ldhu_d, uint16_t, uint64_t, H8, lduw) GEN_VEXT_LD_ELEM(ldwu_w, uint32_t, uint32_t, H4, ldl) GEN_VEXT_LD_ELEM(ldwu_d, uint32_t, uint64_t, H8, ldl) #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF) \ static void NAME(CPURISCVState *env, abi_ptr addr, \ uint32_t idx, void *vd, uintptr_t retaddr)\ { \ ETYPE data = *((ETYPE *)vd + H(idx)); \ cpu_##STSUF##_data_ra(env, addr, data, retaddr); \ } GEN_VEXT_ST_ELEM(stb_b, int8_t, H1, stb) GEN_VEXT_ST_ELEM(stb_h, int16_t, H2, stb) GEN_VEXT_ST_ELEM(stb_w, int32_t, H4, stb) GEN_VEXT_ST_ELEM(stb_d, int64_t, H8, stb) GEN_VEXT_ST_ELEM(sth_h, int16_t, H2, stw) GEN_VEXT_ST_ELEM(sth_w, int32_t, H4, stw) GEN_VEXT_ST_ELEM(sth_d, int64_t, H8, stw) GEN_VEXT_ST_ELEM(stw_w, int32_t, H4, stl) GEN_VEXT_ST_ELEM(stw_d, int64_t, H8, stl) GEN_VEXT_ST_ELEM(ste_b, int8_t, H1, stb) GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw) GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl) GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq) /* *** stride: access vector element from strided memory */ static void vext_ldst_stride(void *vd, void *v0, target_ulong base, target_ulong stride, CPURISCVState *env, uint32_t desc, uint32_t vm, vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem, uint32_t esz, uint32_t msz, uintptr_t ra, MMUAccessType access_type) { uint32_t i, k; uint32_t nf = vext_nf(desc); uint32_t mlen = vext_mlen(desc); uint32_t vlmax = vext_maxsz(desc) / esz; /* probe every access*/ for (i = 0; i < env->vl; i++) { if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } probe_pages(env, base + stride * i, nf * msz, ra, access_type); } /* do real access */ for (i = 0; i < env->vl; i++) { k = 0; if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } while (k < nf) { target_ulong addr = base + stride * i + k * msz; ldst_elem(env, addr, i + k * vlmax, vd, ra); k++; } } /* clear tail elements */ if (clear_elem) { for (k = 0; k < nf; k++) { clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz); } } } #define GEN_VEXT_LD_STRIDE(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \ void HELPER(NAME)(void *vd, void * v0, target_ulong base, \ target_ulong stride, CPURISCVState *env, \ uint32_t desc) \ { \ uint32_t vm = vext_vm(desc); \ vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN, \ CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \ GETPC(), MMU_DATA_LOAD); \ } GEN_VEXT_LD_STRIDE(vlsb_v_b, int8_t, int8_t, ldb_b, clearb) GEN_VEXT_LD_STRIDE(vlsb_v_h, int8_t, int16_t, ldb_h, clearh) GEN_VEXT_LD_STRIDE(vlsb_v_w, int8_t, int32_t, ldb_w, clearl) GEN_VEXT_LD_STRIDE(vlsb_v_d, int8_t, int64_t, ldb_d, clearq) GEN_VEXT_LD_STRIDE(vlsh_v_h, int16_t, int16_t, ldh_h, clearh) GEN_VEXT_LD_STRIDE(vlsh_v_w, int16_t, int32_t, ldh_w, clearl) GEN_VEXT_LD_STRIDE(vlsh_v_d, int16_t, int64_t, ldh_d, clearq) GEN_VEXT_LD_STRIDE(vlsw_v_w, int32_t, int32_t, ldw_w, clearl) GEN_VEXT_LD_STRIDE(vlsw_v_d, int32_t, int64_t, ldw_d, clearq) GEN_VEXT_LD_STRIDE(vlse_v_b, int8_t, int8_t, lde_b, clearb) GEN_VEXT_LD_STRIDE(vlse_v_h, int16_t, int16_t, lde_h, clearh) GEN_VEXT_LD_STRIDE(vlse_v_w, int32_t, int32_t, lde_w, clearl) GEN_VEXT_LD_STRIDE(vlse_v_d, int64_t, int64_t, lde_d, clearq) GEN_VEXT_LD_STRIDE(vlsbu_v_b, uint8_t, uint8_t, ldbu_b, clearb) GEN_VEXT_LD_STRIDE(vlsbu_v_h, uint8_t, uint16_t, ldbu_h, clearh) GEN_VEXT_LD_STRIDE(vlsbu_v_w, uint8_t, uint32_t, ldbu_w, clearl) GEN_VEXT_LD_STRIDE(vlsbu_v_d, uint8_t, uint64_t, ldbu_d, clearq) GEN_VEXT_LD_STRIDE(vlshu_v_h, uint16_t, uint16_t, ldhu_h, clearh) GEN_VEXT_LD_STRIDE(vlshu_v_w, uint16_t, uint32_t, ldhu_w, clearl) GEN_VEXT_LD_STRIDE(vlshu_v_d, uint16_t, uint64_t, ldhu_d, clearq) GEN_VEXT_LD_STRIDE(vlswu_v_w, uint32_t, uint32_t, ldwu_w, clearl) GEN_VEXT_LD_STRIDE(vlswu_v_d, uint32_t, uint64_t, ldwu_d, clearq) #define GEN_VEXT_ST_STRIDE(NAME, MTYPE, ETYPE, STORE_FN) \ void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ target_ulong stride, CPURISCVState *env, \ uint32_t desc) \ { \ uint32_t vm = vext_vm(desc); \ vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN, \ NULL, sizeof(ETYPE), sizeof(MTYPE), \ GETPC(), MMU_DATA_STORE); \ } GEN_VEXT_ST_STRIDE(vssb_v_b, int8_t, int8_t, stb_b) GEN_VEXT_ST_STRIDE(vssb_v_h, int8_t, int16_t, stb_h) GEN_VEXT_ST_STRIDE(vssb_v_w, int8_t, int32_t, stb_w) GEN_VEXT_ST_STRIDE(vssb_v_d, int8_t, int64_t, stb_d) GEN_VEXT_ST_STRIDE(vssh_v_h, int16_t, int16_t, sth_h) GEN_VEXT_ST_STRIDE(vssh_v_w, int16_t, int32_t, sth_w) GEN_VEXT_ST_STRIDE(vssh_v_d, int16_t, int64_t, sth_d) GEN_VEXT_ST_STRIDE(vssw_v_w, int32_t, int32_t, stw_w) GEN_VEXT_ST_STRIDE(vssw_v_d, int32_t, int64_t, stw_d) GEN_VEXT_ST_STRIDE(vsse_v_b, int8_t, int8_t, ste_b) GEN_VEXT_ST_STRIDE(vsse_v_h, int16_t, int16_t, ste_h) GEN_VEXT_ST_STRIDE(vsse_v_w, int32_t, int32_t, ste_w) GEN_VEXT_ST_STRIDE(vsse_v_d, int64_t, int64_t, ste_d) /* *** unit-stride: access elements stored contiguously in memory */ /* unmasked unit-stride load and store operation*/ static void vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc, vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem, uint32_t esz, uint32_t msz, uintptr_t ra, MMUAccessType access_type) { uint32_t i, k; uint32_t nf = vext_nf(desc); uint32_t vlmax = vext_maxsz(desc) / esz; /* probe every access */ probe_pages(env, base, env->vl * nf * msz, ra, access_type); /* load bytes from guest memory */ for (i = 0; i < env->vl; i++) { k = 0; while (k < nf) { target_ulong addr = base + (i * nf + k) * msz; ldst_elem(env, addr, i + k * vlmax, vd, ra); k++; } } /* clear tail elements */ if (clear_elem) { for (k = 0; k < nf; k++) { clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz); } } } /* * masked unit-stride load and store operation will be a special case of stride, * stride = NF * sizeof (MTYPE) */ #define GEN_VEXT_LD_US(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \ void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \ vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN, \ CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \ GETPC(), MMU_DATA_LOAD); \ } \ \ void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ CPURISCVState *env, uint32_t desc) \ { \ vext_ldst_us(vd, base, env, desc, LOAD_FN, CLEAR_FN, \ sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_LOAD); \ } GEN_VEXT_LD_US(vlb_v_b, int8_t, int8_t, ldb_b, clearb) GEN_VEXT_LD_US(vlb_v_h, int8_t, int16_t, ldb_h, clearh) GEN_VEXT_LD_US(vlb_v_w, int8_t, int32_t, ldb_w, clearl) GEN_VEXT_LD_US(vlb_v_d, int8_t, int64_t, ldb_d, clearq) GEN_VEXT_LD_US(vlh_v_h, int16_t, int16_t, ldh_h, clearh) GEN_VEXT_LD_US(vlh_v_w, int16_t, int32_t, ldh_w, clearl) GEN_VEXT_LD_US(vlh_v_d, int16_t, int64_t, ldh_d, clearq) GEN_VEXT_LD_US(vlw_v_w, int32_t, int32_t, ldw_w, clearl) GEN_VEXT_LD_US(vlw_v_d, int32_t, int64_t, ldw_d, clearq) GEN_VEXT_LD_US(vle_v_b, int8_t, int8_t, lde_b, clearb) GEN_VEXT_LD_US(vle_v_h, int16_t, int16_t, lde_h, clearh) GEN_VEXT_LD_US(vle_v_w, int32_t, int32_t, lde_w, clearl) GEN_VEXT_LD_US(vle_v_d, int64_t, int64_t, lde_d, clearq) GEN_VEXT_LD_US(vlbu_v_b, uint8_t, uint8_t, ldbu_b, clearb) GEN_VEXT_LD_US(vlbu_v_h, uint8_t, uint16_t, ldbu_h, clearh) GEN_VEXT_LD_US(vlbu_v_w, uint8_t, uint32_t, ldbu_w, clearl) GEN_VEXT_LD_US(vlbu_v_d, uint8_t, uint64_t, ldbu_d, clearq) GEN_VEXT_LD_US(vlhu_v_h, uint16_t, uint16_t, ldhu_h, clearh) GEN_VEXT_LD_US(vlhu_v_w, uint16_t, uint32_t, ldhu_w, clearl) GEN_VEXT_LD_US(vlhu_v_d, uint16_t, uint64_t, ldhu_d, clearq) GEN_VEXT_LD_US(vlwu_v_w, uint32_t, uint32_t, ldwu_w, clearl) GEN_VEXT_LD_US(vlwu_v_d, uint32_t, uint64_t, ldwu_d, clearq) #define GEN_VEXT_ST_US(NAME, MTYPE, ETYPE, STORE_FN) \ void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \ vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN, \ NULL, sizeof(ETYPE), sizeof(MTYPE), \ GETPC(), MMU_DATA_STORE); \ } \ \ void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ CPURISCVState *env, uint32_t desc) \ { \ vext_ldst_us(vd, base, env, desc, STORE_FN, NULL, \ sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_STORE);\ } GEN_VEXT_ST_US(vsb_v_b, int8_t, int8_t , stb_b) GEN_VEXT_ST_US(vsb_v_h, int8_t, int16_t, stb_h) GEN_VEXT_ST_US(vsb_v_w, int8_t, int32_t, stb_w) GEN_VEXT_ST_US(vsb_v_d, int8_t, int64_t, stb_d) GEN_VEXT_ST_US(vsh_v_h, int16_t, int16_t, sth_h) GEN_VEXT_ST_US(vsh_v_w, int16_t, int32_t, sth_w) GEN_VEXT_ST_US(vsh_v_d, int16_t, int64_t, sth_d) GEN_VEXT_ST_US(vsw_v_w, int32_t, int32_t, stw_w) GEN_VEXT_ST_US(vsw_v_d, int32_t, int64_t, stw_d) GEN_VEXT_ST_US(vse_v_b, int8_t, int8_t , ste_b) GEN_VEXT_ST_US(vse_v_h, int16_t, int16_t, ste_h) GEN_VEXT_ST_US(vse_v_w, int32_t, int32_t, ste_w) GEN_VEXT_ST_US(vse_v_d, int64_t, int64_t, ste_d) /* *** index: access vector element from indexed memory */ typedef target_ulong vext_get_index_addr(target_ulong base, uint32_t idx, void *vs2); #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H) \ static target_ulong NAME(target_ulong base, \ uint32_t idx, void *vs2) \ { \ return (base + *((ETYPE *)vs2 + H(idx))); \ } GEN_VEXT_GET_INDEX_ADDR(idx_b, int8_t, H1) GEN_VEXT_GET_INDEX_ADDR(idx_h, int16_t, H2) GEN_VEXT_GET_INDEX_ADDR(idx_w, int32_t, H4) GEN_VEXT_GET_INDEX_ADDR(idx_d, int64_t, H8) static inline void vext_ldst_index(void *vd, void *v0, target_ulong base, void *vs2, CPURISCVState *env, uint32_t desc, vext_get_index_addr get_index_addr, vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem, uint32_t esz, uint32_t msz, uintptr_t ra, MMUAccessType access_type) { uint32_t i, k; uint32_t nf = vext_nf(desc); uint32_t vm = vext_vm(desc); uint32_t mlen = vext_mlen(desc); uint32_t vlmax = vext_maxsz(desc) / esz; /* probe every access*/ for (i = 0; i < env->vl; i++) { if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } probe_pages(env, get_index_addr(base, i, vs2), nf * msz, ra, access_type); } /* load bytes from guest memory */ for (i = 0; i < env->vl; i++) { k = 0; if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } while (k < nf) { abi_ptr addr = get_index_addr(base, i, vs2) + k * msz; ldst_elem(env, addr, i + k * vlmax, vd, ra); k++; } } /* clear tail elements */ if (clear_elem) { for (k = 0; k < nf; k++) { clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz); } } } #define GEN_VEXT_LD_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, LOAD_FN, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ void *vs2, CPURISCVState *env, uint32_t desc) \ { \ vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \ LOAD_FN, CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \ GETPC(), MMU_DATA_LOAD); \ } GEN_VEXT_LD_INDEX(vlxb_v_b, int8_t, int8_t, idx_b, ldb_b, clearb) GEN_VEXT_LD_INDEX(vlxb_v_h, int8_t, int16_t, idx_h, ldb_h, clearh) GEN_VEXT_LD_INDEX(vlxb_v_w, int8_t, int32_t, idx_w, ldb_w, clearl) GEN_VEXT_LD_INDEX(vlxb_v_d, int8_t, int64_t, idx_d, ldb_d, clearq) GEN_VEXT_LD_INDEX(vlxh_v_h, int16_t, int16_t, idx_h, ldh_h, clearh) GEN_VEXT_LD_INDEX(vlxh_v_w, int16_t, int32_t, idx_w, ldh_w, clearl) GEN_VEXT_LD_INDEX(vlxh_v_d, int16_t, int64_t, idx_d, ldh_d, clearq) GEN_VEXT_LD_INDEX(vlxw_v_w, int32_t, int32_t, idx_w, ldw_w, clearl) GEN_VEXT_LD_INDEX(vlxw_v_d, int32_t, int64_t, idx_d, ldw_d, clearq) GEN_VEXT_LD_INDEX(vlxe_v_b, int8_t, int8_t, idx_b, lde_b, clearb) GEN_VEXT_LD_INDEX(vlxe_v_h, int16_t, int16_t, idx_h, lde_h, clearh) GEN_VEXT_LD_INDEX(vlxe_v_w, int32_t, int32_t, idx_w, lde_w, clearl) GEN_VEXT_LD_INDEX(vlxe_v_d, int64_t, int64_t, idx_d, lde_d, clearq) GEN_VEXT_LD_INDEX(vlxbu_v_b, uint8_t, uint8_t, idx_b, ldbu_b, clearb) GEN_VEXT_LD_INDEX(vlxbu_v_h, uint8_t, uint16_t, idx_h, ldbu_h, clearh) GEN_VEXT_LD_INDEX(vlxbu_v_w, uint8_t, uint32_t, idx_w, ldbu_w, clearl) GEN_VEXT_LD_INDEX(vlxbu_v_d, uint8_t, uint64_t, idx_d, ldbu_d, clearq) GEN_VEXT_LD_INDEX(vlxhu_v_h, uint16_t, uint16_t, idx_h, ldhu_h, clearh) GEN_VEXT_LD_INDEX(vlxhu_v_w, uint16_t, uint32_t, idx_w, ldhu_w, clearl) GEN_VEXT_LD_INDEX(vlxhu_v_d, uint16_t, uint64_t, idx_d, ldhu_d, clearq) GEN_VEXT_LD_INDEX(vlxwu_v_w, uint32_t, uint32_t, idx_w, ldwu_w, clearl) GEN_VEXT_LD_INDEX(vlxwu_v_d, uint32_t, uint64_t, idx_d, ldwu_d, clearq) #define GEN_VEXT_ST_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, STORE_FN)\ void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ void *vs2, CPURISCVState *env, uint32_t desc) \ { \ vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \ STORE_FN, NULL, sizeof(ETYPE), sizeof(MTYPE),\ GETPC(), MMU_DATA_STORE); \ } GEN_VEXT_ST_INDEX(vsxb_v_b, int8_t, int8_t, idx_b, stb_b) GEN_VEXT_ST_INDEX(vsxb_v_h, int8_t, int16_t, idx_h, stb_h) GEN_VEXT_ST_INDEX(vsxb_v_w, int8_t, int32_t, idx_w, stb_w) GEN_VEXT_ST_INDEX(vsxb_v_d, int8_t, int64_t, idx_d, stb_d) GEN_VEXT_ST_INDEX(vsxh_v_h, int16_t, int16_t, idx_h, sth_h) GEN_VEXT_ST_INDEX(vsxh_v_w, int16_t, int32_t, idx_w, sth_w) GEN_VEXT_ST_INDEX(vsxh_v_d, int16_t, int64_t, idx_d, sth_d) GEN_VEXT_ST_INDEX(vsxw_v_w, int32_t, int32_t, idx_w, stw_w) GEN_VEXT_ST_INDEX(vsxw_v_d, int32_t, int64_t, idx_d, stw_d) GEN_VEXT_ST_INDEX(vsxe_v_b, int8_t, int8_t, idx_b, ste_b) GEN_VEXT_ST_INDEX(vsxe_v_h, int16_t, int16_t, idx_h, ste_h) GEN_VEXT_ST_INDEX(vsxe_v_w, int32_t, int32_t, idx_w, ste_w) GEN_VEXT_ST_INDEX(vsxe_v_d, int64_t, int64_t, idx_d, ste_d) /* *** unit-stride fault-only-fisrt load instructions */ static inline void vext_ldff(void *vd, void *v0, target_ulong base, CPURISCVState *env, uint32_t desc, vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem, uint32_t esz, uint32_t msz, uintptr_t ra) { void *host; uint32_t i, k, vl = 0; uint32_t mlen = vext_mlen(desc); uint32_t nf = vext_nf(desc); uint32_t vm = vext_vm(desc); uint32_t vlmax = vext_maxsz(desc) / esz; target_ulong addr, offset, remain; /* probe every access*/ for (i = 0; i < env->vl; i++) { if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } addr = base + nf * i * msz; if (i == 0) { probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD); } else { /* if it triggers an exception, no need to check watchpoint */ remain = nf * msz; while (remain > 0) { offset = -(addr | TARGET_PAGE_MASK); host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD, cpu_mmu_index(env, false)); if (host) { #ifdef CONFIG_USER_ONLY if (page_check_range(addr, nf * msz, PAGE_READ) < 0) { vl = i; goto ProbeSuccess; } #else probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD); #endif } else { vl = i; goto ProbeSuccess; } if (remain <= offset) { break; } remain -= offset; addr += offset; } } } ProbeSuccess: /* load bytes from guest memory */ if (vl != 0) { env->vl = vl; } for (i = 0; i < env->vl; i++) { k = 0; if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } while (k < nf) { target_ulong addr = base + (i * nf + k) * msz; ldst_elem(env, addr, i + k * vlmax, vd, ra); k++; } } /* clear tail elements */ if (vl != 0) { return; } for (k = 0; k < nf; k++) { clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz); } } #define GEN_VEXT_LDFF(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ CPURISCVState *env, uint32_t desc) \ { \ vext_ldff(vd, v0, base, env, desc, LOAD_FN, CLEAR_FN, \ sizeof(ETYPE), sizeof(MTYPE), GETPC()); \ } GEN_VEXT_LDFF(vlbff_v_b, int8_t, int8_t, ldb_b, clearb) GEN_VEXT_LDFF(vlbff_v_h, int8_t, int16_t, ldb_h, clearh) GEN_VEXT_LDFF(vlbff_v_w, int8_t, int32_t, ldb_w, clearl) GEN_VEXT_LDFF(vlbff_v_d, int8_t, int64_t, ldb_d, clearq) GEN_VEXT_LDFF(vlhff_v_h, int16_t, int16_t, ldh_h, clearh) GEN_VEXT_LDFF(vlhff_v_w, int16_t, int32_t, ldh_w, clearl) GEN_VEXT_LDFF(vlhff_v_d, int16_t, int64_t, ldh_d, clearq) GEN_VEXT_LDFF(vlwff_v_w, int32_t, int32_t, ldw_w, clearl) GEN_VEXT_LDFF(vlwff_v_d, int32_t, int64_t, ldw_d, clearq) GEN_VEXT_LDFF(vleff_v_b, int8_t, int8_t, lde_b, clearb) GEN_VEXT_LDFF(vleff_v_h, int16_t, int16_t, lde_h, clearh) GEN_VEXT_LDFF(vleff_v_w, int32_t, int32_t, lde_w, clearl) GEN_VEXT_LDFF(vleff_v_d, int64_t, int64_t, lde_d, clearq) GEN_VEXT_LDFF(vlbuff_v_b, uint8_t, uint8_t, ldbu_b, clearb) GEN_VEXT_LDFF(vlbuff_v_h, uint8_t, uint16_t, ldbu_h, clearh) GEN_VEXT_LDFF(vlbuff_v_w, uint8_t, uint32_t, ldbu_w, clearl) GEN_VEXT_LDFF(vlbuff_v_d, uint8_t, uint64_t, ldbu_d, clearq) GEN_VEXT_LDFF(vlhuff_v_h, uint16_t, uint16_t, ldhu_h, clearh) GEN_VEXT_LDFF(vlhuff_v_w, uint16_t, uint32_t, ldhu_w, clearl) GEN_VEXT_LDFF(vlhuff_v_d, uint16_t, uint64_t, ldhu_d, clearq) GEN_VEXT_LDFF(vlwuff_v_w, uint32_t, uint32_t, ldwu_w, clearl) GEN_VEXT_LDFF(vlwuff_v_d, uint32_t, uint64_t, ldwu_d, clearq) /* *** Vector AMO Operations (Zvamo) */ typedef void vext_amo_noatomic_fn(void *vs3, target_ulong addr, uint32_t wd, uint32_t idx, CPURISCVState *env, uintptr_t retaddr); /* no atomic opreation for vector atomic insructions */ #define DO_SWAP(N, M) (M) #define DO_AND(N, M) (N & M) #define DO_XOR(N, M) (N ^ M) #define DO_OR(N, M) (N | M) #define DO_ADD(N, M) (N + M) #define GEN_VEXT_AMO_NOATOMIC_OP(NAME, ESZ, MSZ, H, DO_OP, SUF) \ static void \ vext_##NAME##_noatomic_op(void *vs3, target_ulong addr, \ uint32_t wd, uint32_t idx, \ CPURISCVState *env, uintptr_t retaddr)\ { \ typedef int##ESZ##_t ETYPE; \ typedef int##MSZ##_t MTYPE; \ typedef uint##MSZ##_t UMTYPE __attribute__((unused)); \ ETYPE *pe3 = (ETYPE *)vs3 + H(idx); \ MTYPE a = cpu_ld##SUF##_data(env, addr), b = *pe3; \ \ cpu_st##SUF##_data(env, addr, DO_OP(a, b)); \ if (wd) { \ *pe3 = a; \ } \ } /* Signed min/max */ #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) /* Unsigned min/max */ #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M) #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M) GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_w, 32, 32, H4, DO_SWAP, l) GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_w, 32, 32, H4, DO_ADD, l) GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_w, 32, 32, H4, DO_XOR, l) GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_w, 32, 32, H4, DO_AND, l) GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_w, 32, 32, H4, DO_OR, l) GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_w, 32, 32, H4, DO_MIN, l) GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_w, 32, 32, H4, DO_MAX, l) GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_w, 32, 32, H4, DO_MINU, l) GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_w, 32, 32, H4, DO_MAXU, l) #ifdef TARGET_RISCV64 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_d, 64, 32, H8, DO_SWAP, l) GEN_VEXT_AMO_NOATOMIC_OP(vamoswapd_v_d, 64, 64, H8, DO_SWAP, q) GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_d, 64, 32, H8, DO_ADD, l) GEN_VEXT_AMO_NOATOMIC_OP(vamoaddd_v_d, 64, 64, H8, DO_ADD, q) GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_d, 64, 32, H8, DO_XOR, l) GEN_VEXT_AMO_NOATOMIC_OP(vamoxord_v_d, 64, 64, H8, DO_XOR, q) GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_d, 64, 32, H8, DO_AND, l) GEN_VEXT_AMO_NOATOMIC_OP(vamoandd_v_d, 64, 64, H8, DO_AND, q) GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_d, 64, 32, H8, DO_OR, l) GEN_VEXT_AMO_NOATOMIC_OP(vamoord_v_d, 64, 64, H8, DO_OR, q) GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_d, 64, 32, H8, DO_MIN, l) GEN_VEXT_AMO_NOATOMIC_OP(vamomind_v_d, 64, 64, H8, DO_MIN, q) GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_d, 64, 32, H8, DO_MAX, l) GEN_VEXT_AMO_NOATOMIC_OP(vamomaxd_v_d, 64, 64, H8, DO_MAX, q) GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_d, 64, 32, H8, DO_MINU, l) GEN_VEXT_AMO_NOATOMIC_OP(vamominud_v_d, 64, 64, H8, DO_MINU, q) GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_d, 64, 32, H8, DO_MAXU, l) GEN_VEXT_AMO_NOATOMIC_OP(vamomaxud_v_d, 64, 64, H8, DO_MAXU, q) #endif static inline void vext_amo_noatomic(void *vs3, void *v0, target_ulong base, void *vs2, CPURISCVState *env, uint32_t desc, vext_get_index_addr get_index_addr, vext_amo_noatomic_fn *noatomic_op, clear_fn *clear_elem, uint32_t esz, uint32_t msz, uintptr_t ra) { uint32_t i; target_long addr; uint32_t wd = vext_wd(desc); uint32_t vm = vext_vm(desc); uint32_t mlen = vext_mlen(desc); uint32_t vlmax = vext_maxsz(desc) / esz; for (i = 0; i < env->vl; i++) { if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_LOAD); probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_STORE); } for (i = 0; i < env->vl; i++) { if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } addr = get_index_addr(base, i, vs2); noatomic_op(vs3, addr, wd, i, env, ra); } clear_elem(vs3, env->vl, env->vl * esz, vlmax * esz); } #define GEN_VEXT_AMO(NAME, MTYPE, ETYPE, INDEX_FN, CLEAR_FN) \ void HELPER(NAME)(void *vs3, void *v0, target_ulong base, \ void *vs2, CPURISCVState *env, uint32_t desc) \ { \ vext_amo_noatomic(vs3, v0, base, vs2, env, desc, \ INDEX_FN, vext_##NAME##_noatomic_op, \ CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \ GETPC()); \ } #ifdef TARGET_RISCV64 GEN_VEXT_AMO(vamoswapw_v_d, int32_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamoswapd_v_d, int64_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamoaddw_v_d, int32_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamoaddd_v_d, int64_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamoxorw_v_d, int32_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamoxord_v_d, int64_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamoandw_v_d, int32_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamoandd_v_d, int64_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamoorw_v_d, int32_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamoord_v_d, int64_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamominw_v_d, int32_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamomind_v_d, int64_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamomaxw_v_d, int32_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamomaxd_v_d, int64_t, int64_t, idx_d, clearq) GEN_VEXT_AMO(vamominuw_v_d, uint32_t, uint64_t, idx_d, clearq) GEN_VEXT_AMO(vamominud_v_d, uint64_t, uint64_t, idx_d, clearq) GEN_VEXT_AMO(vamomaxuw_v_d, uint32_t, uint64_t, idx_d, clearq) GEN_VEXT_AMO(vamomaxud_v_d, uint64_t, uint64_t, idx_d, clearq) #endif GEN_VEXT_AMO(vamoswapw_v_w, int32_t, int32_t, idx_w, clearl) GEN_VEXT_AMO(vamoaddw_v_w, int32_t, int32_t, idx_w, clearl) GEN_VEXT_AMO(vamoxorw_v_w, int32_t, int32_t, idx_w, clearl) GEN_VEXT_AMO(vamoandw_v_w, int32_t, int32_t, idx_w, clearl) GEN_VEXT_AMO(vamoorw_v_w, int32_t, int32_t, idx_w, clearl) GEN_VEXT_AMO(vamominw_v_w, int32_t, int32_t, idx_w, clearl) GEN_VEXT_AMO(vamomaxw_v_w, int32_t, int32_t, idx_w, clearl) GEN_VEXT_AMO(vamominuw_v_w, uint32_t, uint32_t, idx_w, clearl) GEN_VEXT_AMO(vamomaxuw_v_w, uint32_t, uint32_t, idx_w, clearl) /* *** Vector Integer Arithmetic Instructions */ /* expand macro args before macro */ #define RVVCALL(macro, ...) macro(__VA_ARGS__) /* (TD, T1, T2, TX1, TX2) */ #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t #define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t #define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t #define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t #define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t #define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t #define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t #define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t #define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t #define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t #define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t #define NOP_SSS_B int8_t, int8_t, int16_t, int8_t, int16_t #define NOP_SSS_H int16_t, int16_t, int32_t, int16_t, int32_t #define NOP_SSS_W int32_t, int32_t, int64_t, int32_t, int64_t #define NOP_UUU_B uint8_t, uint8_t, uint16_t, uint8_t, uint16_t #define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t #define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t /* operation of two vector elements */ typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i); #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \ { \ TX1 s1 = *((T1 *)vs1 + HS1(i)); \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ *((TD *)vd + HD(i)) = OP(s2, s1); \ } #define DO_SUB(N, M) (N - M) #define DO_RSUB(N, M) (M - N) RVVCALL(OPIVV2, vadd_vv_b, OP_SSS_B, H1, H1, H1, DO_ADD) RVVCALL(OPIVV2, vadd_vv_h, OP_SSS_H, H2, H2, H2, DO_ADD) RVVCALL(OPIVV2, vadd_vv_w, OP_SSS_W, H4, H4, H4, DO_ADD) RVVCALL(OPIVV2, vadd_vv_d, OP_SSS_D, H8, H8, H8, DO_ADD) RVVCALL(OPIVV2, vsub_vv_b, OP_SSS_B, H1, H1, H1, DO_SUB) RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB) RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB) RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB) static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2, CPURISCVState *env, uint32_t desc, uint32_t esz, uint32_t dsz, opivv2_fn *fn, clear_fn *clearfn) { uint32_t vlmax = vext_maxsz(desc) / esz; uint32_t mlen = vext_mlen(desc); uint32_t vm = vext_vm(desc); uint32_t vl = env->vl; uint32_t i; for (i = 0; i < vl; i++) { if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } fn(vd, vs1, vs2, i); } clearfn(vd, vl, vl * dsz, vlmax * dsz); } /* generate the helpers for OPIVV */ #define GEN_VEXT_VV(NAME, ESZ, DSZ, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, void *vs1, \ void *vs2, CPURISCVState *env, \ uint32_t desc) \ { \ do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \ do_##NAME, CLEAR_FN); \ } GEN_VEXT_VV(vadd_vv_b, 1, 1, clearb) GEN_VEXT_VV(vadd_vv_h, 2, 2, clearh) GEN_VEXT_VV(vadd_vv_w, 4, 4, clearl) GEN_VEXT_VV(vadd_vv_d, 8, 8, clearq) GEN_VEXT_VV(vsub_vv_b, 1, 1, clearb) GEN_VEXT_VV(vsub_vv_h, 2, 2, clearh) GEN_VEXT_VV(vsub_vv_w, 4, 4, clearl) GEN_VEXT_VV(vsub_vv_d, 8, 8, clearq) typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i); /* * (T1)s1 gives the real operator type. * (TX1)(T1)s1 expands the operator type of widen or narrow operations. */ #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \ { \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \ } RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD) RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD) RVVCALL(OPIVX2, vadd_vx_w, OP_SSS_W, H4, H4, DO_ADD) RVVCALL(OPIVX2, vadd_vx_d, OP_SSS_D, H8, H8, DO_ADD) RVVCALL(OPIVX2, vsub_vx_b, OP_SSS_B, H1, H1, DO_SUB) RVVCALL(OPIVX2, vsub_vx_h, OP_SSS_H, H2, H2, DO_SUB) RVVCALL(OPIVX2, vsub_vx_w, OP_SSS_W, H4, H4, DO_SUB) RVVCALL(OPIVX2, vsub_vx_d, OP_SSS_D, H8, H8, DO_SUB) RVVCALL(OPIVX2, vrsub_vx_b, OP_SSS_B, H1, H1, DO_RSUB) RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB) RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB) RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB) static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2, CPURISCVState *env, uint32_t desc, uint32_t esz, uint32_t dsz, opivx2_fn fn, clear_fn *clearfn) { uint32_t vlmax = vext_maxsz(desc) / esz; uint32_t mlen = vext_mlen(desc); uint32_t vm = vext_vm(desc); uint32_t vl = env->vl; uint32_t i; for (i = 0; i < vl; i++) { if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } fn(vd, s1, vs2, i); } clearfn(vd, vl, vl * dsz, vlmax * dsz); } /* generate the helpers for OPIVX */ #define GEN_VEXT_VX(NAME, ESZ, DSZ, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ void *vs2, CPURISCVState *env, \ uint32_t desc) \ { \ do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \ do_##NAME, CLEAR_FN); \ } GEN_VEXT_VX(vadd_vx_b, 1, 1, clearb) GEN_VEXT_VX(vadd_vx_h, 2, 2, clearh) GEN_VEXT_VX(vadd_vx_w, 4, 4, clearl) GEN_VEXT_VX(vadd_vx_d, 8, 8, clearq) GEN_VEXT_VX(vsub_vx_b, 1, 1, clearb) GEN_VEXT_VX(vsub_vx_h, 2, 2, clearh) GEN_VEXT_VX(vsub_vx_w, 4, 4, clearl) GEN_VEXT_VX(vsub_vx_d, 8, 8, clearq) GEN_VEXT_VX(vrsub_vx_b, 1, 1, clearb) GEN_VEXT_VX(vrsub_vx_h, 2, 2, clearh) GEN_VEXT_VX(vrsub_vx_w, 4, 4, clearl) GEN_VEXT_VX(vrsub_vx_d, 8, 8, clearq) void HELPER(vec_rsubs8)(void *d, void *a, uint64_t b, uint32_t desc) { intptr_t oprsz = simd_oprsz(desc); intptr_t i; for (i = 0; i < oprsz; i += sizeof(uint8_t)) { *(uint8_t *)(d + i) = (uint8_t)b - *(uint8_t *)(a + i); } } void HELPER(vec_rsubs16)(void *d, void *a, uint64_t b, uint32_t desc) { intptr_t oprsz = simd_oprsz(desc); intptr_t i; for (i = 0; i < oprsz; i += sizeof(uint16_t)) { *(uint16_t *)(d + i) = (uint16_t)b - *(uint16_t *)(a + i); } } void HELPER(vec_rsubs32)(void *d, void *a, uint64_t b, uint32_t desc) { intptr_t oprsz = simd_oprsz(desc); intptr_t i; for (i = 0; i < oprsz; i += sizeof(uint32_t)) { *(uint32_t *)(d + i) = (uint32_t)b - *(uint32_t *)(a + i); } } void HELPER(vec_rsubs64)(void *d, void *a, uint64_t b, uint32_t desc) { intptr_t oprsz = simd_oprsz(desc); intptr_t i; for (i = 0; i < oprsz; i += sizeof(uint64_t)) { *(uint64_t *)(d + i) = b - *(uint64_t *)(a + i); } } /* Vector Widening Integer Add/Subtract */ #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t #define WOP_WUUU_B uint16_t, uint8_t, uint16_t, uint16_t, uint16_t #define WOP_WUUU_H uint32_t, uint16_t, uint32_t, uint32_t, uint32_t #define WOP_WUUU_W uint64_t, uint32_t, uint64_t, uint64_t, uint64_t #define WOP_WSSS_B int16_t, int8_t, int16_t, int16_t, int16_t #define WOP_WSSS_H int32_t, int16_t, int32_t, int32_t, int32_t #define WOP_WSSS_W int64_t, int32_t, int64_t, int64_t, int64_t RVVCALL(OPIVV2, vwaddu_vv_b, WOP_UUU_B, H2, H1, H1, DO_ADD) RVVCALL(OPIVV2, vwaddu_vv_h, WOP_UUU_H, H4, H2, H2, DO_ADD) RVVCALL(OPIVV2, vwaddu_vv_w, WOP_UUU_W, H8, H4, H4, DO_ADD) RVVCALL(OPIVV2, vwsubu_vv_b, WOP_UUU_B, H2, H1, H1, DO_SUB) RVVCALL(OPIVV2, vwsubu_vv_h, WOP_UUU_H, H4, H2, H2, DO_SUB) RVVCALL(OPIVV2, vwsubu_vv_w, WOP_UUU_W, H8, H4, H4, DO_SUB) RVVCALL(OPIVV2, vwadd_vv_b, WOP_SSS_B, H2, H1, H1, DO_ADD) RVVCALL(OPIVV2, vwadd_vv_h, WOP_SSS_H, H4, H2, H2, DO_ADD) RVVCALL(OPIVV2, vwadd_vv_w, WOP_SSS_W, H8, H4, H4, DO_ADD) RVVCALL(OPIVV2, vwsub_vv_b, WOP_SSS_B, H2, H1, H1, DO_SUB) RVVCALL(OPIVV2, vwsub_vv_h, WOP_SSS_H, H4, H2, H2, DO_SUB) RVVCALL(OPIVV2, vwsub_vv_w, WOP_SSS_W, H8, H4, H4, DO_SUB) RVVCALL(OPIVV2, vwaddu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_ADD) RVVCALL(OPIVV2, vwaddu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_ADD) RVVCALL(OPIVV2, vwaddu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_ADD) RVVCALL(OPIVV2, vwsubu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_SUB) RVVCALL(OPIVV2, vwsubu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_SUB) RVVCALL(OPIVV2, vwsubu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_SUB) RVVCALL(OPIVV2, vwadd_wv_b, WOP_WSSS_B, H2, H1, H1, DO_ADD) RVVCALL(OPIVV2, vwadd_wv_h, WOP_WSSS_H, H4, H2, H2, DO_ADD) RVVCALL(OPIVV2, vwadd_wv_w, WOP_WSSS_W, H8, H4, H4, DO_ADD) RVVCALL(OPIVV2, vwsub_wv_b, WOP_WSSS_B, H2, H1, H1, DO_SUB) RVVCALL(OPIVV2, vwsub_wv_h, WOP_WSSS_H, H4, H2, H2, DO_SUB) RVVCALL(OPIVV2, vwsub_wv_w, WOP_WSSS_W, H8, H4, H4, DO_SUB) GEN_VEXT_VV(vwaddu_vv_b, 1, 2, clearh) GEN_VEXT_VV(vwaddu_vv_h, 2, 4, clearl) GEN_VEXT_VV(vwaddu_vv_w, 4, 8, clearq) GEN_VEXT_VV(vwsubu_vv_b, 1, 2, clearh) GEN_VEXT_VV(vwsubu_vv_h, 2, 4, clearl) GEN_VEXT_VV(vwsubu_vv_w, 4, 8, clearq) GEN_VEXT_VV(vwadd_vv_b, 1, 2, clearh) GEN_VEXT_VV(vwadd_vv_h, 2, 4, clearl) GEN_VEXT_VV(vwadd_vv_w, 4, 8, clearq) GEN_VEXT_VV(vwsub_vv_b, 1, 2, clearh) GEN_VEXT_VV(vwsub_vv_h, 2, 4, clearl) GEN_VEXT_VV(vwsub_vv_w, 4, 8, clearq) GEN_VEXT_VV(vwaddu_wv_b, 1, 2, clearh) GEN_VEXT_VV(vwaddu_wv_h, 2, 4, clearl) GEN_VEXT_VV(vwaddu_wv_w, 4, 8, clearq) GEN_VEXT_VV(vwsubu_wv_b, 1, 2, clearh) GEN_VEXT_VV(vwsubu_wv_h, 2, 4, clearl) GEN_VEXT_VV(vwsubu_wv_w, 4, 8, clearq) GEN_VEXT_VV(vwadd_wv_b, 1, 2, clearh) GEN_VEXT_VV(vwadd_wv_h, 2, 4, clearl) GEN_VEXT_VV(vwadd_wv_w, 4, 8, clearq) GEN_VEXT_VV(vwsub_wv_b, 1, 2, clearh) GEN_VEXT_VV(vwsub_wv_h, 2, 4, clearl) GEN_VEXT_VV(vwsub_wv_w, 4, 8, clearq) RVVCALL(OPIVX2, vwaddu_vx_b, WOP_UUU_B, H2, H1, DO_ADD) RVVCALL(OPIVX2, vwaddu_vx_h, WOP_UUU_H, H4, H2, DO_ADD) RVVCALL(OPIVX2, vwaddu_vx_w, WOP_UUU_W, H8, H4, DO_ADD) RVVCALL(OPIVX2, vwsubu_vx_b, WOP_UUU_B, H2, H1, DO_SUB) RVVCALL(OPIVX2, vwsubu_vx_h, WOP_UUU_H, H4, H2, DO_SUB) RVVCALL(OPIVX2, vwsubu_vx_w, WOP_UUU_W, H8, H4, DO_SUB) RVVCALL(OPIVX2, vwadd_vx_b, WOP_SSS_B, H2, H1, DO_ADD) RVVCALL(OPIVX2, vwadd_vx_h, WOP_SSS_H, H4, H2, DO_ADD) RVVCALL(OPIVX2, vwadd_vx_w, WOP_SSS_W, H8, H4, DO_ADD) RVVCALL(OPIVX2, vwsub_vx_b, WOP_SSS_B, H2, H1, DO_SUB) RVVCALL(OPIVX2, vwsub_vx_h, WOP_SSS_H, H4, H2, DO_SUB) RVVCALL(OPIVX2, vwsub_vx_w, WOP_SSS_W, H8, H4, DO_SUB) RVVCALL(OPIVX2, vwaddu_wx_b, WOP_WUUU_B, H2, H1, DO_ADD) RVVCALL(OPIVX2, vwaddu_wx_h, WOP_WUUU_H, H4, H2, DO_ADD) RVVCALL(OPIVX2, vwaddu_wx_w, WOP_WUUU_W, H8, H4, DO_ADD) RVVCALL(OPIVX2, vwsubu_wx_b, WOP_WUUU_B, H2, H1, DO_SUB) RVVCALL(OPIVX2, vwsubu_wx_h, WOP_WUUU_H, H4, H2, DO_SUB) RVVCALL(OPIVX2, vwsubu_wx_w, WOP_WUUU_W, H8, H4, DO_SUB) RVVCALL(OPIVX2, vwadd_wx_b, WOP_WSSS_B, H2, H1, DO_ADD) RVVCALL(OPIVX2, vwadd_wx_h, WOP_WSSS_H, H4, H2, DO_ADD) RVVCALL(OPIVX2, vwadd_wx_w, WOP_WSSS_W, H8, H4, DO_ADD) RVVCALL(OPIVX2, vwsub_wx_b, WOP_WSSS_B, H2, H1, DO_SUB) RVVCALL(OPIVX2, vwsub_wx_h, WOP_WSSS_H, H4, H2, DO_SUB) RVVCALL(OPIVX2, vwsub_wx_w, WOP_WSSS_W, H8, H4, DO_SUB) GEN_VEXT_VX(vwaddu_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwaddu_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwaddu_vx_w, 4, 8, clearq) GEN_VEXT_VX(vwsubu_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwsubu_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwsubu_vx_w, 4, 8, clearq) GEN_VEXT_VX(vwadd_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwadd_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwadd_vx_w, 4, 8, clearq) GEN_VEXT_VX(vwsub_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwsub_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwsub_vx_w, 4, 8, clearq) GEN_VEXT_VX(vwaddu_wx_b, 1, 2, clearh) GEN_VEXT_VX(vwaddu_wx_h, 2, 4, clearl) GEN_VEXT_VX(vwaddu_wx_w, 4, 8, clearq) GEN_VEXT_VX(vwsubu_wx_b, 1, 2, clearh) GEN_VEXT_VX(vwsubu_wx_h, 2, 4, clearl) GEN_VEXT_VX(vwsubu_wx_w, 4, 8, clearq) GEN_VEXT_VX(vwadd_wx_b, 1, 2, clearh) GEN_VEXT_VX(vwadd_wx_h, 2, 4, clearl) GEN_VEXT_VX(vwadd_wx_w, 4, 8, clearq) GEN_VEXT_VX(vwsub_wx_b, 1, 2, clearh) GEN_VEXT_VX(vwsub_wx_h, 2, 4, clearl) GEN_VEXT_VX(vwsub_wx_w, 4, 8, clearq) /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ #define DO_VADC(N, M, C) (N + M + C) #define DO_VSBC(N, M, C) (N - M - C) #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vl = env->vl; \ uint32_t esz = sizeof(ETYPE); \ uint32_t vlmax = vext_maxsz(desc) / esz; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ uint8_t carry = vext_elem_mask(v0, mlen, i); \ \ *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry); \ } \ CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ } GEN_VEXT_VADC_VVM(vadc_vvm_b, uint8_t, H1, DO_VADC, clearb) GEN_VEXT_VADC_VVM(vadc_vvm_h, uint16_t, H2, DO_VADC, clearh) GEN_VEXT_VADC_VVM(vadc_vvm_w, uint32_t, H4, DO_VADC, clearl) GEN_VEXT_VADC_VVM(vadc_vvm_d, uint64_t, H8, DO_VADC, clearq) GEN_VEXT_VADC_VVM(vsbc_vvm_b, uint8_t, H1, DO_VSBC, clearb) GEN_VEXT_VADC_VVM(vsbc_vvm_h, uint16_t, H2, DO_VSBC, clearh) GEN_VEXT_VADC_VVM(vsbc_vvm_w, uint32_t, H4, DO_VSBC, clearl) GEN_VEXT_VADC_VVM(vsbc_vvm_d, uint64_t, H8, DO_VSBC, clearq) #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vl = env->vl; \ uint32_t esz = sizeof(ETYPE); \ uint32_t vlmax = vext_maxsz(desc) / esz; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ uint8_t carry = vext_elem_mask(v0, mlen, i); \ \ *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\ } \ CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ } GEN_VEXT_VADC_VXM(vadc_vxm_b, uint8_t, H1, DO_VADC, clearb) GEN_VEXT_VADC_VXM(vadc_vxm_h, uint16_t, H2, DO_VADC, clearh) GEN_VEXT_VADC_VXM(vadc_vxm_w, uint32_t, H4, DO_VADC, clearl) GEN_VEXT_VADC_VXM(vadc_vxm_d, uint64_t, H8, DO_VADC, clearq) GEN_VEXT_VADC_VXM(vsbc_vxm_b, uint8_t, H1, DO_VSBC, clearb) GEN_VEXT_VADC_VXM(vsbc_vxm_h, uint16_t, H2, DO_VSBC, clearh) GEN_VEXT_VADC_VXM(vsbc_vxm_w, uint32_t, H4, DO_VSBC, clearl) GEN_VEXT_VADC_VXM(vsbc_vxm_d, uint64_t, H8, DO_VSBC, clearq) #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N : \ (__typeof(N))(N + M) < N) #define DO_MSBC(N, M, C) (C ? N <= M : N < M) #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP) \ void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vl = env->vl; \ uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ uint8_t carry = vext_elem_mask(v0, mlen, i); \ \ vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1, carry));\ } \ for (; i < vlmax; i++) { \ vext_set_elem_mask(vd, mlen, i, 0); \ } \ } GEN_VEXT_VMADC_VVM(vmadc_vvm_b, uint8_t, H1, DO_MADC) GEN_VEXT_VMADC_VVM(vmadc_vvm_h, uint16_t, H2, DO_MADC) GEN_VEXT_VMADC_VVM(vmadc_vvm_w, uint32_t, H4, DO_MADC) GEN_VEXT_VMADC_VVM(vmadc_vvm_d, uint64_t, H8, DO_MADC) GEN_VEXT_VMADC_VVM(vmsbc_vvm_b, uint8_t, H1, DO_MSBC) GEN_VEXT_VMADC_VVM(vmsbc_vvm_h, uint16_t, H2, DO_MSBC) GEN_VEXT_VMADC_VVM(vmsbc_vvm_w, uint32_t, H4, DO_MSBC) GEN_VEXT_VMADC_VVM(vmsbc_vvm_d, uint64_t, H8, DO_MSBC) #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP) \ void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ void *vs2, CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vl = env->vl; \ uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ uint8_t carry = vext_elem_mask(v0, mlen, i); \ \ vext_set_elem_mask(vd, mlen, i, \ DO_OP(s2, (ETYPE)(target_long)s1, carry)); \ } \ for (; i < vlmax; i++) { \ vext_set_elem_mask(vd, mlen, i, 0); \ } \ } GEN_VEXT_VMADC_VXM(vmadc_vxm_b, uint8_t, H1, DO_MADC) GEN_VEXT_VMADC_VXM(vmadc_vxm_h, uint16_t, H2, DO_MADC) GEN_VEXT_VMADC_VXM(vmadc_vxm_w, uint32_t, H4, DO_MADC) GEN_VEXT_VMADC_VXM(vmadc_vxm_d, uint64_t, H8, DO_MADC) GEN_VEXT_VMADC_VXM(vmsbc_vxm_b, uint8_t, H1, DO_MSBC) GEN_VEXT_VMADC_VXM(vmsbc_vxm_h, uint16_t, H2, DO_MSBC) GEN_VEXT_VMADC_VXM(vmsbc_vxm_w, uint32_t, H4, DO_MSBC) GEN_VEXT_VMADC_VXM(vmsbc_vxm_d, uint64_t, H8, DO_MSBC) /* Vector Bitwise Logical Instructions */ RVVCALL(OPIVV2, vand_vv_b, OP_SSS_B, H1, H1, H1, DO_AND) RVVCALL(OPIVV2, vand_vv_h, OP_SSS_H, H2, H2, H2, DO_AND) RVVCALL(OPIVV2, vand_vv_w, OP_SSS_W, H4, H4, H4, DO_AND) RVVCALL(OPIVV2, vand_vv_d, OP_SSS_D, H8, H8, H8, DO_AND) RVVCALL(OPIVV2, vor_vv_b, OP_SSS_B, H1, H1, H1, DO_OR) RVVCALL(OPIVV2, vor_vv_h, OP_SSS_H, H2, H2, H2, DO_OR) RVVCALL(OPIVV2, vor_vv_w, OP_SSS_W, H4, H4, H4, DO_OR) RVVCALL(OPIVV2, vor_vv_d, OP_SSS_D, H8, H8, H8, DO_OR) RVVCALL(OPIVV2, vxor_vv_b, OP_SSS_B, H1, H1, H1, DO_XOR) RVVCALL(OPIVV2, vxor_vv_h, OP_SSS_H, H2, H2, H2, DO_XOR) RVVCALL(OPIVV2, vxor_vv_w, OP_SSS_W, H4, H4, H4, DO_XOR) RVVCALL(OPIVV2, vxor_vv_d, OP_SSS_D, H8, H8, H8, DO_XOR) GEN_VEXT_VV(vand_vv_b, 1, 1, clearb) GEN_VEXT_VV(vand_vv_h, 2, 2, clearh) GEN_VEXT_VV(vand_vv_w, 4, 4, clearl) GEN_VEXT_VV(vand_vv_d, 8, 8, clearq) GEN_VEXT_VV(vor_vv_b, 1, 1, clearb) GEN_VEXT_VV(vor_vv_h, 2, 2, clearh) GEN_VEXT_VV(vor_vv_w, 4, 4, clearl) GEN_VEXT_VV(vor_vv_d, 8, 8, clearq) GEN_VEXT_VV(vxor_vv_b, 1, 1, clearb) GEN_VEXT_VV(vxor_vv_h, 2, 2, clearh) GEN_VEXT_VV(vxor_vv_w, 4, 4, clearl) GEN_VEXT_VV(vxor_vv_d, 8, 8, clearq) RVVCALL(OPIVX2, vand_vx_b, OP_SSS_B, H1, H1, DO_AND) RVVCALL(OPIVX2, vand_vx_h, OP_SSS_H, H2, H2, DO_AND) RVVCALL(OPIVX2, vand_vx_w, OP_SSS_W, H4, H4, DO_AND) RVVCALL(OPIVX2, vand_vx_d, OP_SSS_D, H8, H8, DO_AND) RVVCALL(OPIVX2, vor_vx_b, OP_SSS_B, H1, H1, DO_OR) RVVCALL(OPIVX2, vor_vx_h, OP_SSS_H, H2, H2, DO_OR) RVVCALL(OPIVX2, vor_vx_w, OP_SSS_W, H4, H4, DO_OR) RVVCALL(OPIVX2, vor_vx_d, OP_SSS_D, H8, H8, DO_OR) RVVCALL(OPIVX2, vxor_vx_b, OP_SSS_B, H1, H1, DO_XOR) RVVCALL(OPIVX2, vxor_vx_h, OP_SSS_H, H2, H2, DO_XOR) RVVCALL(OPIVX2, vxor_vx_w, OP_SSS_W, H4, H4, DO_XOR) RVVCALL(OPIVX2, vxor_vx_d, OP_SSS_D, H8, H8, DO_XOR) GEN_VEXT_VX(vand_vx_b, 1, 1, clearb) GEN_VEXT_VX(vand_vx_h, 2, 2, clearh) GEN_VEXT_VX(vand_vx_w, 4, 4, clearl) GEN_VEXT_VX(vand_vx_d, 8, 8, clearq) GEN_VEXT_VX(vor_vx_b, 1, 1, clearb) GEN_VEXT_VX(vor_vx_h, 2, 2, clearh) GEN_VEXT_VX(vor_vx_w, 4, 4, clearl) GEN_VEXT_VX(vor_vx_d, 8, 8, clearq) GEN_VEXT_VX(vxor_vx_b, 1, 1, clearb) GEN_VEXT_VX(vxor_vx_h, 2, 2, clearh) GEN_VEXT_VX(vxor_vx_w, 4, 4, clearl) GEN_VEXT_VX(vxor_vx_d, 8, 8, clearq) /* Vector Single-Width Bit Shift Instructions */ #define DO_SLL(N, M) (N << (M)) #define DO_SRL(N, M) (N >> (M)) /* generate the helpers for shift instructions with two vector operators */ #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, void *vs1, \ void *vs2, CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t esz = sizeof(TS1); \ uint32_t vlmax = vext_maxsz(desc) / esz; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ if (!vm && !vext_elem_mask(v0, mlen, i)) { \ continue; \ } \ TS1 s1 = *((TS1 *)vs1 + HS1(i)); \ TS2 s2 = *((TS2 *)vs2 + HS2(i)); \ *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK); \ } \ CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ } GEN_VEXT_SHIFT_VV(vsll_vv_b, uint8_t, uint8_t, H1, H1, DO_SLL, 0x7, clearb) GEN_VEXT_SHIFT_VV(vsll_vv_h, uint16_t, uint16_t, H2, H2, DO_SLL, 0xf, clearh) GEN_VEXT_SHIFT_VV(vsll_vv_w, uint32_t, uint32_t, H4, H4, DO_SLL, 0x1f, clearl) GEN_VEXT_SHIFT_VV(vsll_vv_d, uint64_t, uint64_t, H8, H8, DO_SLL, 0x3f, clearq) GEN_VEXT_SHIFT_VV(vsrl_vv_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7, clearb) GEN_VEXT_SHIFT_VV(vsrl_vv_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf, clearh) GEN_VEXT_SHIFT_VV(vsrl_vv_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f, clearl) GEN_VEXT_SHIFT_VV(vsrl_vv_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f, clearq) GEN_VEXT_SHIFT_VV(vsra_vv_b, uint8_t, int8_t, H1, H1, DO_SRL, 0x7, clearb) GEN_VEXT_SHIFT_VV(vsra_vv_h, uint16_t, int16_t, H2, H2, DO_SRL, 0xf, clearh) GEN_VEXT_SHIFT_VV(vsra_vv_w, uint32_t, int32_t, H4, H4, DO_SRL, 0x1f, clearl) GEN_VEXT_SHIFT_VV(vsra_vv_d, uint64_t, int64_t, H8, H8, DO_SRL, 0x3f, clearq) /* generate the helpers for shift instructions with one vector and one scalar */ #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ void *vs2, CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t esz = sizeof(TD); \ uint32_t vlmax = vext_maxsz(desc) / esz; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ if (!vm && !vext_elem_mask(v0, mlen, i)) { \ continue; \ } \ TS2 s2 = *((TS2 *)vs2 + HS2(i)); \ *((TD *)vd + HD(i)) = OP(s2, s1 & MASK); \ } \ CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ } GEN_VEXT_SHIFT_VX(vsll_vx_b, uint8_t, int8_t, H1, H1, DO_SLL, 0x7, clearb) GEN_VEXT_SHIFT_VX(vsll_vx_h, uint16_t, int16_t, H2, H2, DO_SLL, 0xf, clearh) GEN_VEXT_SHIFT_VX(vsll_vx_w, uint32_t, int32_t, H4, H4, DO_SLL, 0x1f, clearl) GEN_VEXT_SHIFT_VX(vsll_vx_d, uint64_t, int64_t, H8, H8, DO_SLL, 0x3f, clearq) GEN_VEXT_SHIFT_VX(vsrl_vx_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7, clearb) GEN_VEXT_SHIFT_VX(vsrl_vx_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf, clearh) GEN_VEXT_SHIFT_VX(vsrl_vx_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f, clearl) GEN_VEXT_SHIFT_VX(vsrl_vx_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f, clearq) GEN_VEXT_SHIFT_VX(vsra_vx_b, int8_t, int8_t, H1, H1, DO_SRL, 0x7, clearb) GEN_VEXT_SHIFT_VX(vsra_vx_h, int16_t, int16_t, H2, H2, DO_SRL, 0xf, clearh) GEN_VEXT_SHIFT_VX(vsra_vx_w, int32_t, int32_t, H4, H4, DO_SRL, 0x1f, clearl) GEN_VEXT_SHIFT_VX(vsra_vx_d, int64_t, int64_t, H8, H8, DO_SRL, 0x3f, clearq) /* Vector Narrowing Integer Right Shift Instructions */ GEN_VEXT_SHIFT_VV(vnsrl_vv_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf, clearb) GEN_VEXT_SHIFT_VV(vnsrl_vv_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f, clearh) GEN_VEXT_SHIFT_VV(vnsrl_vv_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f, clearl) GEN_VEXT_SHIFT_VV(vnsra_vv_b, uint8_t, int16_t, H1, H2, DO_SRL, 0xf, clearb) GEN_VEXT_SHIFT_VV(vnsra_vv_h, uint16_t, int32_t, H2, H4, DO_SRL, 0x1f, clearh) GEN_VEXT_SHIFT_VV(vnsra_vv_w, uint32_t, int64_t, H4, H8, DO_SRL, 0x3f, clearl) GEN_VEXT_SHIFT_VX(vnsrl_vx_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf, clearb) GEN_VEXT_SHIFT_VX(vnsrl_vx_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f, clearh) GEN_VEXT_SHIFT_VX(vnsrl_vx_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f, clearl) GEN_VEXT_SHIFT_VX(vnsra_vx_b, int8_t, int16_t, H1, H2, DO_SRL, 0xf, clearb) GEN_VEXT_SHIFT_VX(vnsra_vx_h, int16_t, int32_t, H2, H4, DO_SRL, 0x1f, clearh) GEN_VEXT_SHIFT_VX(vnsra_vx_w, int32_t, int64_t, H4, H8, DO_SRL, 0x3f, clearl) /* Vector Integer Comparison Instructions */ #define DO_MSEQ(N, M) (N == M) #define DO_MSNE(N, M) (N != M) #define DO_MSLT(N, M) (N < M) #define DO_MSLE(N, M) (N <= M) #define DO_MSGT(N, M) (N > M) #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP) \ void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ if (!vm && !vext_elem_mask(v0, mlen, i)) { \ continue; \ } \ vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1)); \ } \ for (; i < vlmax; i++) { \ vext_set_elem_mask(vd, mlen, i, 0); \ } \ } GEN_VEXT_CMP_VV(vmseq_vv_b, uint8_t, H1, DO_MSEQ) GEN_VEXT_CMP_VV(vmseq_vv_h, uint16_t, H2, DO_MSEQ) GEN_VEXT_CMP_VV(vmseq_vv_w, uint32_t, H4, DO_MSEQ) GEN_VEXT_CMP_VV(vmseq_vv_d, uint64_t, H8, DO_MSEQ) GEN_VEXT_CMP_VV(vmsne_vv_b, uint8_t, H1, DO_MSNE) GEN_VEXT_CMP_VV(vmsne_vv_h, uint16_t, H2, DO_MSNE) GEN_VEXT_CMP_VV(vmsne_vv_w, uint32_t, H4, DO_MSNE) GEN_VEXT_CMP_VV(vmsne_vv_d, uint64_t, H8, DO_MSNE) GEN_VEXT_CMP_VV(vmsltu_vv_b, uint8_t, H1, DO_MSLT) GEN_VEXT_CMP_VV(vmsltu_vv_h, uint16_t, H2, DO_MSLT) GEN_VEXT_CMP_VV(vmsltu_vv_w, uint32_t, H4, DO_MSLT) GEN_VEXT_CMP_VV(vmsltu_vv_d, uint64_t, H8, DO_MSLT) GEN_VEXT_CMP_VV(vmslt_vv_b, int8_t, H1, DO_MSLT) GEN_VEXT_CMP_VV(vmslt_vv_h, int16_t, H2, DO_MSLT) GEN_VEXT_CMP_VV(vmslt_vv_w, int32_t, H4, DO_MSLT) GEN_VEXT_CMP_VV(vmslt_vv_d, int64_t, H8, DO_MSLT) GEN_VEXT_CMP_VV(vmsleu_vv_b, uint8_t, H1, DO_MSLE) GEN_VEXT_CMP_VV(vmsleu_vv_h, uint16_t, H2, DO_MSLE) GEN_VEXT_CMP_VV(vmsleu_vv_w, uint32_t, H4, DO_MSLE) GEN_VEXT_CMP_VV(vmsleu_vv_d, uint64_t, H8, DO_MSLE) GEN_VEXT_CMP_VV(vmsle_vv_b, int8_t, H1, DO_MSLE) GEN_VEXT_CMP_VV(vmsle_vv_h, int16_t, H2, DO_MSLE) GEN_VEXT_CMP_VV(vmsle_vv_w, int32_t, H4, DO_MSLE) GEN_VEXT_CMP_VV(vmsle_vv_d, int64_t, H8, DO_MSLE) #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP) \ void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ if (!vm && !vext_elem_mask(v0, mlen, i)) { \ continue; \ } \ vext_set_elem_mask(vd, mlen, i, \ DO_OP(s2, (ETYPE)(target_long)s1)); \ } \ for (; i < vlmax; i++) { \ vext_set_elem_mask(vd, mlen, i, 0); \ } \ } GEN_VEXT_CMP_VX(vmseq_vx_b, uint8_t, H1, DO_MSEQ) GEN_VEXT_CMP_VX(vmseq_vx_h, uint16_t, H2, DO_MSEQ) GEN_VEXT_CMP_VX(vmseq_vx_w, uint32_t, H4, DO_MSEQ) GEN_VEXT_CMP_VX(vmseq_vx_d, uint64_t, H8, DO_MSEQ) GEN_VEXT_CMP_VX(vmsne_vx_b, uint8_t, H1, DO_MSNE) GEN_VEXT_CMP_VX(vmsne_vx_h, uint16_t, H2, DO_MSNE) GEN_VEXT_CMP_VX(vmsne_vx_w, uint32_t, H4, DO_MSNE) GEN_VEXT_CMP_VX(vmsne_vx_d, uint64_t, H8, DO_MSNE) GEN_VEXT_CMP_VX(vmsltu_vx_b, uint8_t, H1, DO_MSLT) GEN_VEXT_CMP_VX(vmsltu_vx_h, uint16_t, H2, DO_MSLT) GEN_VEXT_CMP_VX(vmsltu_vx_w, uint32_t, H4, DO_MSLT) GEN_VEXT_CMP_VX(vmsltu_vx_d, uint64_t, H8, DO_MSLT) GEN_VEXT_CMP_VX(vmslt_vx_b, int8_t, H1, DO_MSLT) GEN_VEXT_CMP_VX(vmslt_vx_h, int16_t, H2, DO_MSLT) GEN_VEXT_CMP_VX(vmslt_vx_w, int32_t, H4, DO_MSLT) GEN_VEXT_CMP_VX(vmslt_vx_d, int64_t, H8, DO_MSLT) GEN_VEXT_CMP_VX(vmsleu_vx_b, uint8_t, H1, DO_MSLE) GEN_VEXT_CMP_VX(vmsleu_vx_h, uint16_t, H2, DO_MSLE) GEN_VEXT_CMP_VX(vmsleu_vx_w, uint32_t, H4, DO_MSLE) GEN_VEXT_CMP_VX(vmsleu_vx_d, uint64_t, H8, DO_MSLE) GEN_VEXT_CMP_VX(vmsle_vx_b, int8_t, H1, DO_MSLE) GEN_VEXT_CMP_VX(vmsle_vx_h, int16_t, H2, DO_MSLE) GEN_VEXT_CMP_VX(vmsle_vx_w, int32_t, H4, DO_MSLE) GEN_VEXT_CMP_VX(vmsle_vx_d, int64_t, H8, DO_MSLE) GEN_VEXT_CMP_VX(vmsgtu_vx_b, uint8_t, H1, DO_MSGT) GEN_VEXT_CMP_VX(vmsgtu_vx_h, uint16_t, H2, DO_MSGT) GEN_VEXT_CMP_VX(vmsgtu_vx_w, uint32_t, H4, DO_MSGT) GEN_VEXT_CMP_VX(vmsgtu_vx_d, uint64_t, H8, DO_MSGT) GEN_VEXT_CMP_VX(vmsgt_vx_b, int8_t, H1, DO_MSGT) GEN_VEXT_CMP_VX(vmsgt_vx_h, int16_t, H2, DO_MSGT) GEN_VEXT_CMP_VX(vmsgt_vx_w, int32_t, H4, DO_MSGT) GEN_VEXT_CMP_VX(vmsgt_vx_d, int64_t, H8, DO_MSGT) /* Vector Integer Min/Max Instructions */ RVVCALL(OPIVV2, vminu_vv_b, OP_UUU_B, H1, H1, H1, DO_MIN) RVVCALL(OPIVV2, vminu_vv_h, OP_UUU_H, H2, H2, H2, DO_MIN) RVVCALL(OPIVV2, vminu_vv_w, OP_UUU_W, H4, H4, H4, DO_MIN) RVVCALL(OPIVV2, vminu_vv_d, OP_UUU_D, H8, H8, H8, DO_MIN) RVVCALL(OPIVV2, vmin_vv_b, OP_SSS_B, H1, H1, H1, DO_MIN) RVVCALL(OPIVV2, vmin_vv_h, OP_SSS_H, H2, H2, H2, DO_MIN) RVVCALL(OPIVV2, vmin_vv_w, OP_SSS_W, H4, H4, H4, DO_MIN) RVVCALL(OPIVV2, vmin_vv_d, OP_SSS_D, H8, H8, H8, DO_MIN) RVVCALL(OPIVV2, vmaxu_vv_b, OP_UUU_B, H1, H1, H1, DO_MAX) RVVCALL(OPIVV2, vmaxu_vv_h, OP_UUU_H, H2, H2, H2, DO_MAX) RVVCALL(OPIVV2, vmaxu_vv_w, OP_UUU_W, H4, H4, H4, DO_MAX) RVVCALL(OPIVV2, vmaxu_vv_d, OP_UUU_D, H8, H8, H8, DO_MAX) RVVCALL(OPIVV2, vmax_vv_b, OP_SSS_B, H1, H1, H1, DO_MAX) RVVCALL(OPIVV2, vmax_vv_h, OP_SSS_H, H2, H2, H2, DO_MAX) RVVCALL(OPIVV2, vmax_vv_w, OP_SSS_W, H4, H4, H4, DO_MAX) RVVCALL(OPIVV2, vmax_vv_d, OP_SSS_D, H8, H8, H8, DO_MAX) GEN_VEXT_VV(vminu_vv_b, 1, 1, clearb) GEN_VEXT_VV(vminu_vv_h, 2, 2, clearh) GEN_VEXT_VV(vminu_vv_w, 4, 4, clearl) GEN_VEXT_VV(vminu_vv_d, 8, 8, clearq) GEN_VEXT_VV(vmin_vv_b, 1, 1, clearb) GEN_VEXT_VV(vmin_vv_h, 2, 2, clearh) GEN_VEXT_VV(vmin_vv_w, 4, 4, clearl) GEN_VEXT_VV(vmin_vv_d, 8, 8, clearq) GEN_VEXT_VV(vmaxu_vv_b, 1, 1, clearb) GEN_VEXT_VV(vmaxu_vv_h, 2, 2, clearh) GEN_VEXT_VV(vmaxu_vv_w, 4, 4, clearl) GEN_VEXT_VV(vmaxu_vv_d, 8, 8, clearq) GEN_VEXT_VV(vmax_vv_b, 1, 1, clearb) GEN_VEXT_VV(vmax_vv_h, 2, 2, clearh) GEN_VEXT_VV(vmax_vv_w, 4, 4, clearl) GEN_VEXT_VV(vmax_vv_d, 8, 8, clearq) RVVCALL(OPIVX2, vminu_vx_b, OP_UUU_B, H1, H1, DO_MIN) RVVCALL(OPIVX2, vminu_vx_h, OP_UUU_H, H2, H2, DO_MIN) RVVCALL(OPIVX2, vminu_vx_w, OP_UUU_W, H4, H4, DO_MIN) RVVCALL(OPIVX2, vminu_vx_d, OP_UUU_D, H8, H8, DO_MIN) RVVCALL(OPIVX2, vmin_vx_b, OP_SSS_B, H1, H1, DO_MIN) RVVCALL(OPIVX2, vmin_vx_h, OP_SSS_H, H2, H2, DO_MIN) RVVCALL(OPIVX2, vmin_vx_w, OP_SSS_W, H4, H4, DO_MIN) RVVCALL(OPIVX2, vmin_vx_d, OP_SSS_D, H8, H8, DO_MIN) RVVCALL(OPIVX2, vmaxu_vx_b, OP_UUU_B, H1, H1, DO_MAX) RVVCALL(OPIVX2, vmaxu_vx_h, OP_UUU_H, H2, H2, DO_MAX) RVVCALL(OPIVX2, vmaxu_vx_w, OP_UUU_W, H4, H4, DO_MAX) RVVCALL(OPIVX2, vmaxu_vx_d, OP_UUU_D, H8, H8, DO_MAX) RVVCALL(OPIVX2, vmax_vx_b, OP_SSS_B, H1, H1, DO_MAX) RVVCALL(OPIVX2, vmax_vx_h, OP_SSS_H, H2, H2, DO_MAX) RVVCALL(OPIVX2, vmax_vx_w, OP_SSS_W, H4, H4, DO_MAX) RVVCALL(OPIVX2, vmax_vx_d, OP_SSS_D, H8, H8, DO_MAX) GEN_VEXT_VX(vminu_vx_b, 1, 1, clearb) GEN_VEXT_VX(vminu_vx_h, 2, 2, clearh) GEN_VEXT_VX(vminu_vx_w, 4, 4, clearl) GEN_VEXT_VX(vminu_vx_d, 8, 8, clearq) GEN_VEXT_VX(vmin_vx_b, 1, 1, clearb) GEN_VEXT_VX(vmin_vx_h, 2, 2, clearh) GEN_VEXT_VX(vmin_vx_w, 4, 4, clearl) GEN_VEXT_VX(vmin_vx_d, 8, 8, clearq) GEN_VEXT_VX(vmaxu_vx_b, 1, 1, clearb) GEN_VEXT_VX(vmaxu_vx_h, 2, 2, clearh) GEN_VEXT_VX(vmaxu_vx_w, 4, 4, clearl) GEN_VEXT_VX(vmaxu_vx_d, 8, 8, clearq) GEN_VEXT_VX(vmax_vx_b, 1, 1, clearb) GEN_VEXT_VX(vmax_vx_h, 2, 2, clearh) GEN_VEXT_VX(vmax_vx_w, 4, 4, clearl) GEN_VEXT_VX(vmax_vx_d, 8, 8, clearq) /* Vector Single-Width Integer Multiply Instructions */ #define DO_MUL(N, M) (N * M) RVVCALL(OPIVV2, vmul_vv_b, OP_SSS_B, H1, H1, H1, DO_MUL) RVVCALL(OPIVV2, vmul_vv_h, OP_SSS_H, H2, H2, H2, DO_MUL) RVVCALL(OPIVV2, vmul_vv_w, OP_SSS_W, H4, H4, H4, DO_MUL) RVVCALL(OPIVV2, vmul_vv_d, OP_SSS_D, H8, H8, H8, DO_MUL) GEN_VEXT_VV(vmul_vv_b, 1, 1, clearb) GEN_VEXT_VV(vmul_vv_h, 2, 2, clearh) GEN_VEXT_VV(vmul_vv_w, 4, 4, clearl) GEN_VEXT_VV(vmul_vv_d, 8, 8, clearq) static int8_t do_mulh_b(int8_t s2, int8_t s1) { return (int16_t)s2 * (int16_t)s1 >> 8; } static int16_t do_mulh_h(int16_t s2, int16_t s1) { return (int32_t)s2 * (int32_t)s1 >> 16; } static int32_t do_mulh_w(int32_t s2, int32_t s1) { return (int64_t)s2 * (int64_t)s1 >> 32; } static int64_t do_mulh_d(int64_t s2, int64_t s1) { uint64_t hi_64, lo_64; muls64(&lo_64, &hi_64, s1, s2); return hi_64; } static uint8_t do_mulhu_b(uint8_t s2, uint8_t s1) { return (uint16_t)s2 * (uint16_t)s1 >> 8; } static uint16_t do_mulhu_h(uint16_t s2, uint16_t s1) { return (uint32_t)s2 * (uint32_t)s1 >> 16; } static uint32_t do_mulhu_w(uint32_t s2, uint32_t s1) { return (uint64_t)s2 * (uint64_t)s1 >> 32; } static uint64_t do_mulhu_d(uint64_t s2, uint64_t s1) { uint64_t hi_64, lo_64; mulu64(&lo_64, &hi_64, s2, s1); return hi_64; } static int8_t do_mulhsu_b(int8_t s2, uint8_t s1) { return (int16_t)s2 * (uint16_t)s1 >> 8; } static int16_t do_mulhsu_h(int16_t s2, uint16_t s1) { return (int32_t)s2 * (uint32_t)s1 >> 16; } static int32_t do_mulhsu_w(int32_t s2, uint32_t s1) { return (int64_t)s2 * (uint64_t)s1 >> 32; } /* * Let A = signed operand, * B = unsigned operand * P = mulu64(A, B), unsigned product * * LET X = 2 ** 64 - A, 2's complement of A * SP = signed product * THEN * IF A < 0 * SP = -X * B * = -(2 ** 64 - A) * B * = A * B - 2 ** 64 * B * = P - 2 ** 64 * B * ELSE * SP = P * THEN * HI_P -= (A < 0 ? B : 0) */ static int64_t do_mulhsu_d(int64_t s2, uint64_t s1) { uint64_t hi_64, lo_64; mulu64(&lo_64, &hi_64, s2, s1); hi_64 -= s2 < 0 ? s1 : 0; return hi_64; } RVVCALL(OPIVV2, vmulh_vv_b, OP_SSS_B, H1, H1, H1, do_mulh_b) RVVCALL(OPIVV2, vmulh_vv_h, OP_SSS_H, H2, H2, H2, do_mulh_h) RVVCALL(OPIVV2, vmulh_vv_w, OP_SSS_W, H4, H4, H4, do_mulh_w) RVVCALL(OPIVV2, vmulh_vv_d, OP_SSS_D, H8, H8, H8, do_mulh_d) RVVCALL(OPIVV2, vmulhu_vv_b, OP_UUU_B, H1, H1, H1, do_mulhu_b) RVVCALL(OPIVV2, vmulhu_vv_h, OP_UUU_H, H2, H2, H2, do_mulhu_h) RVVCALL(OPIVV2, vmulhu_vv_w, OP_UUU_W, H4, H4, H4, do_mulhu_w) RVVCALL(OPIVV2, vmulhu_vv_d, OP_UUU_D, H8, H8, H8, do_mulhu_d) RVVCALL(OPIVV2, vmulhsu_vv_b, OP_SUS_B, H1, H1, H1, do_mulhsu_b) RVVCALL(OPIVV2, vmulhsu_vv_h, OP_SUS_H, H2, H2, H2, do_mulhsu_h) RVVCALL(OPIVV2, vmulhsu_vv_w, OP_SUS_W, H4, H4, H4, do_mulhsu_w) RVVCALL(OPIVV2, vmulhsu_vv_d, OP_SUS_D, H8, H8, H8, do_mulhsu_d) GEN_VEXT_VV(vmulh_vv_b, 1, 1, clearb) GEN_VEXT_VV(vmulh_vv_h, 2, 2, clearh) GEN_VEXT_VV(vmulh_vv_w, 4, 4, clearl) GEN_VEXT_VV(vmulh_vv_d, 8, 8, clearq) GEN_VEXT_VV(vmulhu_vv_b, 1, 1, clearb) GEN_VEXT_VV(vmulhu_vv_h, 2, 2, clearh) GEN_VEXT_VV(vmulhu_vv_w, 4, 4, clearl) GEN_VEXT_VV(vmulhu_vv_d, 8, 8, clearq) GEN_VEXT_VV(vmulhsu_vv_b, 1, 1, clearb) GEN_VEXT_VV(vmulhsu_vv_h, 2, 2, clearh) GEN_VEXT_VV(vmulhsu_vv_w, 4, 4, clearl) GEN_VEXT_VV(vmulhsu_vv_d, 8, 8, clearq) RVVCALL(OPIVX2, vmul_vx_b, OP_SSS_B, H1, H1, DO_MUL) RVVCALL(OPIVX2, vmul_vx_h, OP_SSS_H, H2, H2, DO_MUL) RVVCALL(OPIVX2, vmul_vx_w, OP_SSS_W, H4, H4, DO_MUL) RVVCALL(OPIVX2, vmul_vx_d, OP_SSS_D, H8, H8, DO_MUL) RVVCALL(OPIVX2, vmulh_vx_b, OP_SSS_B, H1, H1, do_mulh_b) RVVCALL(OPIVX2, vmulh_vx_h, OP_SSS_H, H2, H2, do_mulh_h) RVVCALL(OPIVX2, vmulh_vx_w, OP_SSS_W, H4, H4, do_mulh_w) RVVCALL(OPIVX2, vmulh_vx_d, OP_SSS_D, H8, H8, do_mulh_d) RVVCALL(OPIVX2, vmulhu_vx_b, OP_UUU_B, H1, H1, do_mulhu_b) RVVCALL(OPIVX2, vmulhu_vx_h, OP_UUU_H, H2, H2, do_mulhu_h) RVVCALL(OPIVX2, vmulhu_vx_w, OP_UUU_W, H4, H4, do_mulhu_w) RVVCALL(OPIVX2, vmulhu_vx_d, OP_UUU_D, H8, H8, do_mulhu_d) RVVCALL(OPIVX2, vmulhsu_vx_b, OP_SUS_B, H1, H1, do_mulhsu_b) RVVCALL(OPIVX2, vmulhsu_vx_h, OP_SUS_H, H2, H2, do_mulhsu_h) RVVCALL(OPIVX2, vmulhsu_vx_w, OP_SUS_W, H4, H4, do_mulhsu_w) RVVCALL(OPIVX2, vmulhsu_vx_d, OP_SUS_D, H8, H8, do_mulhsu_d) GEN_VEXT_VX(vmul_vx_b, 1, 1, clearb) GEN_VEXT_VX(vmul_vx_h, 2, 2, clearh) GEN_VEXT_VX(vmul_vx_w, 4, 4, clearl) GEN_VEXT_VX(vmul_vx_d, 8, 8, clearq) GEN_VEXT_VX(vmulh_vx_b, 1, 1, clearb) GEN_VEXT_VX(vmulh_vx_h, 2, 2, clearh) GEN_VEXT_VX(vmulh_vx_w, 4, 4, clearl) GEN_VEXT_VX(vmulh_vx_d, 8, 8, clearq) GEN_VEXT_VX(vmulhu_vx_b, 1, 1, clearb) GEN_VEXT_VX(vmulhu_vx_h, 2, 2, clearh) GEN_VEXT_VX(vmulhu_vx_w, 4, 4, clearl) GEN_VEXT_VX(vmulhu_vx_d, 8, 8, clearq) GEN_VEXT_VX(vmulhsu_vx_b, 1, 1, clearb) GEN_VEXT_VX(vmulhsu_vx_h, 2, 2, clearh) GEN_VEXT_VX(vmulhsu_vx_w, 4, 4, clearl) GEN_VEXT_VX(vmulhsu_vx_d, 8, 8, clearq) /* Vector Integer Divide Instructions */ #define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M) #define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M) #define DO_DIV(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) :\ unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M) #define DO_REM(N, M) (unlikely(M == 0) ? N :\ unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M) RVVCALL(OPIVV2, vdivu_vv_b, OP_UUU_B, H1, H1, H1, DO_DIVU) RVVCALL(OPIVV2, vdivu_vv_h, OP_UUU_H, H2, H2, H2, DO_DIVU) RVVCALL(OPIVV2, vdivu_vv_w, OP_UUU_W, H4, H4, H4, DO_DIVU) RVVCALL(OPIVV2, vdivu_vv_d, OP_UUU_D, H8, H8, H8, DO_DIVU) RVVCALL(OPIVV2, vdiv_vv_b, OP_SSS_B, H1, H1, H1, DO_DIV) RVVCALL(OPIVV2, vdiv_vv_h, OP_SSS_H, H2, H2, H2, DO_DIV) RVVCALL(OPIVV2, vdiv_vv_w, OP_SSS_W, H4, H4, H4, DO_DIV) RVVCALL(OPIVV2, vdiv_vv_d, OP_SSS_D, H8, H8, H8, DO_DIV) RVVCALL(OPIVV2, vremu_vv_b, OP_UUU_B, H1, H1, H1, DO_REMU) RVVCALL(OPIVV2, vremu_vv_h, OP_UUU_H, H2, H2, H2, DO_REMU) RVVCALL(OPIVV2, vremu_vv_w, OP_UUU_W, H4, H4, H4, DO_REMU) RVVCALL(OPIVV2, vremu_vv_d, OP_UUU_D, H8, H8, H8, DO_REMU) RVVCALL(OPIVV2, vrem_vv_b, OP_SSS_B, H1, H1, H1, DO_REM) RVVCALL(OPIVV2, vrem_vv_h, OP_SSS_H, H2, H2, H2, DO_REM) RVVCALL(OPIVV2, vrem_vv_w, OP_SSS_W, H4, H4, H4, DO_REM) RVVCALL(OPIVV2, vrem_vv_d, OP_SSS_D, H8, H8, H8, DO_REM) GEN_VEXT_VV(vdivu_vv_b, 1, 1, clearb) GEN_VEXT_VV(vdivu_vv_h, 2, 2, clearh) GEN_VEXT_VV(vdivu_vv_w, 4, 4, clearl) GEN_VEXT_VV(vdivu_vv_d, 8, 8, clearq) GEN_VEXT_VV(vdiv_vv_b, 1, 1, clearb) GEN_VEXT_VV(vdiv_vv_h, 2, 2, clearh) GEN_VEXT_VV(vdiv_vv_w, 4, 4, clearl) GEN_VEXT_VV(vdiv_vv_d, 8, 8, clearq) GEN_VEXT_VV(vremu_vv_b, 1, 1, clearb) GEN_VEXT_VV(vremu_vv_h, 2, 2, clearh) GEN_VEXT_VV(vremu_vv_w, 4, 4, clearl) GEN_VEXT_VV(vremu_vv_d, 8, 8, clearq) GEN_VEXT_VV(vrem_vv_b, 1, 1, clearb) GEN_VEXT_VV(vrem_vv_h, 2, 2, clearh) GEN_VEXT_VV(vrem_vv_w, 4, 4, clearl) GEN_VEXT_VV(vrem_vv_d, 8, 8, clearq) RVVCALL(OPIVX2, vdivu_vx_b, OP_UUU_B, H1, H1, DO_DIVU) RVVCALL(OPIVX2, vdivu_vx_h, OP_UUU_H, H2, H2, DO_DIVU) RVVCALL(OPIVX2, vdivu_vx_w, OP_UUU_W, H4, H4, DO_DIVU) RVVCALL(OPIVX2, vdivu_vx_d, OP_UUU_D, H8, H8, DO_DIVU) RVVCALL(OPIVX2, vdiv_vx_b, OP_SSS_B, H1, H1, DO_DIV) RVVCALL(OPIVX2, vdiv_vx_h, OP_SSS_H, H2, H2, DO_DIV) RVVCALL(OPIVX2, vdiv_vx_w, OP_SSS_W, H4, H4, DO_DIV) RVVCALL(OPIVX2, vdiv_vx_d, OP_SSS_D, H8, H8, DO_DIV) RVVCALL(OPIVX2, vremu_vx_b, OP_UUU_B, H1, H1, DO_REMU) RVVCALL(OPIVX2, vremu_vx_h, OP_UUU_H, H2, H2, DO_REMU) RVVCALL(OPIVX2, vremu_vx_w, OP_UUU_W, H4, H4, DO_REMU) RVVCALL(OPIVX2, vremu_vx_d, OP_UUU_D, H8, H8, DO_REMU) RVVCALL(OPIVX2, vrem_vx_b, OP_SSS_B, H1, H1, DO_REM) RVVCALL(OPIVX2, vrem_vx_h, OP_SSS_H, H2, H2, DO_REM) RVVCALL(OPIVX2, vrem_vx_w, OP_SSS_W, H4, H4, DO_REM) RVVCALL(OPIVX2, vrem_vx_d, OP_SSS_D, H8, H8, DO_REM) GEN_VEXT_VX(vdivu_vx_b, 1, 1, clearb) GEN_VEXT_VX(vdivu_vx_h, 2, 2, clearh) GEN_VEXT_VX(vdivu_vx_w, 4, 4, clearl) GEN_VEXT_VX(vdivu_vx_d, 8, 8, clearq) GEN_VEXT_VX(vdiv_vx_b, 1, 1, clearb) GEN_VEXT_VX(vdiv_vx_h, 2, 2, clearh) GEN_VEXT_VX(vdiv_vx_w, 4, 4, clearl) GEN_VEXT_VX(vdiv_vx_d, 8, 8, clearq) GEN_VEXT_VX(vremu_vx_b, 1, 1, clearb) GEN_VEXT_VX(vremu_vx_h, 2, 2, clearh) GEN_VEXT_VX(vremu_vx_w, 4, 4, clearl) GEN_VEXT_VX(vremu_vx_d, 8, 8, clearq) GEN_VEXT_VX(vrem_vx_b, 1, 1, clearb) GEN_VEXT_VX(vrem_vx_h, 2, 2, clearh) GEN_VEXT_VX(vrem_vx_w, 4, 4, clearl) GEN_VEXT_VX(vrem_vx_d, 8, 8, clearq) /* Vector Widening Integer Multiply Instructions */ RVVCALL(OPIVV2, vwmul_vv_b, WOP_SSS_B, H2, H1, H1, DO_MUL) RVVCALL(OPIVV2, vwmul_vv_h, WOP_SSS_H, H4, H2, H2, DO_MUL) RVVCALL(OPIVV2, vwmul_vv_w, WOP_SSS_W, H8, H4, H4, DO_MUL) RVVCALL(OPIVV2, vwmulu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MUL) RVVCALL(OPIVV2, vwmulu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MUL) RVVCALL(OPIVV2, vwmulu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MUL) RVVCALL(OPIVV2, vwmulsu_vv_b, WOP_SUS_B, H2, H1, H1, DO_MUL) RVVCALL(OPIVV2, vwmulsu_vv_h, WOP_SUS_H, H4, H2, H2, DO_MUL) RVVCALL(OPIVV2, vwmulsu_vv_w, WOP_SUS_W, H8, H4, H4, DO_MUL) GEN_VEXT_VV(vwmul_vv_b, 1, 2, clearh) GEN_VEXT_VV(vwmul_vv_h, 2, 4, clearl) GEN_VEXT_VV(vwmul_vv_w, 4, 8, clearq) GEN_VEXT_VV(vwmulu_vv_b, 1, 2, clearh) GEN_VEXT_VV(vwmulu_vv_h, 2, 4, clearl) GEN_VEXT_VV(vwmulu_vv_w, 4, 8, clearq) GEN_VEXT_VV(vwmulsu_vv_b, 1, 2, clearh) GEN_VEXT_VV(vwmulsu_vv_h, 2, 4, clearl) GEN_VEXT_VV(vwmulsu_vv_w, 4, 8, clearq) RVVCALL(OPIVX2, vwmul_vx_b, WOP_SSS_B, H2, H1, DO_MUL) RVVCALL(OPIVX2, vwmul_vx_h, WOP_SSS_H, H4, H2, DO_MUL) RVVCALL(OPIVX2, vwmul_vx_w, WOP_SSS_W, H8, H4, DO_MUL) RVVCALL(OPIVX2, vwmulu_vx_b, WOP_UUU_B, H2, H1, DO_MUL) RVVCALL(OPIVX2, vwmulu_vx_h, WOP_UUU_H, H4, H2, DO_MUL) RVVCALL(OPIVX2, vwmulu_vx_w, WOP_UUU_W, H8, H4, DO_MUL) RVVCALL(OPIVX2, vwmulsu_vx_b, WOP_SUS_B, H2, H1, DO_MUL) RVVCALL(OPIVX2, vwmulsu_vx_h, WOP_SUS_H, H4, H2, DO_MUL) RVVCALL(OPIVX2, vwmulsu_vx_w, WOP_SUS_W, H8, H4, DO_MUL) GEN_VEXT_VX(vwmul_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwmul_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwmul_vx_w, 4, 8, clearq) GEN_VEXT_VX(vwmulu_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwmulu_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwmulu_vx_w, 4, 8, clearq) GEN_VEXT_VX(vwmulsu_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwmulsu_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwmulsu_vx_w, 4, 8, clearq) /* Vector Single-Width Integer Multiply-Add Instructions */ #define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \ { \ TX1 s1 = *((T1 *)vs1 + HS1(i)); \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ TD d = *((TD *)vd + HD(i)); \ *((TD *)vd + HD(i)) = OP(s2, s1, d); \ } #define DO_MACC(N, M, D) (M * N + D) #define DO_NMSAC(N, M, D) (-(M * N) + D) #define DO_MADD(N, M, D) (M * D + N) #define DO_NMSUB(N, M, D) (-(M * D) + N) RVVCALL(OPIVV3, vmacc_vv_b, OP_SSS_B, H1, H1, H1, DO_MACC) RVVCALL(OPIVV3, vmacc_vv_h, OP_SSS_H, H2, H2, H2, DO_MACC) RVVCALL(OPIVV3, vmacc_vv_w, OP_SSS_W, H4, H4, H4, DO_MACC) RVVCALL(OPIVV3, vmacc_vv_d, OP_SSS_D, H8, H8, H8, DO_MACC) RVVCALL(OPIVV3, vnmsac_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSAC) RVVCALL(OPIVV3, vnmsac_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSAC) RVVCALL(OPIVV3, vnmsac_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSAC) RVVCALL(OPIVV3, vnmsac_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSAC) RVVCALL(OPIVV3, vmadd_vv_b, OP_SSS_B, H1, H1, H1, DO_MADD) RVVCALL(OPIVV3, vmadd_vv_h, OP_SSS_H, H2, H2, H2, DO_MADD) RVVCALL(OPIVV3, vmadd_vv_w, OP_SSS_W, H4, H4, H4, DO_MADD) RVVCALL(OPIVV3, vmadd_vv_d, OP_SSS_D, H8, H8, H8, DO_MADD) RVVCALL(OPIVV3, vnmsub_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSUB) RVVCALL(OPIVV3, vnmsub_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSUB) RVVCALL(OPIVV3, vnmsub_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSUB) RVVCALL(OPIVV3, vnmsub_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSUB) GEN_VEXT_VV(vmacc_vv_b, 1, 1, clearb) GEN_VEXT_VV(vmacc_vv_h, 2, 2, clearh) GEN_VEXT_VV(vmacc_vv_w, 4, 4, clearl) GEN_VEXT_VV(vmacc_vv_d, 8, 8, clearq) GEN_VEXT_VV(vnmsac_vv_b, 1, 1, clearb) GEN_VEXT_VV(vnmsac_vv_h, 2, 2, clearh) GEN_VEXT_VV(vnmsac_vv_w, 4, 4, clearl) GEN_VEXT_VV(vnmsac_vv_d, 8, 8, clearq) GEN_VEXT_VV(vmadd_vv_b, 1, 1, clearb) GEN_VEXT_VV(vmadd_vv_h, 2, 2, clearh) GEN_VEXT_VV(vmadd_vv_w, 4, 4, clearl) GEN_VEXT_VV(vmadd_vv_d, 8, 8, clearq) GEN_VEXT_VV(vnmsub_vv_b, 1, 1, clearb) GEN_VEXT_VV(vnmsub_vv_h, 2, 2, clearh) GEN_VEXT_VV(vnmsub_vv_w, 4, 4, clearl) GEN_VEXT_VV(vnmsub_vv_d, 8, 8, clearq) #define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \ { \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ TD d = *((TD *)vd + HD(i)); \ *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d); \ } RVVCALL(OPIVX3, vmacc_vx_b, OP_SSS_B, H1, H1, DO_MACC) RVVCALL(OPIVX3, vmacc_vx_h, OP_SSS_H, H2, H2, DO_MACC) RVVCALL(OPIVX3, vmacc_vx_w, OP_SSS_W, H4, H4, DO_MACC) RVVCALL(OPIVX3, vmacc_vx_d, OP_SSS_D, H8, H8, DO_MACC) RVVCALL(OPIVX3, vnmsac_vx_b, OP_SSS_B, H1, H1, DO_NMSAC) RVVCALL(OPIVX3, vnmsac_vx_h, OP_SSS_H, H2, H2, DO_NMSAC) RVVCALL(OPIVX3, vnmsac_vx_w, OP_SSS_W, H4, H4, DO_NMSAC) RVVCALL(OPIVX3, vnmsac_vx_d, OP_SSS_D, H8, H8, DO_NMSAC) RVVCALL(OPIVX3, vmadd_vx_b, OP_SSS_B, H1, H1, DO_MADD) RVVCALL(OPIVX3, vmadd_vx_h, OP_SSS_H, H2, H2, DO_MADD) RVVCALL(OPIVX3, vmadd_vx_w, OP_SSS_W, H4, H4, DO_MADD) RVVCALL(OPIVX3, vmadd_vx_d, OP_SSS_D, H8, H8, DO_MADD) RVVCALL(OPIVX3, vnmsub_vx_b, OP_SSS_B, H1, H1, DO_NMSUB) RVVCALL(OPIVX3, vnmsub_vx_h, OP_SSS_H, H2, H2, DO_NMSUB) RVVCALL(OPIVX3, vnmsub_vx_w, OP_SSS_W, H4, H4, DO_NMSUB) RVVCALL(OPIVX3, vnmsub_vx_d, OP_SSS_D, H8, H8, DO_NMSUB) GEN_VEXT_VX(vmacc_vx_b, 1, 1, clearb) GEN_VEXT_VX(vmacc_vx_h, 2, 2, clearh) GEN_VEXT_VX(vmacc_vx_w, 4, 4, clearl) GEN_VEXT_VX(vmacc_vx_d, 8, 8, clearq) GEN_VEXT_VX(vnmsac_vx_b, 1, 1, clearb) GEN_VEXT_VX(vnmsac_vx_h, 2, 2, clearh) GEN_VEXT_VX(vnmsac_vx_w, 4, 4, clearl) GEN_VEXT_VX(vnmsac_vx_d, 8, 8, clearq) GEN_VEXT_VX(vmadd_vx_b, 1, 1, clearb) GEN_VEXT_VX(vmadd_vx_h, 2, 2, clearh) GEN_VEXT_VX(vmadd_vx_w, 4, 4, clearl) GEN_VEXT_VX(vmadd_vx_d, 8, 8, clearq) GEN_VEXT_VX(vnmsub_vx_b, 1, 1, clearb) GEN_VEXT_VX(vnmsub_vx_h, 2, 2, clearh) GEN_VEXT_VX(vnmsub_vx_w, 4, 4, clearl) GEN_VEXT_VX(vnmsub_vx_d, 8, 8, clearq) /* Vector Widening Integer Multiply-Add Instructions */ RVVCALL(OPIVV3, vwmaccu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MACC) RVVCALL(OPIVV3, vwmaccu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MACC) RVVCALL(OPIVV3, vwmaccu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MACC) RVVCALL(OPIVV3, vwmacc_vv_b, WOP_SSS_B, H2, H1, H1, DO_MACC) RVVCALL(OPIVV3, vwmacc_vv_h, WOP_SSS_H, H4, H2, H2, DO_MACC) RVVCALL(OPIVV3, vwmacc_vv_w, WOP_SSS_W, H8, H4, H4, DO_MACC) RVVCALL(OPIVV3, vwmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, DO_MACC) RVVCALL(OPIVV3, vwmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, DO_MACC) RVVCALL(OPIVV3, vwmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, DO_MACC) GEN_VEXT_VV(vwmaccu_vv_b, 1, 2, clearh) GEN_VEXT_VV(vwmaccu_vv_h, 2, 4, clearl) GEN_VEXT_VV(vwmaccu_vv_w, 4, 8, clearq) GEN_VEXT_VV(vwmacc_vv_b, 1, 2, clearh) GEN_VEXT_VV(vwmacc_vv_h, 2, 4, clearl) GEN_VEXT_VV(vwmacc_vv_w, 4, 8, clearq) GEN_VEXT_VV(vwmaccsu_vv_b, 1, 2, clearh) GEN_VEXT_VV(vwmaccsu_vv_h, 2, 4, clearl) GEN_VEXT_VV(vwmaccsu_vv_w, 4, 8, clearq) RVVCALL(OPIVX3, vwmaccu_vx_b, WOP_UUU_B, H2, H1, DO_MACC) RVVCALL(OPIVX3, vwmaccu_vx_h, WOP_UUU_H, H4, H2, DO_MACC) RVVCALL(OPIVX3, vwmaccu_vx_w, WOP_UUU_W, H8, H4, DO_MACC) RVVCALL(OPIVX3, vwmacc_vx_b, WOP_SSS_B, H2, H1, DO_MACC) RVVCALL(OPIVX3, vwmacc_vx_h, WOP_SSS_H, H4, H2, DO_MACC) RVVCALL(OPIVX3, vwmacc_vx_w, WOP_SSS_W, H8, H4, DO_MACC) RVVCALL(OPIVX3, vwmaccsu_vx_b, WOP_SSU_B, H2, H1, DO_MACC) RVVCALL(OPIVX3, vwmaccsu_vx_h, WOP_SSU_H, H4, H2, DO_MACC) RVVCALL(OPIVX3, vwmaccsu_vx_w, WOP_SSU_W, H8, H4, DO_MACC) RVVCALL(OPIVX3, vwmaccus_vx_b, WOP_SUS_B, H2, H1, DO_MACC) RVVCALL(OPIVX3, vwmaccus_vx_h, WOP_SUS_H, H4, H2, DO_MACC) RVVCALL(OPIVX3, vwmaccus_vx_w, WOP_SUS_W, H8, H4, DO_MACC) GEN_VEXT_VX(vwmaccu_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwmaccu_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwmaccu_vx_w, 4, 8, clearq) GEN_VEXT_VX(vwmacc_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwmacc_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwmacc_vx_w, 4, 8, clearq) GEN_VEXT_VX(vwmaccsu_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwmaccsu_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwmaccsu_vx_w, 4, 8, clearq) GEN_VEXT_VX(vwmaccus_vx_b, 1, 2, clearh) GEN_VEXT_VX(vwmaccus_vx_h, 2, 4, clearl) GEN_VEXT_VX(vwmaccus_vx_w, 4, 8, clearq) /* Vector Integer Merge and Move Instructions */ #define GEN_VEXT_VMV_VV(NAME, ETYPE, H, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env, \ uint32_t desc) \ { \ uint32_t vl = env->vl; \ uint32_t esz = sizeof(ETYPE); \ uint32_t vlmax = vext_maxsz(desc) / esz; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ *((ETYPE *)vd + H(i)) = s1; \ } \ CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ } GEN_VEXT_VMV_VV(vmv_v_v_b, int8_t, H1, clearb) GEN_VEXT_VMV_VV(vmv_v_v_h, int16_t, H2, clearh) GEN_VEXT_VMV_VV(vmv_v_v_w, int32_t, H4, clearl) GEN_VEXT_VMV_VV(vmv_v_v_d, int64_t, H8, clearq) #define GEN_VEXT_VMV_VX(NAME, ETYPE, H, CLEAR_FN) \ void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env, \ uint32_t desc) \ { \ uint32_t vl = env->vl; \ uint32_t esz = sizeof(ETYPE); \ uint32_t vlmax = vext_maxsz(desc) / esz; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ *((ETYPE *)vd + H(i)) = (ETYPE)s1; \ } \ CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ } GEN_VEXT_VMV_VX(vmv_v_x_b, int8_t, H1, clearb) GEN_VEXT_VMV_VX(vmv_v_x_h, int16_t, H2, clearh) GEN_VEXT_VMV_VX(vmv_v_x_w, int32_t, H4, clearl) GEN_VEXT_VMV_VX(vmv_v_x_d, int64_t, H8, clearq) #define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vl = env->vl; \ uint32_t esz = sizeof(ETYPE); \ uint32_t vlmax = vext_maxsz(desc) / esz; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE *vt = (!vext_elem_mask(v0, mlen, i) ? vs2 : vs1); \ *((ETYPE *)vd + H(i)) = *(vt + H(i)); \ } \ CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ } GEN_VEXT_VMERGE_VV(vmerge_vvm_b, int8_t, H1, clearb) GEN_VEXT_VMERGE_VV(vmerge_vvm_h, int16_t, H2, clearh) GEN_VEXT_VMERGE_VV(vmerge_vvm_w, int32_t, H4, clearl) GEN_VEXT_VMERGE_VV(vmerge_vvm_d, int64_t, H8, clearq) #define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ void *vs2, CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vl = env->vl; \ uint32_t esz = sizeof(ETYPE); \ uint32_t vlmax = vext_maxsz(desc) / esz; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ ETYPE d = (!vext_elem_mask(v0, mlen, i) ? s2 : \ (ETYPE)(target_long)s1); \ *((ETYPE *)vd + H(i)) = d; \ } \ CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ } GEN_VEXT_VMERGE_VX(vmerge_vxm_b, int8_t, H1, clearb) GEN_VEXT_VMERGE_VX(vmerge_vxm_h, int16_t, H2, clearh) GEN_VEXT_VMERGE_VX(vmerge_vxm_w, int32_t, H4, clearl) GEN_VEXT_VMERGE_VX(vmerge_vxm_d, int64_t, H8, clearq) /* *** Vector Fixed-Point Arithmetic Instructions */ /* Vector Single-Width Saturating Add and Subtract */ /* * As fixed point instructions probably have round mode and saturation, * define common macros for fixed point here. */ typedef void opivv2_rm_fn(void *vd, void *vs1, void *vs2, int i, CPURISCVState *env, int vxrm); #define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ static inline void \ do_##NAME(void *vd, void *vs1, void *vs2, int i, \ CPURISCVState *env, int vxrm) \ { \ TX1 s1 = *((T1 *)vs1 + HS1(i)); \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1); \ } static inline void vext_vv_rm_1(void *vd, void *v0, void *vs1, void *vs2, CPURISCVState *env, uint32_t vl, uint32_t vm, uint32_t mlen, int vxrm, opivv2_rm_fn *fn) { for (uint32_t i = 0; i < vl; i++) { if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } fn(vd, vs1, vs2, i, env, vxrm); } } static inline void vext_vv_rm_2(void *vd, void *v0, void *vs1, void *vs2, CPURISCVState *env, uint32_t desc, uint32_t esz, uint32_t dsz, opivv2_rm_fn *fn, clear_fn *clearfn) { uint32_t vlmax = vext_maxsz(desc) / esz; uint32_t mlen = vext_mlen(desc); uint32_t vm = vext_vm(desc); uint32_t vl = env->vl; switch (env->vxrm) { case 0: /* rnu */ vext_vv_rm_1(vd, v0, vs1, vs2, env, vl, vm, mlen, 0, fn); break; case 1: /* rne */ vext_vv_rm_1(vd, v0, vs1, vs2, env, vl, vm, mlen, 1, fn); break; case 2: /* rdn */ vext_vv_rm_1(vd, v0, vs1, vs2, env, vl, vm, mlen, 2, fn); break; default: /* rod */ vext_vv_rm_1(vd, v0, vs1, vs2, env, vl, vm, mlen, 3, fn); break; } clearfn(vd, vl, vl * dsz, vlmax * dsz); } /* generate helpers for fixed point instructions with OPIVV format */ #define GEN_VEXT_VV_RM(NAME, ESZ, DSZ, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \ do_##NAME, CLEAR_FN); \ } static inline uint8_t saddu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b) { uint8_t res = a + b; if (res < a) { res = UINT8_MAX; env->vxsat = 0x1; } return res; } static inline uint16_t saddu16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b) { uint16_t res = a + b; if (res < a) { res = UINT16_MAX; env->vxsat = 0x1; } return res; } static inline uint32_t saddu32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b) { uint32_t res = a + b; if (res < a) { res = UINT32_MAX; env->vxsat = 0x1; } return res; } static inline uint64_t saddu64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b) { uint64_t res = a + b; if (res < a) { res = UINT64_MAX; env->vxsat = 0x1; } return res; } RVVCALL(OPIVV2_RM, vsaddu_vv_b, OP_UUU_B, H1, H1, H1, saddu8) RVVCALL(OPIVV2_RM, vsaddu_vv_h, OP_UUU_H, H2, H2, H2, saddu16) RVVCALL(OPIVV2_RM, vsaddu_vv_w, OP_UUU_W, H4, H4, H4, saddu32) RVVCALL(OPIVV2_RM, vsaddu_vv_d, OP_UUU_D, H8, H8, H8, saddu64) GEN_VEXT_VV_RM(vsaddu_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vsaddu_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vsaddu_vv_w, 4, 4, clearl) GEN_VEXT_VV_RM(vsaddu_vv_d, 8, 8, clearq) typedef void opivx2_rm_fn(void *vd, target_long s1, void *vs2, int i, CPURISCVState *env, int vxrm); #define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ static inline void \ do_##NAME(void *vd, target_long s1, void *vs2, int i, \ CPURISCVState *env, int vxrm) \ { \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1); \ } static inline void vext_vx_rm_1(void *vd, void *v0, target_long s1, void *vs2, CPURISCVState *env, uint32_t vl, uint32_t vm, uint32_t mlen, int vxrm, opivx2_rm_fn *fn) { for (uint32_t i = 0; i < vl; i++) { if (!vm && !vext_elem_mask(v0, mlen, i)) { continue; } fn(vd, s1, vs2, i, env, vxrm); } } static inline void vext_vx_rm_2(void *vd, void *v0, target_long s1, void *vs2, CPURISCVState *env, uint32_t desc, uint32_t esz, uint32_t dsz, opivx2_rm_fn *fn, clear_fn *clearfn) { uint32_t vlmax = vext_maxsz(desc) / esz; uint32_t mlen = vext_mlen(desc); uint32_t vm = vext_vm(desc); uint32_t vl = env->vl; switch (env->vxrm) { case 0: /* rnu */ vext_vx_rm_1(vd, v0, s1, vs2, env, vl, vm, mlen, 0, fn); break; case 1: /* rne */ vext_vx_rm_1(vd, v0, s1, vs2, env, vl, vm, mlen, 1, fn); break; case 2: /* rdn */ vext_vx_rm_1(vd, v0, s1, vs2, env, vl, vm, mlen, 2, fn); break; default: /* rod */ vext_vx_rm_1(vd, v0, s1, vs2, env, vl, vm, mlen, 3, fn); break; } clearfn(vd, vl, vl * dsz, vlmax * dsz); } /* generate helpers for fixed point instructions with OPIVX format */ #define GEN_VEXT_VX_RM(NAME, ESZ, DSZ, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ void *vs2, CPURISCVState *env, uint32_t desc) \ { \ vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \ do_##NAME, CLEAR_FN); \ } RVVCALL(OPIVX2_RM, vsaddu_vx_b, OP_UUU_B, H1, H1, saddu8) RVVCALL(OPIVX2_RM, vsaddu_vx_h, OP_UUU_H, H2, H2, saddu16) RVVCALL(OPIVX2_RM, vsaddu_vx_w, OP_UUU_W, H4, H4, saddu32) RVVCALL(OPIVX2_RM, vsaddu_vx_d, OP_UUU_D, H8, H8, saddu64) GEN_VEXT_VX_RM(vsaddu_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vsaddu_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vsaddu_vx_w, 4, 4, clearl) GEN_VEXT_VX_RM(vsaddu_vx_d, 8, 8, clearq) static inline int8_t sadd8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) { int8_t res = a + b; if ((res ^ a) & (res ^ b) & INT8_MIN) { res = a > 0 ? INT8_MAX : INT8_MIN; env->vxsat = 0x1; } return res; } static inline int16_t sadd16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) { int16_t res = a + b; if ((res ^ a) & (res ^ b) & INT16_MIN) { res = a > 0 ? INT16_MAX : INT16_MIN; env->vxsat = 0x1; } return res; } static inline int32_t sadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) { int32_t res = a + b; if ((res ^ a) & (res ^ b) & INT32_MIN) { res = a > 0 ? INT32_MAX : INT32_MIN; env->vxsat = 0x1; } return res; } static inline int64_t sadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) { int64_t res = a + b; if ((res ^ a) & (res ^ b) & INT64_MIN) { res = a > 0 ? INT64_MAX : INT64_MIN; env->vxsat = 0x1; } return res; } RVVCALL(OPIVV2_RM, vsadd_vv_b, OP_SSS_B, H1, H1, H1, sadd8) RVVCALL(OPIVV2_RM, vsadd_vv_h, OP_SSS_H, H2, H2, H2, sadd16) RVVCALL(OPIVV2_RM, vsadd_vv_w, OP_SSS_W, H4, H4, H4, sadd32) RVVCALL(OPIVV2_RM, vsadd_vv_d, OP_SSS_D, H8, H8, H8, sadd64) GEN_VEXT_VV_RM(vsadd_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vsadd_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vsadd_vv_w, 4, 4, clearl) GEN_VEXT_VV_RM(vsadd_vv_d, 8, 8, clearq) RVVCALL(OPIVX2_RM, vsadd_vx_b, OP_SSS_B, H1, H1, sadd8) RVVCALL(OPIVX2_RM, vsadd_vx_h, OP_SSS_H, H2, H2, sadd16) RVVCALL(OPIVX2_RM, vsadd_vx_w, OP_SSS_W, H4, H4, sadd32) RVVCALL(OPIVX2_RM, vsadd_vx_d, OP_SSS_D, H8, H8, sadd64) GEN_VEXT_VX_RM(vsadd_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vsadd_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vsadd_vx_w, 4, 4, clearl) GEN_VEXT_VX_RM(vsadd_vx_d, 8, 8, clearq) static inline uint8_t ssubu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b) { uint8_t res = a - b; if (res > a) { res = 0; env->vxsat = 0x1; } return res; } static inline uint16_t ssubu16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b) { uint16_t res = a - b; if (res > a) { res = 0; env->vxsat = 0x1; } return res; } static inline uint32_t ssubu32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b) { uint32_t res = a - b; if (res > a) { res = 0; env->vxsat = 0x1; } return res; } static inline uint64_t ssubu64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b) { uint64_t res = a - b; if (res > a) { res = 0; env->vxsat = 0x1; } return res; } RVVCALL(OPIVV2_RM, vssubu_vv_b, OP_UUU_B, H1, H1, H1, ssubu8) RVVCALL(OPIVV2_RM, vssubu_vv_h, OP_UUU_H, H2, H2, H2, ssubu16) RVVCALL(OPIVV2_RM, vssubu_vv_w, OP_UUU_W, H4, H4, H4, ssubu32) RVVCALL(OPIVV2_RM, vssubu_vv_d, OP_UUU_D, H8, H8, H8, ssubu64) GEN_VEXT_VV_RM(vssubu_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vssubu_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vssubu_vv_w, 4, 4, clearl) GEN_VEXT_VV_RM(vssubu_vv_d, 8, 8, clearq) RVVCALL(OPIVX2_RM, vssubu_vx_b, OP_UUU_B, H1, H1, ssubu8) RVVCALL(OPIVX2_RM, vssubu_vx_h, OP_UUU_H, H2, H2, ssubu16) RVVCALL(OPIVX2_RM, vssubu_vx_w, OP_UUU_W, H4, H4, ssubu32) RVVCALL(OPIVX2_RM, vssubu_vx_d, OP_UUU_D, H8, H8, ssubu64) GEN_VEXT_VX_RM(vssubu_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vssubu_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vssubu_vx_w, 4, 4, clearl) GEN_VEXT_VX_RM(vssubu_vx_d, 8, 8, clearq) static inline int8_t ssub8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) { int8_t res = a - b; if ((res ^ a) & (a ^ b) & INT8_MIN) { res = a > 0 ? INT8_MAX : INT8_MIN; env->vxsat = 0x1; } return res; } static inline int16_t ssub16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) { int16_t res = a - b; if ((res ^ a) & (a ^ b) & INT16_MIN) { res = a > 0 ? INT16_MAX : INT16_MIN; env->vxsat = 0x1; } return res; } static inline int32_t ssub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) { int32_t res = a - b; if ((res ^ a) & (a ^ b) & INT32_MIN) { res = a > 0 ? INT32_MAX : INT32_MIN; env->vxsat = 0x1; } return res; } static inline int64_t ssub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) { int64_t res = a - b; if ((res ^ a) & (a ^ b) & INT64_MIN) { res = a > 0 ? INT64_MAX : INT64_MIN; env->vxsat = 0x1; } return res; } RVVCALL(OPIVV2_RM, vssub_vv_b, OP_SSS_B, H1, H1, H1, ssub8) RVVCALL(OPIVV2_RM, vssub_vv_h, OP_SSS_H, H2, H2, H2, ssub16) RVVCALL(OPIVV2_RM, vssub_vv_w, OP_SSS_W, H4, H4, H4, ssub32) RVVCALL(OPIVV2_RM, vssub_vv_d, OP_SSS_D, H8, H8, H8, ssub64) GEN_VEXT_VV_RM(vssub_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vssub_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vssub_vv_w, 4, 4, clearl) GEN_VEXT_VV_RM(vssub_vv_d, 8, 8, clearq) RVVCALL(OPIVX2_RM, vssub_vx_b, OP_SSS_B, H1, H1, ssub8) RVVCALL(OPIVX2_RM, vssub_vx_h, OP_SSS_H, H2, H2, ssub16) RVVCALL(OPIVX2_RM, vssub_vx_w, OP_SSS_W, H4, H4, ssub32) RVVCALL(OPIVX2_RM, vssub_vx_d, OP_SSS_D, H8, H8, ssub64) GEN_VEXT_VX_RM(vssub_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vssub_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vssub_vx_w, 4, 4, clearl) GEN_VEXT_VX_RM(vssub_vx_d, 8, 8, clearq) /* Vector Single-Width Averaging Add and Subtract */ static inline uint8_t get_round(int vxrm, uint64_t v, uint8_t shift) { uint8_t d = extract64(v, shift, 1); uint8_t d1; uint64_t D1, D2; if (shift == 0 || shift > 64) { return 0; } d1 = extract64(v, shift - 1, 1); D1 = extract64(v, 0, shift); if (vxrm == 0) { /* round-to-nearest-up (add +0.5 LSB) */ return d1; } else if (vxrm == 1) { /* round-to-nearest-even */ if (shift > 1) { D2 = extract64(v, 0, shift - 1); return d1 & ((D2 != 0) | d); } else { return d1 & d; } } else if (vxrm == 3) { /* round-to-odd (OR bits into LSB, aka "jam") */ return !d & (D1 != 0); } return 0; /* round-down (truncate) */ } static inline int32_t aadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) { int64_t res = (int64_t)a + b; uint8_t round = get_round(vxrm, res, 1); return (res >> 1) + round; } static inline int64_t aadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) { int64_t res = a + b; uint8_t round = get_round(vxrm, res, 1); int64_t over = (res ^ a) & (res ^ b) & INT64_MIN; /* With signed overflow, bit 64 is inverse of bit 63. */ return ((res >> 1) ^ over) + round; } RVVCALL(OPIVV2_RM, vaadd_vv_b, OP_SSS_B, H1, H1, H1, aadd32) RVVCALL(OPIVV2_RM, vaadd_vv_h, OP_SSS_H, H2, H2, H2, aadd32) RVVCALL(OPIVV2_RM, vaadd_vv_w, OP_SSS_W, H4, H4, H4, aadd32) RVVCALL(OPIVV2_RM, vaadd_vv_d, OP_SSS_D, H8, H8, H8, aadd64) GEN_VEXT_VV_RM(vaadd_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vaadd_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vaadd_vv_w, 4, 4, clearl) GEN_VEXT_VV_RM(vaadd_vv_d, 8, 8, clearq) RVVCALL(OPIVX2_RM, vaadd_vx_b, OP_SSS_B, H1, H1, aadd32) RVVCALL(OPIVX2_RM, vaadd_vx_h, OP_SSS_H, H2, H2, aadd32) RVVCALL(OPIVX2_RM, vaadd_vx_w, OP_SSS_W, H4, H4, aadd32) RVVCALL(OPIVX2_RM, vaadd_vx_d, OP_SSS_D, H8, H8, aadd64) GEN_VEXT_VX_RM(vaadd_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vaadd_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vaadd_vx_w, 4, 4, clearl) GEN_VEXT_VX_RM(vaadd_vx_d, 8, 8, clearq) static inline int32_t asub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) { int64_t res = (int64_t)a - b; uint8_t round = get_round(vxrm, res, 1); return (res >> 1) + round; } static inline int64_t asub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) { int64_t res = (int64_t)a - b; uint8_t round = get_round(vxrm, res, 1); int64_t over = (res ^ a) & (a ^ b) & INT64_MIN; /* With signed overflow, bit 64 is inverse of bit 63. */ return ((res >> 1) ^ over) + round; } RVVCALL(OPIVV2_RM, vasub_vv_b, OP_SSS_B, H1, H1, H1, asub32) RVVCALL(OPIVV2_RM, vasub_vv_h, OP_SSS_H, H2, H2, H2, asub32) RVVCALL(OPIVV2_RM, vasub_vv_w, OP_SSS_W, H4, H4, H4, asub32) RVVCALL(OPIVV2_RM, vasub_vv_d, OP_SSS_D, H8, H8, H8, asub64) GEN_VEXT_VV_RM(vasub_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vasub_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vasub_vv_w, 4, 4, clearl) GEN_VEXT_VV_RM(vasub_vv_d, 8, 8, clearq) RVVCALL(OPIVX2_RM, vasub_vx_b, OP_SSS_B, H1, H1, asub32) RVVCALL(OPIVX2_RM, vasub_vx_h, OP_SSS_H, H2, H2, asub32) RVVCALL(OPIVX2_RM, vasub_vx_w, OP_SSS_W, H4, H4, asub32) RVVCALL(OPIVX2_RM, vasub_vx_d, OP_SSS_D, H8, H8, asub64) GEN_VEXT_VX_RM(vasub_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vasub_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vasub_vx_w, 4, 4, clearl) GEN_VEXT_VX_RM(vasub_vx_d, 8, 8, clearq) /* Vector Single-Width Fractional Multiply with Rounding and Saturation */ static inline int8_t vsmul8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) { uint8_t round; int16_t res; res = (int16_t)a * (int16_t)b; round = get_round(vxrm, res, 7); res = (res >> 7) + round; if (res > INT8_MAX) { env->vxsat = 0x1; return INT8_MAX; } else if (res < INT8_MIN) { env->vxsat = 0x1; return INT8_MIN; } else { return res; } } static int16_t vsmul16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) { uint8_t round; int32_t res; res = (int32_t)a * (int32_t)b; round = get_round(vxrm, res, 15); res = (res >> 15) + round; if (res > INT16_MAX) { env->vxsat = 0x1; return INT16_MAX; } else if (res < INT16_MIN) { env->vxsat = 0x1; return INT16_MIN; } else { return res; } } static int32_t vsmul32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) { uint8_t round; int64_t res; res = (int64_t)a * (int64_t)b; round = get_round(vxrm, res, 31); res = (res >> 31) + round; if (res > INT32_MAX) { env->vxsat = 0x1; return INT32_MAX; } else if (res < INT32_MIN) { env->vxsat = 0x1; return INT32_MIN; } else { return res; } } static int64_t vsmul64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) { uint8_t round; uint64_t hi_64, lo_64; int64_t res; if (a == INT64_MIN && b == INT64_MIN) { env->vxsat = 1; return INT64_MAX; } muls64(&lo_64, &hi_64, a, b); round = get_round(vxrm, lo_64, 63); /* * Cannot overflow, as there are always * 2 sign bits after multiply. */ res = (hi_64 << 1) | (lo_64 >> 63); if (round) { if (res == INT64_MAX) { env->vxsat = 1; } else { res += 1; } } return res; } RVVCALL(OPIVV2_RM, vsmul_vv_b, OP_SSS_B, H1, H1, H1, vsmul8) RVVCALL(OPIVV2_RM, vsmul_vv_h, OP_SSS_H, H2, H2, H2, vsmul16) RVVCALL(OPIVV2_RM, vsmul_vv_w, OP_SSS_W, H4, H4, H4, vsmul32) RVVCALL(OPIVV2_RM, vsmul_vv_d, OP_SSS_D, H8, H8, H8, vsmul64) GEN_VEXT_VV_RM(vsmul_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vsmul_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vsmul_vv_w, 4, 4, clearl) GEN_VEXT_VV_RM(vsmul_vv_d, 8, 8, clearq) RVVCALL(OPIVX2_RM, vsmul_vx_b, OP_SSS_B, H1, H1, vsmul8) RVVCALL(OPIVX2_RM, vsmul_vx_h, OP_SSS_H, H2, H2, vsmul16) RVVCALL(OPIVX2_RM, vsmul_vx_w, OP_SSS_W, H4, H4, vsmul32) RVVCALL(OPIVX2_RM, vsmul_vx_d, OP_SSS_D, H8, H8, vsmul64) GEN_VEXT_VX_RM(vsmul_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vsmul_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vsmul_vx_w, 4, 4, clearl) GEN_VEXT_VX_RM(vsmul_vx_d, 8, 8, clearq) /* Vector Widening Saturating Scaled Multiply-Add */ static inline uint16_t vwsmaccu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b, uint16_t c) { uint8_t round; uint16_t res = (uint16_t)a * b; round = get_round(vxrm, res, 4); res = (res >> 4) + round; return saddu16(env, vxrm, c, res); } static inline uint32_t vwsmaccu16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b, uint32_t c) { uint8_t round; uint32_t res = (uint32_t)a * b; round = get_round(vxrm, res, 8); res = (res >> 8) + round; return saddu32(env, vxrm, c, res); } static inline uint64_t vwsmaccu32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b, uint64_t c) { uint8_t round; uint64_t res = (uint64_t)a * b; round = get_round(vxrm, res, 16); res = (res >> 16) + round; return saddu64(env, vxrm, c, res); } #define OPIVV3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ static inline void \ do_##NAME(void *vd, void *vs1, void *vs2, int i, \ CPURISCVState *env, int vxrm) \ { \ TX1 s1 = *((T1 *)vs1 + HS1(i)); \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ TD d = *((TD *)vd + HD(i)); \ *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1, d); \ } RVVCALL(OPIVV3_RM, vwsmaccu_vv_b, WOP_UUU_B, H2, H1, H1, vwsmaccu8) RVVCALL(OPIVV3_RM, vwsmaccu_vv_h, WOP_UUU_H, H4, H2, H2, vwsmaccu16) RVVCALL(OPIVV3_RM, vwsmaccu_vv_w, WOP_UUU_W, H8, H4, H4, vwsmaccu32) GEN_VEXT_VV_RM(vwsmaccu_vv_b, 1, 2, clearh) GEN_VEXT_VV_RM(vwsmaccu_vv_h, 2, 4, clearl) GEN_VEXT_VV_RM(vwsmaccu_vv_w, 4, 8, clearq) #define OPIVX3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ static inline void \ do_##NAME(void *vd, target_long s1, void *vs2, int i, \ CPURISCVState *env, int vxrm) \ { \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ TD d = *((TD *)vd + HD(i)); \ *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1, d); \ } RVVCALL(OPIVX3_RM, vwsmaccu_vx_b, WOP_UUU_B, H2, H1, vwsmaccu8) RVVCALL(OPIVX3_RM, vwsmaccu_vx_h, WOP_UUU_H, H4, H2, vwsmaccu16) RVVCALL(OPIVX3_RM, vwsmaccu_vx_w, WOP_UUU_W, H8, H4, vwsmaccu32) GEN_VEXT_VX_RM(vwsmaccu_vx_b, 1, 2, clearh) GEN_VEXT_VX_RM(vwsmaccu_vx_h, 2, 4, clearl) GEN_VEXT_VX_RM(vwsmaccu_vx_w, 4, 8, clearq) static inline int16_t vwsmacc8(CPURISCVState *env, int vxrm, int8_t a, int8_t b, int16_t c) { uint8_t round; int16_t res = (int16_t)a * b; round = get_round(vxrm, res, 4); res = (res >> 4) + round; return sadd16(env, vxrm, c, res); } static inline int32_t vwsmacc16(CPURISCVState *env, int vxrm, int16_t a, int16_t b, int32_t c) { uint8_t round; int32_t res = (int32_t)a * b; round = get_round(vxrm, res, 8); res = (res >> 8) + round; return sadd32(env, vxrm, c, res); } static inline int64_t vwsmacc32(CPURISCVState *env, int vxrm, int32_t a, int32_t b, int64_t c) { uint8_t round; int64_t res = (int64_t)a * b; round = get_round(vxrm, res, 16); res = (res >> 16) + round; return sadd64(env, vxrm, c, res); } RVVCALL(OPIVV3_RM, vwsmacc_vv_b, WOP_SSS_B, H2, H1, H1, vwsmacc8) RVVCALL(OPIVV3_RM, vwsmacc_vv_h, WOP_SSS_H, H4, H2, H2, vwsmacc16) RVVCALL(OPIVV3_RM, vwsmacc_vv_w, WOP_SSS_W, H8, H4, H4, vwsmacc32) GEN_VEXT_VV_RM(vwsmacc_vv_b, 1, 2, clearh) GEN_VEXT_VV_RM(vwsmacc_vv_h, 2, 4, clearl) GEN_VEXT_VV_RM(vwsmacc_vv_w, 4, 8, clearq) RVVCALL(OPIVX3_RM, vwsmacc_vx_b, WOP_SSS_B, H2, H1, vwsmacc8) RVVCALL(OPIVX3_RM, vwsmacc_vx_h, WOP_SSS_H, H4, H2, vwsmacc16) RVVCALL(OPIVX3_RM, vwsmacc_vx_w, WOP_SSS_W, H8, H4, vwsmacc32) GEN_VEXT_VX_RM(vwsmacc_vx_b, 1, 2, clearh) GEN_VEXT_VX_RM(vwsmacc_vx_h, 2, 4, clearl) GEN_VEXT_VX_RM(vwsmacc_vx_w, 4, 8, clearq) static inline int16_t vwsmaccsu8(CPURISCVState *env, int vxrm, uint8_t a, int8_t b, int16_t c) { uint8_t round; int16_t res = a * (int16_t)b; round = get_round(vxrm, res, 4); res = (res >> 4) + round; return ssub16(env, vxrm, c, res); } static inline int32_t vwsmaccsu16(CPURISCVState *env, int vxrm, uint16_t a, int16_t b, uint32_t c) { uint8_t round; int32_t res = a * (int32_t)b; round = get_round(vxrm, res, 8); res = (res >> 8) + round; return ssub32(env, vxrm, c, res); } static inline int64_t vwsmaccsu32(CPURISCVState *env, int vxrm, uint32_t a, int32_t b, int64_t c) { uint8_t round; int64_t res = a * (int64_t)b; round = get_round(vxrm, res, 16); res = (res >> 16) + round; return ssub64(env, vxrm, c, res); } RVVCALL(OPIVV3_RM, vwsmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, vwsmaccsu8) RVVCALL(OPIVV3_RM, vwsmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, vwsmaccsu16) RVVCALL(OPIVV3_RM, vwsmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, vwsmaccsu32) GEN_VEXT_VV_RM(vwsmaccsu_vv_b, 1, 2, clearh) GEN_VEXT_VV_RM(vwsmaccsu_vv_h, 2, 4, clearl) GEN_VEXT_VV_RM(vwsmaccsu_vv_w, 4, 8, clearq) RVVCALL(OPIVX3_RM, vwsmaccsu_vx_b, WOP_SSU_B, H2, H1, vwsmaccsu8) RVVCALL(OPIVX3_RM, vwsmaccsu_vx_h, WOP_SSU_H, H4, H2, vwsmaccsu16) RVVCALL(OPIVX3_RM, vwsmaccsu_vx_w, WOP_SSU_W, H8, H4, vwsmaccsu32) GEN_VEXT_VX_RM(vwsmaccsu_vx_b, 1, 2, clearh) GEN_VEXT_VX_RM(vwsmaccsu_vx_h, 2, 4, clearl) GEN_VEXT_VX_RM(vwsmaccsu_vx_w, 4, 8, clearq) static inline int16_t vwsmaccus8(CPURISCVState *env, int vxrm, int8_t a, uint8_t b, int16_t c) { uint8_t round; int16_t res = (int16_t)a * b; round = get_round(vxrm, res, 4); res = (res >> 4) + round; return ssub16(env, vxrm, c, res); } static inline int32_t vwsmaccus16(CPURISCVState *env, int vxrm, int16_t a, uint16_t b, int32_t c) { uint8_t round; int32_t res = (int32_t)a * b; round = get_round(vxrm, res, 8); res = (res >> 8) + round; return ssub32(env, vxrm, c, res); } static inline int64_t vwsmaccus32(CPURISCVState *env, int vxrm, int32_t a, uint32_t b, int64_t c) { uint8_t round; int64_t res = (int64_t)a * b; round = get_round(vxrm, res, 16); res = (res >> 16) + round; return ssub64(env, vxrm, c, res); } RVVCALL(OPIVX3_RM, vwsmaccus_vx_b, WOP_SUS_B, H2, H1, vwsmaccus8) RVVCALL(OPIVX3_RM, vwsmaccus_vx_h, WOP_SUS_H, H4, H2, vwsmaccus16) RVVCALL(OPIVX3_RM, vwsmaccus_vx_w, WOP_SUS_W, H8, H4, vwsmaccus32) GEN_VEXT_VX_RM(vwsmaccus_vx_b, 1, 2, clearh) GEN_VEXT_VX_RM(vwsmaccus_vx_h, 2, 4, clearl) GEN_VEXT_VX_RM(vwsmaccus_vx_w, 4, 8, clearq) /* Vector Single-Width Scaling Shift Instructions */ static inline uint8_t vssrl8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b) { uint8_t round, shift = b & 0x7; uint8_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; return res; } static inline uint16_t vssrl16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b) { uint8_t round, shift = b & 0xf; uint16_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; return res; } static inline uint32_t vssrl32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b) { uint8_t round, shift = b & 0x1f; uint32_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; return res; } static inline uint64_t vssrl64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b) { uint8_t round, shift = b & 0x3f; uint64_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; return res; } RVVCALL(OPIVV2_RM, vssrl_vv_b, OP_UUU_B, H1, H1, H1, vssrl8) RVVCALL(OPIVV2_RM, vssrl_vv_h, OP_UUU_H, H2, H2, H2, vssrl16) RVVCALL(OPIVV2_RM, vssrl_vv_w, OP_UUU_W, H4, H4, H4, vssrl32) RVVCALL(OPIVV2_RM, vssrl_vv_d, OP_UUU_D, H8, H8, H8, vssrl64) GEN_VEXT_VV_RM(vssrl_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vssrl_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vssrl_vv_w, 4, 4, clearl) GEN_VEXT_VV_RM(vssrl_vv_d, 8, 8, clearq) RVVCALL(OPIVX2_RM, vssrl_vx_b, OP_UUU_B, H1, H1, vssrl8) RVVCALL(OPIVX2_RM, vssrl_vx_h, OP_UUU_H, H2, H2, vssrl16) RVVCALL(OPIVX2_RM, vssrl_vx_w, OP_UUU_W, H4, H4, vssrl32) RVVCALL(OPIVX2_RM, vssrl_vx_d, OP_UUU_D, H8, H8, vssrl64) GEN_VEXT_VX_RM(vssrl_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vssrl_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vssrl_vx_w, 4, 4, clearl) GEN_VEXT_VX_RM(vssrl_vx_d, 8, 8, clearq) static inline int8_t vssra8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) { uint8_t round, shift = b & 0x7; int8_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; return res; } static inline int16_t vssra16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) { uint8_t round, shift = b & 0xf; int16_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; return res; } static inline int32_t vssra32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) { uint8_t round, shift = b & 0x1f; int32_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; return res; } static inline int64_t vssra64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) { uint8_t round, shift = b & 0x3f; int64_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; return res; } RVVCALL(OPIVV2_RM, vssra_vv_b, OP_SSS_B, H1, H1, H1, vssra8) RVVCALL(OPIVV2_RM, vssra_vv_h, OP_SSS_H, H2, H2, H2, vssra16) RVVCALL(OPIVV2_RM, vssra_vv_w, OP_SSS_W, H4, H4, H4, vssra32) RVVCALL(OPIVV2_RM, vssra_vv_d, OP_SSS_D, H8, H8, H8, vssra64) GEN_VEXT_VV_RM(vssra_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vssra_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vssra_vv_w, 4, 4, clearl) GEN_VEXT_VV_RM(vssra_vv_d, 8, 8, clearq) RVVCALL(OPIVX2_RM, vssra_vx_b, OP_SSS_B, H1, H1, vssra8) RVVCALL(OPIVX2_RM, vssra_vx_h, OP_SSS_H, H2, H2, vssra16) RVVCALL(OPIVX2_RM, vssra_vx_w, OP_SSS_W, H4, H4, vssra32) RVVCALL(OPIVX2_RM, vssra_vx_d, OP_SSS_D, H8, H8, vssra64) GEN_VEXT_VX_RM(vssra_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vssra_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vssra_vx_w, 4, 4, clearl) GEN_VEXT_VX_RM(vssra_vx_d, 8, 8, clearq) /* Vector Narrowing Fixed-Point Clip Instructions */ static inline int8_t vnclip8(CPURISCVState *env, int vxrm, int16_t a, int8_t b) { uint8_t round, shift = b & 0xf; int16_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; if (res > INT8_MAX) { env->vxsat = 0x1; return INT8_MAX; } else if (res < INT8_MIN) { env->vxsat = 0x1; return INT8_MIN; } else { return res; } } static inline int16_t vnclip16(CPURISCVState *env, int vxrm, int32_t a, int16_t b) { uint8_t round, shift = b & 0x1f; int32_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; if (res > INT16_MAX) { env->vxsat = 0x1; return INT16_MAX; } else if (res < INT16_MIN) { env->vxsat = 0x1; return INT16_MIN; } else { return res; } } static inline int32_t vnclip32(CPURISCVState *env, int vxrm, int64_t a, int32_t b) { uint8_t round, shift = b & 0x3f; int64_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; if (res > INT32_MAX) { env->vxsat = 0x1; return INT32_MAX; } else if (res < INT32_MIN) { env->vxsat = 0x1; return INT32_MIN; } else { return res; } } RVVCALL(OPIVV2_RM, vnclip_vv_b, NOP_SSS_B, H1, H2, H1, vnclip8) RVVCALL(OPIVV2_RM, vnclip_vv_h, NOP_SSS_H, H2, H4, H2, vnclip16) RVVCALL(OPIVV2_RM, vnclip_vv_w, NOP_SSS_W, H4, H8, H4, vnclip32) GEN_VEXT_VV_RM(vnclip_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vnclip_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vnclip_vv_w, 4, 4, clearl) RVVCALL(OPIVX2_RM, vnclip_vx_b, NOP_SSS_B, H1, H2, vnclip8) RVVCALL(OPIVX2_RM, vnclip_vx_h, NOP_SSS_H, H2, H4, vnclip16) RVVCALL(OPIVX2_RM, vnclip_vx_w, NOP_SSS_W, H4, H8, vnclip32) GEN_VEXT_VX_RM(vnclip_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vnclip_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vnclip_vx_w, 4, 4, clearl) static inline uint8_t vnclipu8(CPURISCVState *env, int vxrm, uint16_t a, uint8_t b) { uint8_t round, shift = b & 0xf; uint16_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; if (res > UINT8_MAX) { env->vxsat = 0x1; return UINT8_MAX; } else { return res; } } static inline uint16_t vnclipu16(CPURISCVState *env, int vxrm, uint32_t a, uint16_t b) { uint8_t round, shift = b & 0x1f; uint32_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; if (res > UINT16_MAX) { env->vxsat = 0x1; return UINT16_MAX; } else { return res; } } static inline uint32_t vnclipu32(CPURISCVState *env, int vxrm, uint64_t a, uint32_t b) { uint8_t round, shift = b & 0x3f; int64_t res; round = get_round(vxrm, a, shift); res = (a >> shift) + round; if (res > UINT32_MAX) { env->vxsat = 0x1; return UINT32_MAX; } else { return res; } } RVVCALL(OPIVV2_RM, vnclipu_vv_b, NOP_UUU_B, H1, H2, H1, vnclipu8) RVVCALL(OPIVV2_RM, vnclipu_vv_h, NOP_UUU_H, H2, H4, H2, vnclipu16) RVVCALL(OPIVV2_RM, vnclipu_vv_w, NOP_UUU_W, H4, H8, H4, vnclipu32) GEN_VEXT_VV_RM(vnclipu_vv_b, 1, 1, clearb) GEN_VEXT_VV_RM(vnclipu_vv_h, 2, 2, clearh) GEN_VEXT_VV_RM(vnclipu_vv_w, 4, 4, clearl) RVVCALL(OPIVX2_RM, vnclipu_vx_b, NOP_UUU_B, H1, H2, vnclipu8) RVVCALL(OPIVX2_RM, vnclipu_vx_h, NOP_UUU_H, H2, H4, vnclipu16) RVVCALL(OPIVX2_RM, vnclipu_vx_w, NOP_UUU_W, H4, H8, vnclipu32) GEN_VEXT_VX_RM(vnclipu_vx_b, 1, 1, clearb) GEN_VEXT_VX_RM(vnclipu_vx_h, 2, 2, clearh) GEN_VEXT_VX_RM(vnclipu_vx_w, 4, 4, clearl) /* *** Vector Float Point Arithmetic Instructions */ /* Vector Single-Width Floating-Point Add/Subtract Instructions */ #define OPFVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \ CPURISCVState *env) \ { \ TX1 s1 = *((T1 *)vs1 + HS1(i)); \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ *((TD *)vd + HD(i)) = OP(s2, s1, &env->fp_status); \ } #define GEN_VEXT_VV_ENV(NAME, ESZ, DSZ, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, void *vs1, \ void *vs2, CPURISCVState *env, \ uint32_t desc) \ { \ uint32_t vlmax = vext_maxsz(desc) / ESZ; \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ if (!vm && !vext_elem_mask(v0, mlen, i)) { \ continue; \ } \ do_##NAME(vd, vs1, vs2, i, env); \ } \ CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \ } RVVCALL(OPFVV2, vfadd_vv_h, OP_UUU_H, H2, H2, H2, float16_add) RVVCALL(OPFVV2, vfadd_vv_w, OP_UUU_W, H4, H4, H4, float32_add) RVVCALL(OPFVV2, vfadd_vv_d, OP_UUU_D, H8, H8, H8, float64_add) GEN_VEXT_VV_ENV(vfadd_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfadd_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfadd_vv_d, 8, 8, clearq) #define OPFVF2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \ CPURISCVState *env) \ { \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, &env->fp_status);\ } #define GEN_VEXT_VF(NAME, ESZ, DSZ, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, uint64_t s1, \ void *vs2, CPURISCVState *env, \ uint32_t desc) \ { \ uint32_t vlmax = vext_maxsz(desc) / ESZ; \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ if (!vm && !vext_elem_mask(v0, mlen, i)) { \ continue; \ } \ do_##NAME(vd, s1, vs2, i, env); \ } \ CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \ } RVVCALL(OPFVF2, vfadd_vf_h, OP_UUU_H, H2, H2, float16_add) RVVCALL(OPFVF2, vfadd_vf_w, OP_UUU_W, H4, H4, float32_add) RVVCALL(OPFVF2, vfadd_vf_d, OP_UUU_D, H8, H8, float64_add) GEN_VEXT_VF(vfadd_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfadd_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfadd_vf_d, 8, 8, clearq) RVVCALL(OPFVV2, vfsub_vv_h, OP_UUU_H, H2, H2, H2, float16_sub) RVVCALL(OPFVV2, vfsub_vv_w, OP_UUU_W, H4, H4, H4, float32_sub) RVVCALL(OPFVV2, vfsub_vv_d, OP_UUU_D, H8, H8, H8, float64_sub) GEN_VEXT_VV_ENV(vfsub_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfsub_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfsub_vv_d, 8, 8, clearq) RVVCALL(OPFVF2, vfsub_vf_h, OP_UUU_H, H2, H2, float16_sub) RVVCALL(OPFVF2, vfsub_vf_w, OP_UUU_W, H4, H4, float32_sub) RVVCALL(OPFVF2, vfsub_vf_d, OP_UUU_D, H8, H8, float64_sub) GEN_VEXT_VF(vfsub_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfsub_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfsub_vf_d, 8, 8, clearq) static uint16_t float16_rsub(uint16_t a, uint16_t b, float_status *s) { return float16_sub(b, a, s); } static uint32_t float32_rsub(uint32_t a, uint32_t b, float_status *s) { return float32_sub(b, a, s); } static uint64_t float64_rsub(uint64_t a, uint64_t b, float_status *s) { return float64_sub(b, a, s); } RVVCALL(OPFVF2, vfrsub_vf_h, OP_UUU_H, H2, H2, float16_rsub) RVVCALL(OPFVF2, vfrsub_vf_w, OP_UUU_W, H4, H4, float32_rsub) RVVCALL(OPFVF2, vfrsub_vf_d, OP_UUU_D, H8, H8, float64_rsub) GEN_VEXT_VF(vfrsub_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfrsub_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfrsub_vf_d, 8, 8, clearq) /* Vector Widening Floating-Point Add/Subtract Instructions */ static uint32_t vfwadd16(uint16_t a, uint16_t b, float_status *s) { return float32_add(float16_to_float32(a, true, s), float16_to_float32(b, true, s), s); } static uint64_t vfwadd32(uint32_t a, uint32_t b, float_status *s) { return float64_add(float32_to_float64(a, s), float32_to_float64(b, s), s); } RVVCALL(OPFVV2, vfwadd_vv_h, WOP_UUU_H, H4, H2, H2, vfwadd16) RVVCALL(OPFVV2, vfwadd_vv_w, WOP_UUU_W, H8, H4, H4, vfwadd32) GEN_VEXT_VV_ENV(vfwadd_vv_h, 2, 4, clearl) GEN_VEXT_VV_ENV(vfwadd_vv_w, 4, 8, clearq) RVVCALL(OPFVF2, vfwadd_vf_h, WOP_UUU_H, H4, H2, vfwadd16) RVVCALL(OPFVF2, vfwadd_vf_w, WOP_UUU_W, H8, H4, vfwadd32) GEN_VEXT_VF(vfwadd_vf_h, 2, 4, clearl) GEN_VEXT_VF(vfwadd_vf_w, 4, 8, clearq) static uint32_t vfwsub16(uint16_t a, uint16_t b, float_status *s) { return float32_sub(float16_to_float32(a, true, s), float16_to_float32(b, true, s), s); } static uint64_t vfwsub32(uint32_t a, uint32_t b, float_status *s) { return float64_sub(float32_to_float64(a, s), float32_to_float64(b, s), s); } RVVCALL(OPFVV2, vfwsub_vv_h, WOP_UUU_H, H4, H2, H2, vfwsub16) RVVCALL(OPFVV2, vfwsub_vv_w, WOP_UUU_W, H8, H4, H4, vfwsub32) GEN_VEXT_VV_ENV(vfwsub_vv_h, 2, 4, clearl) GEN_VEXT_VV_ENV(vfwsub_vv_w, 4, 8, clearq) RVVCALL(OPFVF2, vfwsub_vf_h, WOP_UUU_H, H4, H2, vfwsub16) RVVCALL(OPFVF2, vfwsub_vf_w, WOP_UUU_W, H8, H4, vfwsub32) GEN_VEXT_VF(vfwsub_vf_h, 2, 4, clearl) GEN_VEXT_VF(vfwsub_vf_w, 4, 8, clearq) static uint32_t vfwaddw16(uint32_t a, uint16_t b, float_status *s) { return float32_add(a, float16_to_float32(b, true, s), s); } static uint64_t vfwaddw32(uint64_t a, uint32_t b, float_status *s) { return float64_add(a, float32_to_float64(b, s), s); } RVVCALL(OPFVV2, vfwadd_wv_h, WOP_WUUU_H, H4, H2, H2, vfwaddw16) RVVCALL(OPFVV2, vfwadd_wv_w, WOP_WUUU_W, H8, H4, H4, vfwaddw32) GEN_VEXT_VV_ENV(vfwadd_wv_h, 2, 4, clearl) GEN_VEXT_VV_ENV(vfwadd_wv_w, 4, 8, clearq) RVVCALL(OPFVF2, vfwadd_wf_h, WOP_WUUU_H, H4, H2, vfwaddw16) RVVCALL(OPFVF2, vfwadd_wf_w, WOP_WUUU_W, H8, H4, vfwaddw32) GEN_VEXT_VF(vfwadd_wf_h, 2, 4, clearl) GEN_VEXT_VF(vfwadd_wf_w, 4, 8, clearq) static uint32_t vfwsubw16(uint32_t a, uint16_t b, float_status *s) { return float32_sub(a, float16_to_float32(b, true, s), s); } static uint64_t vfwsubw32(uint64_t a, uint32_t b, float_status *s) { return float64_sub(a, float32_to_float64(b, s), s); } RVVCALL(OPFVV2, vfwsub_wv_h, WOP_WUUU_H, H4, H2, H2, vfwsubw16) RVVCALL(OPFVV2, vfwsub_wv_w, WOP_WUUU_W, H8, H4, H4, vfwsubw32) GEN_VEXT_VV_ENV(vfwsub_wv_h, 2, 4, clearl) GEN_VEXT_VV_ENV(vfwsub_wv_w, 4, 8, clearq) RVVCALL(OPFVF2, vfwsub_wf_h, WOP_WUUU_H, H4, H2, vfwsubw16) RVVCALL(OPFVF2, vfwsub_wf_w, WOP_WUUU_W, H8, H4, vfwsubw32) GEN_VEXT_VF(vfwsub_wf_h, 2, 4, clearl) GEN_VEXT_VF(vfwsub_wf_w, 4, 8, clearq) /* Vector Single-Width Floating-Point Multiply/Divide Instructions */ RVVCALL(OPFVV2, vfmul_vv_h, OP_UUU_H, H2, H2, H2, float16_mul) RVVCALL(OPFVV2, vfmul_vv_w, OP_UUU_W, H4, H4, H4, float32_mul) RVVCALL(OPFVV2, vfmul_vv_d, OP_UUU_D, H8, H8, H8, float64_mul) GEN_VEXT_VV_ENV(vfmul_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfmul_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfmul_vv_d, 8, 8, clearq) RVVCALL(OPFVF2, vfmul_vf_h, OP_UUU_H, H2, H2, float16_mul) RVVCALL(OPFVF2, vfmul_vf_w, OP_UUU_W, H4, H4, float32_mul) RVVCALL(OPFVF2, vfmul_vf_d, OP_UUU_D, H8, H8, float64_mul) GEN_VEXT_VF(vfmul_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfmul_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfmul_vf_d, 8, 8, clearq) RVVCALL(OPFVV2, vfdiv_vv_h, OP_UUU_H, H2, H2, H2, float16_div) RVVCALL(OPFVV2, vfdiv_vv_w, OP_UUU_W, H4, H4, H4, float32_div) RVVCALL(OPFVV2, vfdiv_vv_d, OP_UUU_D, H8, H8, H8, float64_div) GEN_VEXT_VV_ENV(vfdiv_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfdiv_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfdiv_vv_d, 8, 8, clearq) RVVCALL(OPFVF2, vfdiv_vf_h, OP_UUU_H, H2, H2, float16_div) RVVCALL(OPFVF2, vfdiv_vf_w, OP_UUU_W, H4, H4, float32_div) RVVCALL(OPFVF2, vfdiv_vf_d, OP_UUU_D, H8, H8, float64_div) GEN_VEXT_VF(vfdiv_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfdiv_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfdiv_vf_d, 8, 8, clearq) static uint16_t float16_rdiv(uint16_t a, uint16_t b, float_status *s) { return float16_div(b, a, s); } static uint32_t float32_rdiv(uint32_t a, uint32_t b, float_status *s) { return float32_div(b, a, s); } static uint64_t float64_rdiv(uint64_t a, uint64_t b, float_status *s) { return float64_div(b, a, s); } RVVCALL(OPFVF2, vfrdiv_vf_h, OP_UUU_H, H2, H2, float16_rdiv) RVVCALL(OPFVF2, vfrdiv_vf_w, OP_UUU_W, H4, H4, float32_rdiv) RVVCALL(OPFVF2, vfrdiv_vf_d, OP_UUU_D, H8, H8, float64_rdiv) GEN_VEXT_VF(vfrdiv_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfrdiv_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfrdiv_vf_d, 8, 8, clearq) /* Vector Widening Floating-Point Multiply */ static uint32_t vfwmul16(uint16_t a, uint16_t b, float_status *s) { return float32_mul(float16_to_float32(a, true, s), float16_to_float32(b, true, s), s); } static uint64_t vfwmul32(uint32_t a, uint32_t b, float_status *s) { return float64_mul(float32_to_float64(a, s), float32_to_float64(b, s), s); } RVVCALL(OPFVV2, vfwmul_vv_h, WOP_UUU_H, H4, H2, H2, vfwmul16) RVVCALL(OPFVV2, vfwmul_vv_w, WOP_UUU_W, H8, H4, H4, vfwmul32) GEN_VEXT_VV_ENV(vfwmul_vv_h, 2, 4, clearl) GEN_VEXT_VV_ENV(vfwmul_vv_w, 4, 8, clearq) RVVCALL(OPFVF2, vfwmul_vf_h, WOP_UUU_H, H4, H2, vfwmul16) RVVCALL(OPFVF2, vfwmul_vf_w, WOP_UUU_W, H8, H4, vfwmul32) GEN_VEXT_VF(vfwmul_vf_h, 2, 4, clearl) GEN_VEXT_VF(vfwmul_vf_w, 4, 8, clearq) /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ #define OPFVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \ CPURISCVState *env) \ { \ TX1 s1 = *((T1 *)vs1 + HS1(i)); \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ TD d = *((TD *)vd + HD(i)); \ *((TD *)vd + HD(i)) = OP(s2, s1, d, &env->fp_status); \ } static uint16_t fmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s) { return float16_muladd(a, b, d, 0, s); } static uint32_t fmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s) { return float32_muladd(a, b, d, 0, s); } static uint64_t fmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s) { return float64_muladd(a, b, d, 0, s); } RVVCALL(OPFVV3, vfmacc_vv_h, OP_UUU_H, H2, H2, H2, fmacc16) RVVCALL(OPFVV3, vfmacc_vv_w, OP_UUU_W, H4, H4, H4, fmacc32) RVVCALL(OPFVV3, vfmacc_vv_d, OP_UUU_D, H8, H8, H8, fmacc64) GEN_VEXT_VV_ENV(vfmacc_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfmacc_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfmacc_vv_d, 8, 8, clearq) #define OPFVF3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \ CPURISCVState *env) \ { \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ TD d = *((TD *)vd + HD(i)); \ *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d, &env->fp_status);\ } RVVCALL(OPFVF3, vfmacc_vf_h, OP_UUU_H, H2, H2, fmacc16) RVVCALL(OPFVF3, vfmacc_vf_w, OP_UUU_W, H4, H4, fmacc32) RVVCALL(OPFVF3, vfmacc_vf_d, OP_UUU_D, H8, H8, fmacc64) GEN_VEXT_VF(vfmacc_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfmacc_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfmacc_vf_d, 8, 8, clearq) static uint16_t fnmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s) { return float16_muladd(a, b, d, float_muladd_negate_c | float_muladd_negate_product, s); } static uint32_t fnmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s) { return float32_muladd(a, b, d, float_muladd_negate_c | float_muladd_negate_product, s); } static uint64_t fnmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s) { return float64_muladd(a, b, d, float_muladd_negate_c | float_muladd_negate_product, s); } RVVCALL(OPFVV3, vfnmacc_vv_h, OP_UUU_H, H2, H2, H2, fnmacc16) RVVCALL(OPFVV3, vfnmacc_vv_w, OP_UUU_W, H4, H4, H4, fnmacc32) RVVCALL(OPFVV3, vfnmacc_vv_d, OP_UUU_D, H8, H8, H8, fnmacc64) GEN_VEXT_VV_ENV(vfnmacc_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfnmacc_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfnmacc_vv_d, 8, 8, clearq) RVVCALL(OPFVF3, vfnmacc_vf_h, OP_UUU_H, H2, H2, fnmacc16) RVVCALL(OPFVF3, vfnmacc_vf_w, OP_UUU_W, H4, H4, fnmacc32) RVVCALL(OPFVF3, vfnmacc_vf_d, OP_UUU_D, H8, H8, fnmacc64) GEN_VEXT_VF(vfnmacc_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfnmacc_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfnmacc_vf_d, 8, 8, clearq) static uint16_t fmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s) { return float16_muladd(a, b, d, float_muladd_negate_c, s); } static uint32_t fmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s) { return float32_muladd(a, b, d, float_muladd_negate_c, s); } static uint64_t fmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s) { return float64_muladd(a, b, d, float_muladd_negate_c, s); } RVVCALL(OPFVV3, vfmsac_vv_h, OP_UUU_H, H2, H2, H2, fmsac16) RVVCALL(OPFVV3, vfmsac_vv_w, OP_UUU_W, H4, H4, H4, fmsac32) RVVCALL(OPFVV3, vfmsac_vv_d, OP_UUU_D, H8, H8, H8, fmsac64) GEN_VEXT_VV_ENV(vfmsac_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfmsac_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfmsac_vv_d, 8, 8, clearq) RVVCALL(OPFVF3, vfmsac_vf_h, OP_UUU_H, H2, H2, fmsac16) RVVCALL(OPFVF3, vfmsac_vf_w, OP_UUU_W, H4, H4, fmsac32) RVVCALL(OPFVF3, vfmsac_vf_d, OP_UUU_D, H8, H8, fmsac64) GEN_VEXT_VF(vfmsac_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfmsac_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfmsac_vf_d, 8, 8, clearq) static uint16_t fnmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s) { return float16_muladd(a, b, d, float_muladd_negate_product, s); } static uint32_t fnmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s) { return float32_muladd(a, b, d, float_muladd_negate_product, s); } static uint64_t fnmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s) { return float64_muladd(a, b, d, float_muladd_negate_product, s); } RVVCALL(OPFVV3, vfnmsac_vv_h, OP_UUU_H, H2, H2, H2, fnmsac16) RVVCALL(OPFVV3, vfnmsac_vv_w, OP_UUU_W, H4, H4, H4, fnmsac32) RVVCALL(OPFVV3, vfnmsac_vv_d, OP_UUU_D, H8, H8, H8, fnmsac64) GEN_VEXT_VV_ENV(vfnmsac_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfnmsac_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfnmsac_vv_d, 8, 8, clearq) RVVCALL(OPFVF3, vfnmsac_vf_h, OP_UUU_H, H2, H2, fnmsac16) RVVCALL(OPFVF3, vfnmsac_vf_w, OP_UUU_W, H4, H4, fnmsac32) RVVCALL(OPFVF3, vfnmsac_vf_d, OP_UUU_D, H8, H8, fnmsac64) GEN_VEXT_VF(vfnmsac_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfnmsac_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfnmsac_vf_d, 8, 8, clearq) static uint16_t fmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s) { return float16_muladd(d, b, a, 0, s); } static uint32_t fmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s) { return float32_muladd(d, b, a, 0, s); } static uint64_t fmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s) { return float64_muladd(d, b, a, 0, s); } RVVCALL(OPFVV3, vfmadd_vv_h, OP_UUU_H, H2, H2, H2, fmadd16) RVVCALL(OPFVV3, vfmadd_vv_w, OP_UUU_W, H4, H4, H4, fmadd32) RVVCALL(OPFVV3, vfmadd_vv_d, OP_UUU_D, H8, H8, H8, fmadd64) GEN_VEXT_VV_ENV(vfmadd_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfmadd_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfmadd_vv_d, 8, 8, clearq) RVVCALL(OPFVF3, vfmadd_vf_h, OP_UUU_H, H2, H2, fmadd16) RVVCALL(OPFVF3, vfmadd_vf_w, OP_UUU_W, H4, H4, fmadd32) RVVCALL(OPFVF3, vfmadd_vf_d, OP_UUU_D, H8, H8, fmadd64) GEN_VEXT_VF(vfmadd_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfmadd_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfmadd_vf_d, 8, 8, clearq) static uint16_t fnmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s) { return float16_muladd(d, b, a, float_muladd_negate_c | float_muladd_negate_product, s); } static uint32_t fnmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s) { return float32_muladd(d, b, a, float_muladd_negate_c | float_muladd_negate_product, s); } static uint64_t fnmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s) { return float64_muladd(d, b, a, float_muladd_negate_c | float_muladd_negate_product, s); } RVVCALL(OPFVV3, vfnmadd_vv_h, OP_UUU_H, H2, H2, H2, fnmadd16) RVVCALL(OPFVV3, vfnmadd_vv_w, OP_UUU_W, H4, H4, H4, fnmadd32) RVVCALL(OPFVV3, vfnmadd_vv_d, OP_UUU_D, H8, H8, H8, fnmadd64) GEN_VEXT_VV_ENV(vfnmadd_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfnmadd_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfnmadd_vv_d, 8, 8, clearq) RVVCALL(OPFVF3, vfnmadd_vf_h, OP_UUU_H, H2, H2, fnmadd16) RVVCALL(OPFVF3, vfnmadd_vf_w, OP_UUU_W, H4, H4, fnmadd32) RVVCALL(OPFVF3, vfnmadd_vf_d, OP_UUU_D, H8, H8, fnmadd64) GEN_VEXT_VF(vfnmadd_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfnmadd_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfnmadd_vf_d, 8, 8, clearq) static uint16_t fmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s) { return float16_muladd(d, b, a, float_muladd_negate_c, s); } static uint32_t fmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s) { return float32_muladd(d, b, a, float_muladd_negate_c, s); } static uint64_t fmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s) { return float64_muladd(d, b, a, float_muladd_negate_c, s); } RVVCALL(OPFVV3, vfmsub_vv_h, OP_UUU_H, H2, H2, H2, fmsub16) RVVCALL(OPFVV3, vfmsub_vv_w, OP_UUU_W, H4, H4, H4, fmsub32) RVVCALL(OPFVV3, vfmsub_vv_d, OP_UUU_D, H8, H8, H8, fmsub64) GEN_VEXT_VV_ENV(vfmsub_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfmsub_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfmsub_vv_d, 8, 8, clearq) RVVCALL(OPFVF3, vfmsub_vf_h, OP_UUU_H, H2, H2, fmsub16) RVVCALL(OPFVF3, vfmsub_vf_w, OP_UUU_W, H4, H4, fmsub32) RVVCALL(OPFVF3, vfmsub_vf_d, OP_UUU_D, H8, H8, fmsub64) GEN_VEXT_VF(vfmsub_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfmsub_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfmsub_vf_d, 8, 8, clearq) static uint16_t fnmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s) { return float16_muladd(d, b, a, float_muladd_negate_product, s); } static uint32_t fnmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s) { return float32_muladd(d, b, a, float_muladd_negate_product, s); } static uint64_t fnmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s) { return float64_muladd(d, b, a, float_muladd_negate_product, s); } RVVCALL(OPFVV3, vfnmsub_vv_h, OP_UUU_H, H2, H2, H2, fnmsub16) RVVCALL(OPFVV3, vfnmsub_vv_w, OP_UUU_W, H4, H4, H4, fnmsub32) RVVCALL(OPFVV3, vfnmsub_vv_d, OP_UUU_D, H8, H8, H8, fnmsub64) GEN_VEXT_VV_ENV(vfnmsub_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfnmsub_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfnmsub_vv_d, 8, 8, clearq) RVVCALL(OPFVF3, vfnmsub_vf_h, OP_UUU_H, H2, H2, fnmsub16) RVVCALL(OPFVF3, vfnmsub_vf_w, OP_UUU_W, H4, H4, fnmsub32) RVVCALL(OPFVF3, vfnmsub_vf_d, OP_UUU_D, H8, H8, fnmsub64) GEN_VEXT_VF(vfnmsub_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfnmsub_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfnmsub_vf_d, 8, 8, clearq) /* Vector Widening Floating-Point Fused Multiply-Add Instructions */ static uint32_t fwmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s) { return float32_muladd(float16_to_float32(a, true, s), float16_to_float32(b, true, s), d, 0, s); } static uint64_t fwmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s) { return float64_muladd(float32_to_float64(a, s), float32_to_float64(b, s), d, 0, s); } RVVCALL(OPFVV3, vfwmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwmacc16) RVVCALL(OPFVV3, vfwmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwmacc32) GEN_VEXT_VV_ENV(vfwmacc_vv_h, 2, 4, clearl) GEN_VEXT_VV_ENV(vfwmacc_vv_w, 4, 8, clearq) RVVCALL(OPFVF3, vfwmacc_vf_h, WOP_UUU_H, H4, H2, fwmacc16) RVVCALL(OPFVF3, vfwmacc_vf_w, WOP_UUU_W, H8, H4, fwmacc32) GEN_VEXT_VF(vfwmacc_vf_h, 2, 4, clearl) GEN_VEXT_VF(vfwmacc_vf_w, 4, 8, clearq) static uint32_t fwnmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s) { return float32_muladd(float16_to_float32(a, true, s), float16_to_float32(b, true, s), d, float_muladd_negate_c | float_muladd_negate_product, s); } static uint64_t fwnmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s) { return float64_muladd(float32_to_float64(a, s), float32_to_float64(b, s), d, float_muladd_negate_c | float_muladd_negate_product, s); } RVVCALL(OPFVV3, vfwnmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwnmacc16) RVVCALL(OPFVV3, vfwnmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwnmacc32) GEN_VEXT_VV_ENV(vfwnmacc_vv_h, 2, 4, clearl) GEN_VEXT_VV_ENV(vfwnmacc_vv_w, 4, 8, clearq) RVVCALL(OPFVF3, vfwnmacc_vf_h, WOP_UUU_H, H4, H2, fwnmacc16) RVVCALL(OPFVF3, vfwnmacc_vf_w, WOP_UUU_W, H8, H4, fwnmacc32) GEN_VEXT_VF(vfwnmacc_vf_h, 2, 4, clearl) GEN_VEXT_VF(vfwnmacc_vf_w, 4, 8, clearq) static uint32_t fwmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s) { return float32_muladd(float16_to_float32(a, true, s), float16_to_float32(b, true, s), d, float_muladd_negate_c, s); } static uint64_t fwmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s) { return float64_muladd(float32_to_float64(a, s), float32_to_float64(b, s), d, float_muladd_negate_c, s); } RVVCALL(OPFVV3, vfwmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwmsac16) RVVCALL(OPFVV3, vfwmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwmsac32) GEN_VEXT_VV_ENV(vfwmsac_vv_h, 2, 4, clearl) GEN_VEXT_VV_ENV(vfwmsac_vv_w, 4, 8, clearq) RVVCALL(OPFVF3, vfwmsac_vf_h, WOP_UUU_H, H4, H2, fwmsac16) RVVCALL(OPFVF3, vfwmsac_vf_w, WOP_UUU_W, H8, H4, fwmsac32) GEN_VEXT_VF(vfwmsac_vf_h, 2, 4, clearl) GEN_VEXT_VF(vfwmsac_vf_w, 4, 8, clearq) static uint32_t fwnmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s) { return float32_muladd(float16_to_float32(a, true, s), float16_to_float32(b, true, s), d, float_muladd_negate_product, s); } static uint64_t fwnmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s) { return float64_muladd(float32_to_float64(a, s), float32_to_float64(b, s), d, float_muladd_negate_product, s); } RVVCALL(OPFVV3, vfwnmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwnmsac16) RVVCALL(OPFVV3, vfwnmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwnmsac32) GEN_VEXT_VV_ENV(vfwnmsac_vv_h, 2, 4, clearl) GEN_VEXT_VV_ENV(vfwnmsac_vv_w, 4, 8, clearq) RVVCALL(OPFVF3, vfwnmsac_vf_h, WOP_UUU_H, H4, H2, fwnmsac16) RVVCALL(OPFVF3, vfwnmsac_vf_w, WOP_UUU_W, H8, H4, fwnmsac32) GEN_VEXT_VF(vfwnmsac_vf_h, 2, 4, clearl) GEN_VEXT_VF(vfwnmsac_vf_w, 4, 8, clearq) /* Vector Floating-Point Square-Root Instruction */ /* (TD, T2, TX2) */ #define OP_UU_H uint16_t, uint16_t, uint16_t #define OP_UU_W uint32_t, uint32_t, uint32_t #define OP_UU_D uint64_t, uint64_t, uint64_t #define OPFVV1(NAME, TD, T2, TX2, HD, HS2, OP) \ static void do_##NAME(void *vd, void *vs2, int i, \ CPURISCVState *env) \ { \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ *((TD *)vd + HD(i)) = OP(s2, &env->fp_status); \ } #define GEN_VEXT_V_ENV(NAME, ESZ, DSZ, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t vlmax = vext_maxsz(desc) / ESZ; \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t i; \ \ if (vl == 0) { \ return; \ } \ for (i = 0; i < vl; i++) { \ if (!vm && !vext_elem_mask(v0, mlen, i)) { \ continue; \ } \ do_##NAME(vd, vs2, i, env); \ } \ CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \ } RVVCALL(OPFVV1, vfsqrt_v_h, OP_UU_H, H2, H2, float16_sqrt) RVVCALL(OPFVV1, vfsqrt_v_w, OP_UU_W, H4, H4, float32_sqrt) RVVCALL(OPFVV1, vfsqrt_v_d, OP_UU_D, H8, H8, float64_sqrt) GEN_VEXT_V_ENV(vfsqrt_v_h, 2, 2, clearh) GEN_VEXT_V_ENV(vfsqrt_v_w, 4, 4, clearl) GEN_VEXT_V_ENV(vfsqrt_v_d, 8, 8, clearq) /* Vector Floating-Point MIN/MAX Instructions */ RVVCALL(OPFVV2, vfmin_vv_h, OP_UUU_H, H2, H2, H2, float16_minnum) RVVCALL(OPFVV2, vfmin_vv_w, OP_UUU_W, H4, H4, H4, float32_minnum) RVVCALL(OPFVV2, vfmin_vv_d, OP_UUU_D, H8, H8, H8, float64_minnum) GEN_VEXT_VV_ENV(vfmin_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfmin_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfmin_vv_d, 8, 8, clearq) RVVCALL(OPFVF2, vfmin_vf_h, OP_UUU_H, H2, H2, float16_minnum) RVVCALL(OPFVF2, vfmin_vf_w, OP_UUU_W, H4, H4, float32_minnum) RVVCALL(OPFVF2, vfmin_vf_d, OP_UUU_D, H8, H8, float64_minnum) GEN_VEXT_VF(vfmin_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfmin_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfmin_vf_d, 8, 8, clearq) RVVCALL(OPFVV2, vfmax_vv_h, OP_UUU_H, H2, H2, H2, float16_maxnum) RVVCALL(OPFVV2, vfmax_vv_w, OP_UUU_W, H4, H4, H4, float32_maxnum) RVVCALL(OPFVV2, vfmax_vv_d, OP_UUU_D, H8, H8, H8, float64_maxnum) GEN_VEXT_VV_ENV(vfmax_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfmax_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfmax_vv_d, 8, 8, clearq) RVVCALL(OPFVF2, vfmax_vf_h, OP_UUU_H, H2, H2, float16_maxnum) RVVCALL(OPFVF2, vfmax_vf_w, OP_UUU_W, H4, H4, float32_maxnum) RVVCALL(OPFVF2, vfmax_vf_d, OP_UUU_D, H8, H8, float64_maxnum) GEN_VEXT_VF(vfmax_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfmax_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfmax_vf_d, 8, 8, clearq) /* Vector Floating-Point Sign-Injection Instructions */ static uint16_t fsgnj16(uint16_t a, uint16_t b, float_status *s) { return deposit64(b, 0, 15, a); } static uint32_t fsgnj32(uint32_t a, uint32_t b, float_status *s) { return deposit64(b, 0, 31, a); } static uint64_t fsgnj64(uint64_t a, uint64_t b, float_status *s) { return deposit64(b, 0, 63, a); } RVVCALL(OPFVV2, vfsgnj_vv_h, OP_UUU_H, H2, H2, H2, fsgnj16) RVVCALL(OPFVV2, vfsgnj_vv_w, OP_UUU_W, H4, H4, H4, fsgnj32) RVVCALL(OPFVV2, vfsgnj_vv_d, OP_UUU_D, H8, H8, H8, fsgnj64) GEN_VEXT_VV_ENV(vfsgnj_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfsgnj_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfsgnj_vv_d, 8, 8, clearq) RVVCALL(OPFVF2, vfsgnj_vf_h, OP_UUU_H, H2, H2, fsgnj16) RVVCALL(OPFVF2, vfsgnj_vf_w, OP_UUU_W, H4, H4, fsgnj32) RVVCALL(OPFVF2, vfsgnj_vf_d, OP_UUU_D, H8, H8, fsgnj64) GEN_VEXT_VF(vfsgnj_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfsgnj_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfsgnj_vf_d, 8, 8, clearq) static uint16_t fsgnjn16(uint16_t a, uint16_t b, float_status *s) { return deposit64(~b, 0, 15, a); } static uint32_t fsgnjn32(uint32_t a, uint32_t b, float_status *s) { return deposit64(~b, 0, 31, a); } static uint64_t fsgnjn64(uint64_t a, uint64_t b, float_status *s) { return deposit64(~b, 0, 63, a); } RVVCALL(OPFVV2, vfsgnjn_vv_h, OP_UUU_H, H2, H2, H2, fsgnjn16) RVVCALL(OPFVV2, vfsgnjn_vv_w, OP_UUU_W, H4, H4, H4, fsgnjn32) RVVCALL(OPFVV2, vfsgnjn_vv_d, OP_UUU_D, H8, H8, H8, fsgnjn64) GEN_VEXT_VV_ENV(vfsgnjn_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfsgnjn_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfsgnjn_vv_d, 8, 8, clearq) RVVCALL(OPFVF2, vfsgnjn_vf_h, OP_UUU_H, H2, H2, fsgnjn16) RVVCALL(OPFVF2, vfsgnjn_vf_w, OP_UUU_W, H4, H4, fsgnjn32) RVVCALL(OPFVF2, vfsgnjn_vf_d, OP_UUU_D, H8, H8, fsgnjn64) GEN_VEXT_VF(vfsgnjn_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfsgnjn_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfsgnjn_vf_d, 8, 8, clearq) static uint16_t fsgnjx16(uint16_t a, uint16_t b, float_status *s) { return deposit64(b ^ a, 0, 15, a); } static uint32_t fsgnjx32(uint32_t a, uint32_t b, float_status *s) { return deposit64(b ^ a, 0, 31, a); } static uint64_t fsgnjx64(uint64_t a, uint64_t b, float_status *s) { return deposit64(b ^ a, 0, 63, a); } RVVCALL(OPFVV2, vfsgnjx_vv_h, OP_UUU_H, H2, H2, H2, fsgnjx16) RVVCALL(OPFVV2, vfsgnjx_vv_w, OP_UUU_W, H4, H4, H4, fsgnjx32) RVVCALL(OPFVV2, vfsgnjx_vv_d, OP_UUU_D, H8, H8, H8, fsgnjx64) GEN_VEXT_VV_ENV(vfsgnjx_vv_h, 2, 2, clearh) GEN_VEXT_VV_ENV(vfsgnjx_vv_w, 4, 4, clearl) GEN_VEXT_VV_ENV(vfsgnjx_vv_d, 8, 8, clearq) RVVCALL(OPFVF2, vfsgnjx_vf_h, OP_UUU_H, H2, H2, fsgnjx16) RVVCALL(OPFVF2, vfsgnjx_vf_w, OP_UUU_W, H4, H4, fsgnjx32) RVVCALL(OPFVF2, vfsgnjx_vf_d, OP_UUU_D, H8, H8, fsgnjx64) GEN_VEXT_VF(vfsgnjx_vf_h, 2, 2, clearh) GEN_VEXT_VF(vfsgnjx_vf_w, 4, 4, clearl) GEN_VEXT_VF(vfsgnjx_vf_d, 8, 8, clearq) /* Vector Floating-Point Compare Instructions */ #define GEN_VEXT_CMP_VV_ENV(NAME, ETYPE, H, DO_OP) \ void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ if (!vm && !vext_elem_mask(v0, mlen, i)) { \ continue; \ } \ vext_set_elem_mask(vd, mlen, i, \ DO_OP(s2, s1, &env->fp_status)); \ } \ for (; i < vlmax; i++) { \ vext_set_elem_mask(vd, mlen, i, 0); \ } \ } static bool float16_eq_quiet(uint16_t a, uint16_t b, float_status *s) { FloatRelation compare = float16_compare_quiet(a, b, s); return compare == float_relation_equal; } GEN_VEXT_CMP_VV_ENV(vmfeq_vv_h, uint16_t, H2, float16_eq_quiet) GEN_VEXT_CMP_VV_ENV(vmfeq_vv_w, uint32_t, H4, float32_eq_quiet) GEN_VEXT_CMP_VV_ENV(vmfeq_vv_d, uint64_t, H8, float64_eq_quiet) #define GEN_VEXT_CMP_VF(NAME, ETYPE, H, DO_OP) \ void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ if (!vm && !vext_elem_mask(v0, mlen, i)) { \ continue; \ } \ vext_set_elem_mask(vd, mlen, i, \ DO_OP(s2, (ETYPE)s1, &env->fp_status)); \ } \ for (; i < vlmax; i++) { \ vext_set_elem_mask(vd, mlen, i, 0); \ } \ } GEN_VEXT_CMP_VF(vmfeq_vf_h, uint16_t, H2, float16_eq_quiet) GEN_VEXT_CMP_VF(vmfeq_vf_w, uint32_t, H4, float32_eq_quiet) GEN_VEXT_CMP_VF(vmfeq_vf_d, uint64_t, H8, float64_eq_quiet) static bool vmfne16(uint16_t a, uint16_t b, float_status *s) { FloatRelation compare = float16_compare_quiet(a, b, s); return compare != float_relation_equal; } static bool vmfne32(uint32_t a, uint32_t b, float_status *s) { FloatRelation compare = float32_compare_quiet(a, b, s); return compare != float_relation_equal; } static bool vmfne64(uint64_t a, uint64_t b, float_status *s) { FloatRelation compare = float64_compare_quiet(a, b, s); return compare != float_relation_equal; } GEN_VEXT_CMP_VV_ENV(vmfne_vv_h, uint16_t, H2, vmfne16) GEN_VEXT_CMP_VV_ENV(vmfne_vv_w, uint32_t, H4, vmfne32) GEN_VEXT_CMP_VV_ENV(vmfne_vv_d, uint64_t, H8, vmfne64) GEN_VEXT_CMP_VF(vmfne_vf_h, uint16_t, H2, vmfne16) GEN_VEXT_CMP_VF(vmfne_vf_w, uint32_t, H4, vmfne32) GEN_VEXT_CMP_VF(vmfne_vf_d, uint64_t, H8, vmfne64) static bool float16_lt(uint16_t a, uint16_t b, float_status *s) { FloatRelation compare = float16_compare(a, b, s); return compare == float_relation_less; } GEN_VEXT_CMP_VV_ENV(vmflt_vv_h, uint16_t, H2, float16_lt) GEN_VEXT_CMP_VV_ENV(vmflt_vv_w, uint32_t, H4, float32_lt) GEN_VEXT_CMP_VV_ENV(vmflt_vv_d, uint64_t, H8, float64_lt) GEN_VEXT_CMP_VF(vmflt_vf_h, uint16_t, H2, float16_lt) GEN_VEXT_CMP_VF(vmflt_vf_w, uint32_t, H4, float32_lt) GEN_VEXT_CMP_VF(vmflt_vf_d, uint64_t, H8, float64_lt) static bool float16_le(uint16_t a, uint16_t b, float_status *s) { FloatRelation compare = float16_compare(a, b, s); return compare == float_relation_less || compare == float_relation_equal; } GEN_VEXT_CMP_VV_ENV(vmfle_vv_h, uint16_t, H2, float16_le) GEN_VEXT_CMP_VV_ENV(vmfle_vv_w, uint32_t, H4, float32_le) GEN_VEXT_CMP_VV_ENV(vmfle_vv_d, uint64_t, H8, float64_le) GEN_VEXT_CMP_VF(vmfle_vf_h, uint16_t, H2, float16_le) GEN_VEXT_CMP_VF(vmfle_vf_w, uint32_t, H4, float32_le) GEN_VEXT_CMP_VF(vmfle_vf_d, uint64_t, H8, float64_le) static bool vmfgt16(uint16_t a, uint16_t b, float_status *s) { FloatRelation compare = float16_compare(a, b, s); return compare == float_relation_greater; } static bool vmfgt32(uint32_t a, uint32_t b, float_status *s) { FloatRelation compare = float32_compare(a, b, s); return compare == float_relation_greater; } static bool vmfgt64(uint64_t a, uint64_t b, float_status *s) { FloatRelation compare = float64_compare(a, b, s); return compare == float_relation_greater; } GEN_VEXT_CMP_VF(vmfgt_vf_h, uint16_t, H2, vmfgt16) GEN_VEXT_CMP_VF(vmfgt_vf_w, uint32_t, H4, vmfgt32) GEN_VEXT_CMP_VF(vmfgt_vf_d, uint64_t, H8, vmfgt64) static bool vmfge16(uint16_t a, uint16_t b, float_status *s) { FloatRelation compare = float16_compare(a, b, s); return compare == float_relation_greater || compare == float_relation_equal; } static bool vmfge32(uint32_t a, uint32_t b, float_status *s) { FloatRelation compare = float32_compare(a, b, s); return compare == float_relation_greater || compare == float_relation_equal; } static bool vmfge64(uint64_t a, uint64_t b, float_status *s) { FloatRelation compare = float64_compare(a, b, s); return compare == float_relation_greater || compare == float_relation_equal; } GEN_VEXT_CMP_VF(vmfge_vf_h, uint16_t, H2, vmfge16) GEN_VEXT_CMP_VF(vmfge_vf_w, uint32_t, H4, vmfge32) GEN_VEXT_CMP_VF(vmfge_vf_d, uint64_t, H8, vmfge64) static bool float16_unordered_quiet(uint16_t a, uint16_t b, float_status *s) { FloatRelation compare = float16_compare_quiet(a, b, s); return compare == float_relation_unordered; } GEN_VEXT_CMP_VV_ENV(vmford_vv_h, uint16_t, H2, !float16_unordered_quiet) GEN_VEXT_CMP_VV_ENV(vmford_vv_w, uint32_t, H4, !float32_unordered_quiet) GEN_VEXT_CMP_VV_ENV(vmford_vv_d, uint64_t, H8, !float64_unordered_quiet) GEN_VEXT_CMP_VF(vmford_vf_h, uint16_t, H2, !float16_unordered_quiet) GEN_VEXT_CMP_VF(vmford_vf_w, uint32_t, H4, !float32_unordered_quiet) GEN_VEXT_CMP_VF(vmford_vf_d, uint64_t, H8, !float64_unordered_quiet) /* Vector Floating-Point Classify Instruction */ #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP) \ static void do_##NAME(void *vd, void *vs2, int i) \ { \ TX2 s2 = *((T2 *)vs2 + HS2(i)); \ *((TD *)vd + HD(i)) = OP(s2); \ } #define GEN_VEXT_V(NAME, ESZ, DSZ, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t vlmax = vext_maxsz(desc) / ESZ; \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ if (!vm && !vext_elem_mask(v0, mlen, i)) { \ continue; \ } \ do_##NAME(vd, vs2, i); \ } \ CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \ } target_ulong fclass_h(uint64_t frs1) { float16 f = frs1; bool sign = float16_is_neg(f); if (float16_is_infinity(f)) { return sign ? 1 << 0 : 1 << 7; } else if (float16_is_zero(f)) { return sign ? 1 << 3 : 1 << 4; } else if (float16_is_zero_or_denormal(f)) { return sign ? 1 << 2 : 1 << 5; } else if (float16_is_any_nan(f)) { float_status s = { }; /* for snan_bit_is_one */ return float16_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8; } else { return sign ? 1 << 1 : 1 << 6; } } target_ulong fclass_s(uint64_t frs1) { float32 f = frs1; bool sign = float32_is_neg(f); if (float32_is_infinity(f)) { return sign ? 1 << 0 : 1 << 7; } else if (float32_is_zero(f)) { return sign ? 1 << 3 : 1 << 4; } else if (float32_is_zero_or_denormal(f)) { return sign ? 1 << 2 : 1 << 5; } else if (float32_is_any_nan(f)) { float_status s = { }; /* for snan_bit_is_one */ return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8; } else { return sign ? 1 << 1 : 1 << 6; } } target_ulong fclass_d(uint64_t frs1) { float64 f = frs1; bool sign = float64_is_neg(f); if (float64_is_infinity(f)) { return sign ? 1 << 0 : 1 << 7; } else if (float64_is_zero(f)) { return sign ? 1 << 3 : 1 << 4; } else if (float64_is_zero_or_denormal(f)) { return sign ? 1 << 2 : 1 << 5; } else if (float64_is_any_nan(f)) { float_status s = { }; /* for snan_bit_is_one */ return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8; } else { return sign ? 1 << 1 : 1 << 6; } } RVVCALL(OPIVV1, vfclass_v_h, OP_UU_H, H2, H2, fclass_h) RVVCALL(OPIVV1, vfclass_v_w, OP_UU_W, H4, H4, fclass_s) RVVCALL(OPIVV1, vfclass_v_d, OP_UU_D, H8, H8, fclass_d) GEN_VEXT_V(vfclass_v_h, 2, 2, clearh) GEN_VEXT_V(vfclass_v_w, 4, 4, clearl) GEN_VEXT_V(vfclass_v_d, 8, 8, clearq) /* Vector Floating-Point Merge Instruction */ #define GEN_VFMERGE_VF(NAME, ETYPE, H, CLEAR_FN) \ void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \ CPURISCVState *env, uint32_t desc) \ { \ uint32_t mlen = vext_mlen(desc); \ uint32_t vm = vext_vm(desc); \ uint32_t vl = env->vl; \ uint32_t esz = sizeof(ETYPE); \ uint32_t vlmax = vext_maxsz(desc) / esz; \ uint32_t i; \ \ for (i = 0; i < vl; i++) { \ ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ *((ETYPE *)vd + H(i)) \ = (!vm && !vext_elem_mask(v0, mlen, i) ? s2 : s1); \ } \ CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ } GEN_VFMERGE_VF(vfmerge_vfm_h, int16_t, H2, clearh) GEN_VFMERGE_VF(vfmerge_vfm_w, int32_t, H4, clearl) GEN_VFMERGE_VF(vfmerge_vfm_d, int64_t, H8, clearq)