/*
* RISC-V implementation of KVM hooks
*
* Copyright (c) 2020 Huawei Technologies Co., Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see .
*/
#include "qemu/osdep.h"
#include
#include
#include
#include "qemu/timer.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qapi/visitor.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "cpu.h"
#include "trace.h"
#include "hw/core/accel-cpu.h"
#include "hw/pci/pci.h"
#include "exec/memattrs.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "hw/intc/riscv_imsic.h"
#include "qemu/log.h"
#include "hw/loader.h"
#include "kvm_riscv.h"
#include "sbi_ecall_interface.h"
#include "chardev/char-fe.h"
#include "migration/misc.h"
#include "sysemu/runstate.h"
#include "hw/riscv/numa.h"
#define PR_RISCV_V_SET_CONTROL 69
#define PR_RISCV_V_VSTATE_CTRL_ON 2
void riscv_kvm_aplic_request(void *opaque, int irq, int level)
{
kvm_set_irq(kvm_state, irq, !!level);
}
static bool cap_has_mp_state;
static uint64_t kvm_riscv_reg_id_ulong(CPURISCVState *env, uint64_t type,
uint64_t idx)
{
uint64_t id = KVM_REG_RISCV | type | idx;
switch (riscv_cpu_mxl(env)) {
case MXL_RV32:
id |= KVM_REG_SIZE_U32;
break;
case MXL_RV64:
id |= KVM_REG_SIZE_U64;
break;
default:
g_assert_not_reached();
}
return id;
}
static uint64_t kvm_riscv_reg_id_u32(uint64_t type, uint64_t idx)
{
return KVM_REG_RISCV | KVM_REG_SIZE_U32 | type | idx;
}
static uint64_t kvm_riscv_reg_id_u64(uint64_t type, uint64_t idx)
{
return KVM_REG_RISCV | KVM_REG_SIZE_U64 | type | idx;
}
static uint64_t kvm_encode_reg_size_id(uint64_t id, size_t size_b)
{
uint64_t size_ctz = __builtin_ctz(size_b);
return id | (size_ctz << KVM_REG_SIZE_SHIFT);
}
static uint64_t kvm_riscv_vector_reg_id(RISCVCPU *cpu,
uint64_t idx)
{
uint64_t id;
size_t size_b;
g_assert(idx < 32);
id = KVM_REG_RISCV | KVM_REG_RISCV_VECTOR | KVM_REG_RISCV_VECTOR_REG(idx);
size_b = cpu->cfg.vlenb;
return kvm_encode_reg_size_id(id, size_b);
}
#define RISCV_CORE_REG(env, name) \
kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, \
KVM_REG_RISCV_CORE_REG(name))
#define RISCV_CSR_REG(env, name) \
kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CSR, \
KVM_REG_RISCV_CSR_REG(name))
#define RISCV_CONFIG_REG(env, name) \
kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, \
KVM_REG_RISCV_CONFIG_REG(name))
#define RISCV_TIMER_REG(name) kvm_riscv_reg_id_u64(KVM_REG_RISCV_TIMER, \
KVM_REG_RISCV_TIMER_REG(name))
#define RISCV_FP_F_REG(idx) kvm_riscv_reg_id_u32(KVM_REG_RISCV_FP_F, idx)
#define RISCV_FP_D_REG(idx) kvm_riscv_reg_id_u64(KVM_REG_RISCV_FP_D, idx)
#define RISCV_VECTOR_CSR_REG(env, name) \
kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_VECTOR, \
KVM_REG_RISCV_VECTOR_CSR_REG(name))
#define KVM_RISCV_GET_CSR(cs, env, csr, reg) \
do { \
int _ret = kvm_get_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \
if (_ret) { \
return _ret; \
} \
} while (0)
#define KVM_RISCV_SET_CSR(cs, env, csr, reg) \
do { \
int _ret = kvm_set_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \
if (_ret) { \
return _ret; \
} \
} while (0)
#define KVM_RISCV_GET_TIMER(cs, name, reg) \
do { \
int ret = kvm_get_one_reg(cs, RISCV_TIMER_REG(name), ®); \
if (ret) { \
abort(); \
} \
} while (0)
#define KVM_RISCV_SET_TIMER(cs, name, reg) \
do { \
int ret = kvm_set_one_reg(cs, RISCV_TIMER_REG(name), ®); \
if (ret) { \
abort(); \
} \
} while (0)
typedef struct KVMCPUConfig {
const char *name;
const char *description;
target_ulong offset;
uint64_t kvm_reg_id;
bool user_set;
bool supported;
} KVMCPUConfig;
#define KVM_MISA_CFG(_bit, _reg_id) \
{.offset = _bit, .kvm_reg_id = _reg_id}
/* KVM ISA extensions */
static KVMCPUConfig kvm_misa_ext_cfgs[] = {
KVM_MISA_CFG(RVA, KVM_RISCV_ISA_EXT_A),
KVM_MISA_CFG(RVC, KVM_RISCV_ISA_EXT_C),
KVM_MISA_CFG(RVD, KVM_RISCV_ISA_EXT_D),
KVM_MISA_CFG(RVF, KVM_RISCV_ISA_EXT_F),
KVM_MISA_CFG(RVH, KVM_RISCV_ISA_EXT_H),
KVM_MISA_CFG(RVI, KVM_RISCV_ISA_EXT_I),
KVM_MISA_CFG(RVM, KVM_RISCV_ISA_EXT_M),
KVM_MISA_CFG(RVV, KVM_RISCV_ISA_EXT_V),
};
static void kvm_cpu_get_misa_ext_cfg(Object *obj, Visitor *v,
const char *name,
void *opaque, Error **errp)
{
KVMCPUConfig *misa_ext_cfg = opaque;
target_ulong misa_bit = misa_ext_cfg->offset;
RISCVCPU *cpu = RISCV_CPU(obj);
CPURISCVState *env = &cpu->env;
bool value = env->misa_ext_mask & misa_bit;
visit_type_bool(v, name, &value, errp);
}
static void kvm_cpu_set_misa_ext_cfg(Object *obj, Visitor *v,
const char *name,
void *opaque, Error **errp)
{
KVMCPUConfig *misa_ext_cfg = opaque;
target_ulong misa_bit = misa_ext_cfg->offset;
RISCVCPU *cpu = RISCV_CPU(obj);
CPURISCVState *env = &cpu->env;
bool value, host_bit;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
host_bit = env->misa_ext_mask & misa_bit;
if (value == host_bit) {
return;
}
if (!value) {
misa_ext_cfg->user_set = true;
return;
}
/*
* Forbid users to enable extensions that aren't
* available in the hart.
*/
error_setg(errp, "Enabling MISA bit '%s' is not allowed: it's not "
"enabled in the host", misa_ext_cfg->name);
}
static void kvm_riscv_update_cpu_misa_ext(RISCVCPU *cpu, CPUState *cs)
{
CPURISCVState *env = &cpu->env;
uint64_t id, reg;
int i, ret;
for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
target_ulong misa_bit = misa_cfg->offset;
if (!misa_cfg->user_set) {
continue;
}
/* If we're here we're going to disable the MISA bit */
reg = 0;
id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
misa_cfg->kvm_reg_id);
ret = kvm_set_one_reg(cs, id, ®);
if (ret != 0) {
/*
* We're not checking for -EINVAL because if the bit is about
* to be disabled, it means that it was already enabled by
* KVM. We determined that by fetching the 'isa' register
* during init() time. Any error at this point is worth
* aborting.
*/
error_report("Unable to set KVM reg %s, error %d",
misa_cfg->name, ret);
exit(EXIT_FAILURE);
}
env->misa_ext &= ~misa_bit;
}
}
#define KVM_EXT_CFG(_name, _prop, _reg_id) \
{.name = _name, .offset = CPU_CFG_OFFSET(_prop), \
.kvm_reg_id = _reg_id}
static KVMCPUConfig kvm_multi_ext_cfgs[] = {
KVM_EXT_CFG("zicbom", ext_zicbom, KVM_RISCV_ISA_EXT_ZICBOM),
KVM_EXT_CFG("zicboz", ext_zicboz, KVM_RISCV_ISA_EXT_ZICBOZ),
KVM_EXT_CFG("zicntr", ext_zicntr, KVM_RISCV_ISA_EXT_ZICNTR),
KVM_EXT_CFG("zicond", ext_zicond, KVM_RISCV_ISA_EXT_ZICOND),
KVM_EXT_CFG("zicsr", ext_zicsr, KVM_RISCV_ISA_EXT_ZICSR),
KVM_EXT_CFG("zifencei", ext_zifencei, KVM_RISCV_ISA_EXT_ZIFENCEI),
KVM_EXT_CFG("zihintntl", ext_zihintntl, KVM_RISCV_ISA_EXT_ZIHINTNTL),
KVM_EXT_CFG("zihintpause", ext_zihintpause, KVM_RISCV_ISA_EXT_ZIHINTPAUSE),
KVM_EXT_CFG("zihpm", ext_zihpm, KVM_RISCV_ISA_EXT_ZIHPM),
KVM_EXT_CFG("zfa", ext_zfa, KVM_RISCV_ISA_EXT_ZFA),
KVM_EXT_CFG("zfh", ext_zfh, KVM_RISCV_ISA_EXT_ZFH),
KVM_EXT_CFG("zfhmin", ext_zfhmin, KVM_RISCV_ISA_EXT_ZFHMIN),
KVM_EXT_CFG("zba", ext_zba, KVM_RISCV_ISA_EXT_ZBA),
KVM_EXT_CFG("zbb", ext_zbb, KVM_RISCV_ISA_EXT_ZBB),
KVM_EXT_CFG("zbc", ext_zbc, KVM_RISCV_ISA_EXT_ZBC),
KVM_EXT_CFG("zbkb", ext_zbkb, KVM_RISCV_ISA_EXT_ZBKB),
KVM_EXT_CFG("zbkc", ext_zbkc, KVM_RISCV_ISA_EXT_ZBKC),
KVM_EXT_CFG("zbkx", ext_zbkx, KVM_RISCV_ISA_EXT_ZBKX),
KVM_EXT_CFG("zbs", ext_zbs, KVM_RISCV_ISA_EXT_ZBS),
KVM_EXT_CFG("zknd", ext_zknd, KVM_RISCV_ISA_EXT_ZKND),
KVM_EXT_CFG("zkne", ext_zkne, KVM_RISCV_ISA_EXT_ZKNE),
KVM_EXT_CFG("zknh", ext_zknh, KVM_RISCV_ISA_EXT_ZKNH),
KVM_EXT_CFG("zkr", ext_zkr, KVM_RISCV_ISA_EXT_ZKR),
KVM_EXT_CFG("zksed", ext_zksed, KVM_RISCV_ISA_EXT_ZKSED),
KVM_EXT_CFG("zksh", ext_zksh, KVM_RISCV_ISA_EXT_ZKSH),
KVM_EXT_CFG("zkt", ext_zkt, KVM_RISCV_ISA_EXT_ZKT),
KVM_EXT_CFG("zvbb", ext_zvbb, KVM_RISCV_ISA_EXT_ZVBB),
KVM_EXT_CFG("zvbc", ext_zvbc, KVM_RISCV_ISA_EXT_ZVBC),
KVM_EXT_CFG("zvfh", ext_zvfh, KVM_RISCV_ISA_EXT_ZVFH),
KVM_EXT_CFG("zvfhmin", ext_zvfhmin, KVM_RISCV_ISA_EXT_ZVFHMIN),
KVM_EXT_CFG("zvkb", ext_zvkb, KVM_RISCV_ISA_EXT_ZVKB),
KVM_EXT_CFG("zvkg", ext_zvkg, KVM_RISCV_ISA_EXT_ZVKG),
KVM_EXT_CFG("zvkned", ext_zvkned, KVM_RISCV_ISA_EXT_ZVKNED),
KVM_EXT_CFG("zvknha", ext_zvknha, KVM_RISCV_ISA_EXT_ZVKNHA),
KVM_EXT_CFG("zvknhb", ext_zvknhb, KVM_RISCV_ISA_EXT_ZVKNHB),
KVM_EXT_CFG("zvksed", ext_zvksed, KVM_RISCV_ISA_EXT_ZVKSED),
KVM_EXT_CFG("zvksh", ext_zvksh, KVM_RISCV_ISA_EXT_ZVKSH),
KVM_EXT_CFG("zvkt", ext_zvkt, KVM_RISCV_ISA_EXT_ZVKT),
KVM_EXT_CFG("smstateen", ext_smstateen, KVM_RISCV_ISA_EXT_SMSTATEEN),
KVM_EXT_CFG("ssaia", ext_ssaia, KVM_RISCV_ISA_EXT_SSAIA),
KVM_EXT_CFG("sstc", ext_sstc, KVM_RISCV_ISA_EXT_SSTC),
KVM_EXT_CFG("svinval", ext_svinval, KVM_RISCV_ISA_EXT_SVINVAL),
KVM_EXT_CFG("svnapot", ext_svnapot, KVM_RISCV_ISA_EXT_SVNAPOT),
KVM_EXT_CFG("svpbmt", ext_svpbmt, KVM_RISCV_ISA_EXT_SVPBMT),
};
static void *kvmconfig_get_cfg_addr(RISCVCPU *cpu, KVMCPUConfig *kvmcfg)
{
return (void *)&cpu->cfg + kvmcfg->offset;
}
static void kvm_cpu_cfg_set(RISCVCPU *cpu, KVMCPUConfig *multi_ext,
uint32_t val)
{
bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
*ext_enabled = val;
}
static uint32_t kvm_cpu_cfg_get(RISCVCPU *cpu,
KVMCPUConfig *multi_ext)
{
bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
return *ext_enabled;
}
static void kvm_cpu_get_multi_ext_cfg(Object *obj, Visitor *v,
const char *name,
void *opaque, Error **errp)
{
KVMCPUConfig *multi_ext_cfg = opaque;
RISCVCPU *cpu = RISCV_CPU(obj);
bool value = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
visit_type_bool(v, name, &value, errp);
}
static void kvm_cpu_set_multi_ext_cfg(Object *obj, Visitor *v,
const char *name,
void *opaque, Error **errp)
{
KVMCPUConfig *multi_ext_cfg = opaque;
RISCVCPU *cpu = RISCV_CPU(obj);
bool value, host_val;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
host_val = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
/*
* Ignore if the user is setting the same value
* as the host.
*/
if (value == host_val) {
return;
}
if (!multi_ext_cfg->supported) {
/*
* Error out if the user is trying to enable an
* extension that KVM doesn't support. Ignore
* option otherwise.
*/
if (value) {
error_setg(errp, "KVM does not support disabling extension %s",
multi_ext_cfg->name);
}
return;
}
multi_ext_cfg->user_set = true;
kvm_cpu_cfg_set(cpu, multi_ext_cfg, value);
}
static KVMCPUConfig kvm_cbom_blocksize = {
.name = "cbom_blocksize",
.offset = CPU_CFG_OFFSET(cbom_blocksize),
.kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicbom_block_size)
};
static KVMCPUConfig kvm_cboz_blocksize = {
.name = "cboz_blocksize",
.offset = CPU_CFG_OFFSET(cboz_blocksize),
.kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicboz_block_size)
};
static KVMCPUConfig kvm_v_vlenb = {
.name = "vlenb",
.offset = CPU_CFG_OFFSET(vlenb),
.kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_VECTOR |
KVM_REG_RISCV_VECTOR_CSR_REG(vlenb)
};
static KVMCPUConfig kvm_sbi_dbcn = {
.name = "sbi_dbcn",
.kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 |
KVM_REG_RISCV_SBI_EXT | KVM_RISCV_SBI_EXT_DBCN
};
static void kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU *cpu, CPUState *cs)
{
CPURISCVState *env = &cpu->env;
uint64_t id, reg;
int i, ret;
for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
if (!multi_ext_cfg->user_set) {
continue;
}
id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
multi_ext_cfg->kvm_reg_id);
reg = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
ret = kvm_set_one_reg(cs, id, ®);
if (ret != 0) {
if (!reg && ret == -EINVAL) {
warn_report("KVM cannot disable extension %s",
multi_ext_cfg->name);
} else {
error_report("Unable to enable extension %s in KVM, error %d",
multi_ext_cfg->name, ret);
exit(EXIT_FAILURE);
}
}
}
}
static void cpu_get_cfg_unavailable(Object *obj, Visitor *v,
const char *name,
void *opaque, Error **errp)
{
bool value = false;
visit_type_bool(v, name, &value, errp);
}
static void cpu_set_cfg_unavailable(Object *obj, Visitor *v,
const char *name,
void *opaque, Error **errp)
{
const char *propname = opaque;
bool value;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
if (value) {
error_setg(errp, "'%s' is not available with KVM",
propname);
}
}
static void riscv_cpu_add_kvm_unavail_prop(Object *obj, const char *prop_name)
{
/* Check if KVM created the property already */
if (object_property_find(obj, prop_name)) {
return;
}
/*
* Set the default to disabled for every extension
* unknown to KVM and error out if the user attempts
* to enable any of them.
*/
object_property_add(obj, prop_name, "bool",
cpu_get_cfg_unavailable,
cpu_set_cfg_unavailable,
NULL, (void *)prop_name);
}
static void riscv_cpu_add_kvm_unavail_prop_array(Object *obj,
const RISCVCPUMultiExtConfig *array)
{
const RISCVCPUMultiExtConfig *prop;
g_assert(array);
for (prop = array; prop && prop->name; prop++) {
riscv_cpu_add_kvm_unavail_prop(obj, prop->name);
}
}
static void kvm_riscv_add_cpu_user_properties(Object *cpu_obj)
{
int i;
riscv_add_satp_mode_properties(cpu_obj);
for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
int bit = misa_cfg->offset;
misa_cfg->name = riscv_get_misa_ext_name(bit);
misa_cfg->description = riscv_get_misa_ext_description(bit);
object_property_add(cpu_obj, misa_cfg->name, "bool",
kvm_cpu_get_misa_ext_cfg,
kvm_cpu_set_misa_ext_cfg,
NULL, misa_cfg);
object_property_set_description(cpu_obj, misa_cfg->name,
misa_cfg->description);
}
for (i = 0; misa_bits[i] != 0; i++) {
const char *ext_name = riscv_get_misa_ext_name(misa_bits[i]);
riscv_cpu_add_kvm_unavail_prop(cpu_obj, ext_name);
}
for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
KVMCPUConfig *multi_cfg = &kvm_multi_ext_cfgs[i];
object_property_add(cpu_obj, multi_cfg->name, "bool",
kvm_cpu_get_multi_ext_cfg,
kvm_cpu_set_multi_ext_cfg,
NULL, multi_cfg);
}
riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_extensions);
riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_vendor_exts);
riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_experimental_exts);
/* We don't have the needed KVM support for profiles */
for (i = 0; riscv_profiles[i] != NULL; i++) {
riscv_cpu_add_kvm_unavail_prop(cpu_obj, riscv_profiles[i]->name);
}
}
static int kvm_riscv_get_regs_core(CPUState *cs)
{
int ret = 0;
int i;
target_ulong reg;
CPURISCVState *env = &RISCV_CPU(cs)->env;
ret = kvm_get_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®);
if (ret) {
return ret;
}
env->pc = reg;
for (i = 1; i < 32; i++) {
uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i);
ret = kvm_get_one_reg(cs, id, ®);
if (ret) {
return ret;
}
env->gpr[i] = reg;
}
return ret;
}
static int kvm_riscv_put_regs_core(CPUState *cs)
{
int ret = 0;
int i;
target_ulong reg;
CPURISCVState *env = &RISCV_CPU(cs)->env;
reg = env->pc;
ret = kvm_set_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®);
if (ret) {
return ret;
}
for (i = 1; i < 32; i++) {
uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i);
reg = env->gpr[i];
ret = kvm_set_one_reg(cs, id, ®);
if (ret) {
return ret;
}
}
return ret;
}
static int kvm_riscv_get_regs_csr(CPUState *cs)
{
CPURISCVState *env = &RISCV_CPU(cs)->env;
KVM_RISCV_GET_CSR(cs, env, sstatus, env->mstatus);
KVM_RISCV_GET_CSR(cs, env, sie, env->mie);
KVM_RISCV_GET_CSR(cs, env, stvec, env->stvec);
KVM_RISCV_GET_CSR(cs, env, sscratch, env->sscratch);
KVM_RISCV_GET_CSR(cs, env, sepc, env->sepc);
KVM_RISCV_GET_CSR(cs, env, scause, env->scause);
KVM_RISCV_GET_CSR(cs, env, stval, env->stval);
KVM_RISCV_GET_CSR(cs, env, sip, env->mip);
KVM_RISCV_GET_CSR(cs, env, satp, env->satp);
return 0;
}
static int kvm_riscv_put_regs_csr(CPUState *cs)
{
CPURISCVState *env = &RISCV_CPU(cs)->env;
KVM_RISCV_SET_CSR(cs, env, sstatus, env->mstatus);
KVM_RISCV_SET_CSR(cs, env, sie, env->mie);
KVM_RISCV_SET_CSR(cs, env, stvec, env->stvec);
KVM_RISCV_SET_CSR(cs, env, sscratch, env->sscratch);
KVM_RISCV_SET_CSR(cs, env, sepc, env->sepc);
KVM_RISCV_SET_CSR(cs, env, scause, env->scause);
KVM_RISCV_SET_CSR(cs, env, stval, env->stval);
KVM_RISCV_SET_CSR(cs, env, sip, env->mip);
KVM_RISCV_SET_CSR(cs, env, satp, env->satp);
return 0;
}
static int kvm_riscv_get_regs_fp(CPUState *cs)
{
int ret = 0;
int i;
CPURISCVState *env = &RISCV_CPU(cs)->env;
if (riscv_has_ext(env, RVD)) {
uint64_t reg;
for (i = 0; i < 32; i++) {
ret = kvm_get_one_reg(cs, RISCV_FP_D_REG(i), ®);
if (ret) {
return ret;
}
env->fpr[i] = reg;
}
return ret;
}
if (riscv_has_ext(env, RVF)) {
uint32_t reg;
for (i = 0; i < 32; i++) {
ret = kvm_get_one_reg(cs, RISCV_FP_F_REG(i), ®);
if (ret) {
return ret;
}
env->fpr[i] = reg;
}
return ret;
}
return ret;
}
static int kvm_riscv_put_regs_fp(CPUState *cs)
{
int ret = 0;
int i;
CPURISCVState *env = &RISCV_CPU(cs)->env;
if (riscv_has_ext(env, RVD)) {
uint64_t reg;
for (i = 0; i < 32; i++) {
reg = env->fpr[i];
ret = kvm_set_one_reg(cs, RISCV_FP_D_REG(i), ®);
if (ret) {
return ret;
}
}
return ret;
}
if (riscv_has_ext(env, RVF)) {
uint32_t reg;
for (i = 0; i < 32; i++) {
reg = env->fpr[i];
ret = kvm_set_one_reg(cs, RISCV_FP_F_REG(i), ®);
if (ret) {
return ret;
}
}
return ret;
}
return ret;
}
static void kvm_riscv_get_regs_timer(CPUState *cs)
{
CPURISCVState *env = &RISCV_CPU(cs)->env;
if (env->kvm_timer_dirty) {
return;
}
KVM_RISCV_GET_TIMER(cs, time, env->kvm_timer_time);
KVM_RISCV_GET_TIMER(cs, compare, env->kvm_timer_compare);
KVM_RISCV_GET_TIMER(cs, state, env->kvm_timer_state);
KVM_RISCV_GET_TIMER(cs, frequency, env->kvm_timer_frequency);
env->kvm_timer_dirty = true;
}
static void kvm_riscv_put_regs_timer(CPUState *cs)
{
uint64_t reg;
CPURISCVState *env = &RISCV_CPU(cs)->env;
if (!env->kvm_timer_dirty) {
return;
}
KVM_RISCV_SET_TIMER(cs, time, env->kvm_timer_time);
KVM_RISCV_SET_TIMER(cs, compare, env->kvm_timer_compare);
/*
* To set register of RISCV_TIMER_REG(state) will occur a error from KVM
* on env->kvm_timer_state == 0, It's better to adapt in KVM, but it
* doesn't matter that adaping in QEMU now.
* TODO If KVM changes, adapt here.
*/
if (env->kvm_timer_state) {
KVM_RISCV_SET_TIMER(cs, state, env->kvm_timer_state);
}
/*
* For now, migration will not work between Hosts with different timer
* frequency. Therefore, we should check whether they are the same here
* during the migration.
*/
if (migration_is_running()) {
KVM_RISCV_GET_TIMER(cs, frequency, reg);
if (reg != env->kvm_timer_frequency) {
error_report("Dst Hosts timer frequency != Src Hosts");
}
}
env->kvm_timer_dirty = false;
}
uint64_t kvm_riscv_get_timebase_frequency(CPUState *cs)
{
uint64_t reg;
KVM_RISCV_GET_TIMER(cs, frequency, reg);
return reg;
}
static int kvm_riscv_get_regs_vector(CPUState *cs)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
target_ulong reg;
uint64_t vreg_id;
int vreg_idx, ret = 0;
if (!riscv_has_ext(env, RVV)) {
return 0;
}
ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®);
if (ret) {
return ret;
}
env->vstart = reg;
ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®);
if (ret) {
return ret;
}
env->vl = reg;
ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®);
if (ret) {
return ret;
}
env->vtype = reg;
if (kvm_v_vlenb.supported) {
ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®);
if (ret) {
return ret;
}
cpu->cfg.vlenb = reg;
for (int i = 0; i < 32; i++) {
/*
* vreg[] is statically allocated using RV_VLEN_MAX.
* Use it instead of vlenb to calculate vreg_idx for
* simplicity.
*/
vreg_idx = i * RV_VLEN_MAX / 64;
vreg_id = kvm_riscv_vector_reg_id(cpu, i);
ret = kvm_get_one_reg(cs, vreg_id, &env->vreg[vreg_idx]);
if (ret) {
return ret;
}
}
}
return 0;
}
static int kvm_riscv_put_regs_vector(CPUState *cs)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
target_ulong reg;
uint64_t vreg_id;
int vreg_idx, ret = 0;
if (!riscv_has_ext(env, RVV)) {
return 0;
}
reg = env->vstart;
ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®);
if (ret) {
return ret;
}
reg = env->vl;
ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®);
if (ret) {
return ret;
}
reg = env->vtype;
ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®);
if (ret) {
return ret;
}
if (kvm_v_vlenb.supported) {
reg = cpu->cfg.vlenb;
ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®);
for (int i = 0; i < 32; i++) {
/*
* vreg[] is statically allocated using RV_VLEN_MAX.
* Use it instead of vlenb to calculate vreg_idx for
* simplicity.
*/
vreg_idx = i * RV_VLEN_MAX / 64;
vreg_id = kvm_riscv_vector_reg_id(cpu, i);
ret = kvm_set_one_reg(cs, vreg_id, &env->vreg[vreg_idx]);
if (ret) {
return ret;
}
}
}
return ret;
}
typedef struct KVMScratchCPU {
int kvmfd;
int vmfd;
int cpufd;
} KVMScratchCPU;
/*
* Heavily inspired by kvm_arm_create_scratch_host_vcpu()
* from target/arm/kvm.c.
*/
static bool kvm_riscv_create_scratch_vcpu(KVMScratchCPU *scratch)
{
int kvmfd = -1, vmfd = -1, cpufd = -1;
kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
if (kvmfd < 0) {
goto err;
}
do {
vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
} while (vmfd == -1 && errno == EINTR);
if (vmfd < 0) {
goto err;
}
cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
if (cpufd < 0) {
goto err;
}
scratch->kvmfd = kvmfd;
scratch->vmfd = vmfd;
scratch->cpufd = cpufd;
return true;
err:
if (cpufd >= 0) {
close(cpufd);
}
if (vmfd >= 0) {
close(vmfd);
}
if (kvmfd >= 0) {
close(kvmfd);
}
return false;
}
static void kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU *scratch)
{
close(scratch->cpufd);
close(scratch->vmfd);
close(scratch->kvmfd);
}
static void kvm_riscv_init_machine_ids(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
{
CPURISCVState *env = &cpu->env;
struct kvm_one_reg reg;
int ret;
reg.id = RISCV_CONFIG_REG(env, mvendorid);
reg.addr = (uint64_t)&cpu->cfg.mvendorid;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
if (ret != 0) {
error_report("Unable to retrieve mvendorid from host, error %d", ret);
}
reg.id = RISCV_CONFIG_REG(env, marchid);
reg.addr = (uint64_t)&cpu->cfg.marchid;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
if (ret != 0) {
error_report("Unable to retrieve marchid from host, error %d", ret);
}
reg.id = RISCV_CONFIG_REG(env, mimpid);
reg.addr = (uint64_t)&cpu->cfg.mimpid;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
if (ret != 0) {
error_report("Unable to retrieve mimpid from host, error %d", ret);
}
}
static void kvm_riscv_init_misa_ext_mask(RISCVCPU *cpu,
KVMScratchCPU *kvmcpu)
{
CPURISCVState *env = &cpu->env;
struct kvm_one_reg reg;
int ret;
reg.id = RISCV_CONFIG_REG(env, isa);
reg.addr = (uint64_t)&env->misa_ext_mask;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
if (ret) {
error_report("Unable to fetch ISA register from KVM, "
"error %d", ret);
kvm_riscv_destroy_scratch_vcpu(kvmcpu);
exit(EXIT_FAILURE);
}
env->misa_ext = env->misa_ext_mask;
}
static void kvm_riscv_read_cbomz_blksize(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
KVMCPUConfig *cbomz_cfg)
{
CPURISCVState *env = &cpu->env;
struct kvm_one_reg reg;
int ret;
reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
cbomz_cfg->kvm_reg_id);
reg.addr = (uint64_t)kvmconfig_get_cfg_addr(cpu, cbomz_cfg);
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
if (ret != 0) {
error_report("Unable to read KVM reg %s, error %d",
cbomz_cfg->name, ret);
exit(EXIT_FAILURE);
}
}
static void kvm_riscv_read_multiext_legacy(RISCVCPU *cpu,
KVMScratchCPU *kvmcpu)
{
CPURISCVState *env = &cpu->env;
uint64_t val;
int i, ret;
for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
struct kvm_one_reg reg;
reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
multi_ext_cfg->kvm_reg_id);
reg.addr = (uint64_t)&val;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
if (ret != 0) {
if (errno == EINVAL) {
/* Silently default to 'false' if KVM does not support it. */
multi_ext_cfg->supported = false;
val = false;
} else {
error_report("Unable to read ISA_EXT KVM register %s: %s",
multi_ext_cfg->name, strerror(errno));
exit(EXIT_FAILURE);
}
} else {
multi_ext_cfg->supported = true;
}
kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
}
if (cpu->cfg.ext_zicbom) {
kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
}
if (cpu->cfg.ext_zicboz) {
kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
}
}
static int uint64_cmp(const void *a, const void *b)
{
uint64_t val1 = *(const uint64_t *)a;
uint64_t val2 = *(const uint64_t *)b;
if (val1 < val2) {
return -1;
}
if (val1 > val2) {
return 1;
}
return 0;
}
static void kvm_riscv_check_sbi_dbcn_support(RISCVCPU *cpu,
KVMScratchCPU *kvmcpu,
struct kvm_reg_list *reglist)
{
struct kvm_reg_list *reg_search;
reg_search = bsearch(&kvm_sbi_dbcn.kvm_reg_id, reglist->reg, reglist->n,
sizeof(uint64_t), uint64_cmp);
if (reg_search) {
kvm_sbi_dbcn.supported = true;
}
}
static void kvm_riscv_read_vlenb(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
struct kvm_reg_list *reglist)
{
struct kvm_one_reg reg;
struct kvm_reg_list *reg_search;
uint64_t val;
int ret;
reg_search = bsearch(&kvm_v_vlenb.kvm_reg_id, reglist->reg, reglist->n,
sizeof(uint64_t), uint64_cmp);
if (reg_search) {
reg.id = kvm_v_vlenb.kvm_reg_id;
reg.addr = (uint64_t)&val;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
if (ret != 0) {
error_report("Unable to read vlenb register, error code: %d",
errno);
exit(EXIT_FAILURE);
}
kvm_v_vlenb.supported = true;
cpu->cfg.vlenb = val;
}
}
static void kvm_riscv_init_multiext_cfg(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
{
KVMCPUConfig *multi_ext_cfg;
struct kvm_one_reg reg;
struct kvm_reg_list rl_struct;
struct kvm_reg_list *reglist;
uint64_t val, reg_id, *reg_search;
int i, ret;
rl_struct.n = 0;
ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, &rl_struct);
/*
* If KVM_GET_REG_LIST isn't supported we'll get errno 22
* (EINVAL). Use read_legacy() in this case.
*/
if (errno == EINVAL) {
return kvm_riscv_read_multiext_legacy(cpu, kvmcpu);
} else if (errno != E2BIG) {
/*
* E2BIG is an expected error message for the API since we
* don't know the number of registers. The right amount will
* be written in rl_struct.n.
*
* Error out if we get any other errno.
*/
error_report("Error when accessing get-reg-list: %s",
strerror(errno));
exit(EXIT_FAILURE);
}
reglist = g_malloc(sizeof(struct kvm_reg_list) +
rl_struct.n * sizeof(uint64_t));
reglist->n = rl_struct.n;
ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, reglist);
if (ret) {
error_report("Error when reading KVM_GET_REG_LIST: %s",
strerror(errno));
exit(EXIT_FAILURE);
}
/* sort reglist to use bsearch() */
qsort(®list->reg, reglist->n, sizeof(uint64_t), uint64_cmp);
for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
multi_ext_cfg = &kvm_multi_ext_cfgs[i];
reg_id = kvm_riscv_reg_id_ulong(&cpu->env, KVM_REG_RISCV_ISA_EXT,
multi_ext_cfg->kvm_reg_id);
reg_search = bsearch(®_id, reglist->reg, reglist->n,
sizeof(uint64_t), uint64_cmp);
if (!reg_search) {
continue;
}
reg.id = reg_id;
reg.addr = (uint64_t)&val;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
if (ret != 0) {
error_report("Unable to read ISA_EXT KVM register %s: %s",
multi_ext_cfg->name, strerror(errno));
exit(EXIT_FAILURE);
}
multi_ext_cfg->supported = true;
kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
}
if (cpu->cfg.ext_zicbom) {
kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
}
if (cpu->cfg.ext_zicboz) {
kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
}
if (riscv_has_ext(&cpu->env, RVV)) {
kvm_riscv_read_vlenb(cpu, kvmcpu, reglist);
}
kvm_riscv_check_sbi_dbcn_support(cpu, kvmcpu, reglist);
}
static void riscv_init_kvm_registers(Object *cpu_obj)
{
RISCVCPU *cpu = RISCV_CPU(cpu_obj);
KVMScratchCPU kvmcpu;
if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
return;
}
kvm_riscv_init_machine_ids(cpu, &kvmcpu);
kvm_riscv_init_misa_ext_mask(cpu, &kvmcpu);
kvm_riscv_init_multiext_cfg(cpu, &kvmcpu);
kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
}
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
int kvm_arch_get_registers(CPUState *cs)
{
int ret = 0;
ret = kvm_riscv_get_regs_core(cs);
if (ret) {
return ret;
}
ret = kvm_riscv_get_regs_csr(cs);
if (ret) {
return ret;
}
ret = kvm_riscv_get_regs_fp(cs);
if (ret) {
return ret;
}
ret = kvm_riscv_get_regs_vector(cs);
if (ret) {
return ret;
}
return ret;
}
int kvm_riscv_sync_mpstate_to_kvm(RISCVCPU *cpu, int state)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state = {
.mp_state = state
};
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
if (ret) {
fprintf(stderr, "%s: failed to sync MP_STATE %d/%s\n",
__func__, ret, strerror(-ret));
return -1;
}
}
return 0;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
int ret = 0;
ret = kvm_riscv_put_regs_core(cs);
if (ret) {
return ret;
}
ret = kvm_riscv_put_regs_csr(cs);
if (ret) {
return ret;
}
ret = kvm_riscv_put_regs_fp(cs);
if (ret) {
return ret;
}
ret = kvm_riscv_put_regs_vector(cs);
if (ret) {
return ret;
}
if (KVM_PUT_RESET_STATE == level) {
RISCVCPU *cpu = RISCV_CPU(cs);
if (cs->cpu_index == 0) {
ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_RUNNABLE);
} else {
ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_STOPPED);
}
if (ret) {
return ret;
}
}
return ret;
}
int kvm_arch_release_virq_post(int virq)
{
return 0;
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data, PCIDevice *dev)
{
return 0;
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
return 0;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
static void kvm_riscv_vm_state_change(void *opaque, bool running,
RunState state)
{
CPUState *cs = opaque;
if (running) {
kvm_riscv_put_regs_timer(cs);
} else {
kvm_riscv_get_regs_timer(cs);
}
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
static int kvm_vcpu_set_machine_ids(RISCVCPU *cpu, CPUState *cs)
{
CPURISCVState *env = &cpu->env;
target_ulong reg;
uint64_t id;
int ret;
id = RISCV_CONFIG_REG(env, mvendorid);
/*
* cfg.mvendorid is an uint32 but a target_ulong will
* be written. Assign it to a target_ulong var to avoid
* writing pieces of other cpu->cfg fields in the reg.
*/
reg = cpu->cfg.mvendorid;
ret = kvm_set_one_reg(cs, id, ®);
if (ret != 0) {
return ret;
}
id = RISCV_CONFIG_REG(env, marchid);
ret = kvm_set_one_reg(cs, id, &cpu->cfg.marchid);
if (ret != 0) {
return ret;
}
id = RISCV_CONFIG_REG(env, mimpid);
ret = kvm_set_one_reg(cs, id, &cpu->cfg.mimpid);
return ret;
}
static int kvm_vcpu_enable_sbi_dbcn(RISCVCPU *cpu, CPUState *cs)
{
target_ulong reg = 1;
if (!kvm_sbi_dbcn.supported) {
return 0;
}
return kvm_set_one_reg(cs, kvm_sbi_dbcn.kvm_reg_id, ®);
}
int kvm_arch_init_vcpu(CPUState *cs)
{
int ret = 0;
RISCVCPU *cpu = RISCV_CPU(cs);
qemu_add_vm_change_state_handler(kvm_riscv_vm_state_change, cs);
if (!object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_CPU_HOST)) {
ret = kvm_vcpu_set_machine_ids(cpu, cs);
if (ret != 0) {
return ret;
}
}
kvm_riscv_update_cpu_misa_ext(cpu, cs);
kvm_riscv_update_cpu_cfg_isa_ext(cpu, cs);
ret = kvm_vcpu_enable_sbi_dbcn(cpu, cs);
return ret;
}
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
abort();
}
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
int vector, PCIDevice *dev)
{
return 0;
}
int kvm_arch_get_default_type(MachineState *ms)
{
return 0;
}
int kvm_arch_init(MachineState *ms, KVMState *s)
{
cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
return 0;
}
int kvm_arch_irqchip_create(KVMState *s)
{
if (kvm_kernel_irqchip_split()) {
error_report("-machine kernel_irqchip=split is not supported on RISC-V.");
exit(1);
}
/*
* We can create the VAIA using the newer device control API.
*/
return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
}
int kvm_arch_process_async_events(CPUState *cs)
{
return 0;
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
}
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
return MEMTXATTRS_UNSPECIFIED;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
return true;
}
static void kvm_riscv_handle_sbi_dbcn(CPUState *cs, struct kvm_run *run)
{
g_autofree uint8_t *buf = NULL;
RISCVCPU *cpu = RISCV_CPU(cs);
target_ulong num_bytes;
uint64_t addr;
unsigned char ch;
int ret;
switch (run->riscv_sbi.function_id) {
case SBI_EXT_DBCN_CONSOLE_READ:
case SBI_EXT_DBCN_CONSOLE_WRITE:
num_bytes = run->riscv_sbi.args[0];
if (num_bytes == 0) {
run->riscv_sbi.ret[0] = SBI_SUCCESS;
run->riscv_sbi.ret[1] = 0;
break;
}
addr = run->riscv_sbi.args[1];
/*
* Handle the case where a 32 bit CPU is running in a
* 64 bit addressing env.
*/
if (riscv_cpu_mxl(&cpu->env) == MXL_RV32) {
addr |= (uint64_t)run->riscv_sbi.args[2] << 32;
}
buf = g_malloc0(num_bytes);
if (run->riscv_sbi.function_id == SBI_EXT_DBCN_CONSOLE_READ) {
ret = qemu_chr_fe_read_all(serial_hd(0)->be, buf, num_bytes);
if (ret < 0) {
error_report("SBI_EXT_DBCN_CONSOLE_READ: error when "
"reading chardev");
exit(1);
}
cpu_physical_memory_write(addr, buf, ret);
} else {
cpu_physical_memory_read(addr, buf, num_bytes);
ret = qemu_chr_fe_write_all(serial_hd(0)->be, buf, num_bytes);
if (ret < 0) {
error_report("SBI_EXT_DBCN_CONSOLE_WRITE: error when "
"writing chardev");
exit(1);
}
}
run->riscv_sbi.ret[0] = SBI_SUCCESS;
run->riscv_sbi.ret[1] = ret;
break;
case SBI_EXT_DBCN_CONSOLE_WRITE_BYTE:
ch = run->riscv_sbi.args[0];
ret = qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
if (ret < 0) {
error_report("SBI_EXT_DBCN_CONSOLE_WRITE_BYTE: error when "
"writing chardev");
exit(1);
}
run->riscv_sbi.ret[0] = SBI_SUCCESS;
run->riscv_sbi.ret[1] = 0;
break;
default:
run->riscv_sbi.ret[0] = SBI_ERR_NOT_SUPPORTED;
}
}
static int kvm_riscv_handle_sbi(CPUState *cs, struct kvm_run *run)
{
int ret = 0;
unsigned char ch;
switch (run->riscv_sbi.extension_id) {
case SBI_EXT_0_1_CONSOLE_PUTCHAR:
ch = run->riscv_sbi.args[0];
qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
break;
case SBI_EXT_0_1_CONSOLE_GETCHAR:
ret = qemu_chr_fe_read_all(serial_hd(0)->be, &ch, sizeof(ch));
if (ret == sizeof(ch)) {
run->riscv_sbi.ret[0] = ch;
} else {
run->riscv_sbi.ret[0] = -1;
}
ret = 0;
break;
case SBI_EXT_DBCN:
kvm_riscv_handle_sbi_dbcn(cs, run);
break;
default:
qemu_log_mask(LOG_UNIMP,
"%s: un-handled SBI EXIT, specific reasons is %lu\n",
__func__, run->riscv_sbi.extension_id);
ret = -1;
break;
}
return ret;
}
static int kvm_riscv_handle_csr(CPUState *cs, struct kvm_run *run)
{
target_ulong csr_num = run->riscv_csr.csr_num;
target_ulong new_value = run->riscv_csr.new_value;
target_ulong write_mask = run->riscv_csr.write_mask;
int ret = 0;
switch (csr_num) {
case CSR_SEED:
run->riscv_csr.ret_value = riscv_new_csr_seed(new_value, write_mask);
break;
default:
qemu_log_mask(LOG_UNIMP,
"%s: un-handled CSR EXIT for CSR %lx\n",
__func__, csr_num);
ret = -1;
break;
}
return ret;
}
static bool kvm_riscv_handle_debug(CPUState *cs)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
/* Ensure PC is synchronised */
kvm_cpu_synchronize_state(cs);
if (kvm_find_sw_breakpoint(cs, env->pc)) {
return true;
}
return false;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_RISCV_SBI:
ret = kvm_riscv_handle_sbi(cs, run);
break;
case KVM_EXIT_RISCV_CSR:
ret = kvm_riscv_handle_csr(cs, run);
break;
case KVM_EXIT_DEBUG:
if (kvm_riscv_handle_debug(cs)) {
ret = EXCP_DEBUG;
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
__func__, run->exit_reason);
ret = -1;
break;
}
return ret;
}
void kvm_riscv_reset_vcpu(RISCVCPU *cpu)
{
CPURISCVState *env = &cpu->env;
int i;
if (!kvm_enabled()) {
return;
}
for (i = 0; i < 32; i++) {
env->gpr[i] = 0;
}
env->pc = cpu->env.kernel_addr;
env->gpr[10] = kvm_arch_vcpu_id(CPU(cpu)); /* a0 */
env->gpr[11] = cpu->env.fdt_addr; /* a1 */
env->satp = 0;
env->mie = 0;
env->stvec = 0;
env->sscratch = 0;
env->sepc = 0;
env->scause = 0;
env->stval = 0;
env->mip = 0;
}
void kvm_riscv_set_irq(RISCVCPU *cpu, int irq, int level)
{
int ret;
unsigned virq = level ? KVM_INTERRUPT_SET : KVM_INTERRUPT_UNSET;
if (irq != IRQ_S_EXT) {
perror("kvm riscv set irq != IRQ_S_EXT\n");
abort();
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
if (ret < 0) {
perror("Set irq failed");
abort();
}
}
static int aia_mode;
static const char *kvm_aia_mode_str(uint64_t mode)
{
switch (mode) {
case KVM_DEV_RISCV_AIA_MODE_EMUL:
return "emul";
case KVM_DEV_RISCV_AIA_MODE_HWACCEL:
return "hwaccel";
case KVM_DEV_RISCV_AIA_MODE_AUTO:
default:
return "auto";
};
}
static char *riscv_get_kvm_aia(Object *obj, Error **errp)
{
return g_strdup(kvm_aia_mode_str(aia_mode));
}
static void riscv_set_kvm_aia(Object *obj, const char *val, Error **errp)
{
if (!strcmp(val, "emul")) {
aia_mode = KVM_DEV_RISCV_AIA_MODE_EMUL;
} else if (!strcmp(val, "hwaccel")) {
aia_mode = KVM_DEV_RISCV_AIA_MODE_HWACCEL;
} else if (!strcmp(val, "auto")) {
aia_mode = KVM_DEV_RISCV_AIA_MODE_AUTO;
} else {
error_setg(errp, "Invalid KVM AIA mode");
error_append_hint(errp, "Valid values are emul, hwaccel, and auto.\n");
}
}
void kvm_arch_accel_class_init(ObjectClass *oc)
{
object_class_property_add_str(oc, "riscv-aia", riscv_get_kvm_aia,
riscv_set_kvm_aia);
object_class_property_set_description(oc, "riscv-aia",
"Set KVM AIA mode. Valid values are "
"emul, hwaccel, and auto. Default "
"is auto.");
object_property_set_default_str(object_class_property_find(oc, "riscv-aia"),
"auto");
}
void kvm_riscv_aia_create(MachineState *machine, uint64_t group_shift,
uint64_t aia_irq_num, uint64_t aia_msi_num,
uint64_t aplic_base, uint64_t imsic_base,
uint64_t guest_num)
{
int ret, i;
int aia_fd = -1;
uint64_t default_aia_mode;
uint64_t socket_count = riscv_socket_count(machine);
uint64_t max_hart_per_socket = 0;
uint64_t socket, base_hart, hart_count, socket_imsic_base, imsic_addr;
uint64_t socket_bits, hart_bits, guest_bits;
aia_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_RISCV_AIA, false);
if (aia_fd < 0) {
error_report("Unable to create in-kernel irqchip");
exit(1);
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_MODE,
&default_aia_mode, false, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to get current KVM AIA mode");
exit(1);
}
qemu_log("KVM AIA: default mode is %s\n",
kvm_aia_mode_str(default_aia_mode));
if (default_aia_mode != aia_mode) {
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_MODE,
&aia_mode, true, NULL);
if (ret < 0)
warn_report("KVM AIA: failed to set KVM AIA mode");
else
qemu_log("KVM AIA: set current mode to %s\n",
kvm_aia_mode_str(aia_mode));
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_SRCS,
&aia_irq_num, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set number of input irq lines");
exit(1);
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_IDS,
&aia_msi_num, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set number of msi");
exit(1);
}
if (socket_count > 1) {
socket_bits = find_last_bit(&socket_count, BITS_PER_LONG) + 1;
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_GROUP_BITS,
&socket_bits, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set group_bits");
exit(1);
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_GROUP_SHIFT,
&group_shift, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set group_shift");
exit(1);
}
}
guest_bits = guest_num == 0 ? 0 :
find_last_bit(&guest_num, BITS_PER_LONG) + 1;
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_GUEST_BITS,
&guest_bits, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set guest_bits");
exit(1);
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
KVM_DEV_RISCV_AIA_ADDR_APLIC,
&aplic_base, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set the base address of APLIC");
exit(1);
}
for (socket = 0; socket < socket_count; socket++) {
socket_imsic_base = imsic_base + socket * (1U << group_shift);
hart_count = riscv_socket_hart_count(machine, socket);
base_hart = riscv_socket_first_hartid(machine, socket);
if (max_hart_per_socket < hart_count) {
max_hart_per_socket = hart_count;
}
for (i = 0; i < hart_count; i++) {
imsic_addr = socket_imsic_base + i * IMSIC_HART_SIZE(guest_bits);
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
KVM_DEV_RISCV_AIA_ADDR_IMSIC(i + base_hart),
&imsic_addr, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set the IMSIC address for hart %d", i);
exit(1);
}
}
}
if (max_hart_per_socket > 1) {
max_hart_per_socket--;
hart_bits = find_last_bit(&max_hart_per_socket, BITS_PER_LONG) + 1;
} else {
hart_bits = 0;
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_HART_BITS,
&hart_bits, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set hart_bits");
exit(1);
}
if (kvm_has_gsi_routing()) {
for (uint64_t idx = 0; idx < aia_irq_num + 1; ++idx) {
/* KVM AIA only has one APLIC instance */
kvm_irqchip_add_irq_route(kvm_state, idx, 0, idx);
}
kvm_gsi_routing_allowed = true;
kvm_irqchip_commit_routes(kvm_state);
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CTRL,
KVM_DEV_RISCV_AIA_CTRL_INIT,
NULL, true, NULL);
if (ret < 0) {
error_report("KVM AIA: initialized fail");
exit(1);
}
kvm_msi_via_irqfd_allowed = true;
}
static void kvm_cpu_instance_init(CPUState *cs)
{
Object *obj = OBJECT(RISCV_CPU(cs));
riscv_init_kvm_registers(obj);
kvm_riscv_add_cpu_user_properties(obj);
}
/*
* We'll get here via the following path:
*
* riscv_cpu_realize()
* -> cpu_exec_realizefn()
* -> kvm_cpu_realize() (via accel_cpu_common_realize())
*/
static bool kvm_cpu_realize(CPUState *cs, Error **errp)
{
RISCVCPU *cpu = RISCV_CPU(cs);
int ret;
if (riscv_has_ext(&cpu->env, RVV)) {
ret = prctl(PR_RISCV_V_SET_CONTROL, PR_RISCV_V_VSTATE_CTRL_ON);
if (ret) {
error_setg(errp, "Error in prctl PR_RISCV_V_SET_CONTROL, code: %s",
strerrorname_np(errno));
return false;
}
}
return true;
}
void riscv_kvm_cpu_finalize_features(RISCVCPU *cpu, Error **errp)
{
CPURISCVState *env = &cpu->env;
KVMScratchCPU kvmcpu;
struct kvm_one_reg reg;
uint64_t val;
int ret;
/* short-circuit without spinning the scratch CPU */
if (!cpu->cfg.ext_zicbom && !cpu->cfg.ext_zicboz &&
!riscv_has_ext(env, RVV)) {
return;
}
if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
error_setg(errp, "Unable to create scratch KVM cpu");
return;
}
if (cpu->cfg.ext_zicbom &&
riscv_cpu_option_set(kvm_cbom_blocksize.name)) {
reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
kvm_cbom_blocksize.kvm_reg_id);
reg.addr = (uint64_t)&val;
ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®);
if (ret != 0) {
error_setg(errp, "Unable to read cbom_blocksize, error %d", errno);
return;
}
if (cpu->cfg.cbom_blocksize != val) {
error_setg(errp, "Unable to set cbom_blocksize to a different "
"value than the host (%lu)", val);
return;
}
}
if (cpu->cfg.ext_zicboz &&
riscv_cpu_option_set(kvm_cboz_blocksize.name)) {
reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
kvm_cboz_blocksize.kvm_reg_id);
reg.addr = (uint64_t)&val;
ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®);
if (ret != 0) {
error_setg(errp, "Unable to read cboz_blocksize, error %d", errno);
return;
}
if (cpu->cfg.cboz_blocksize != val) {
error_setg(errp, "Unable to set cboz_blocksize to a different "
"value than the host (%lu)", val);
return;
}
}
/* Users are setting vlen, not vlenb */
if (riscv_has_ext(env, RVV) && riscv_cpu_option_set("vlen")) {
if (!kvm_v_vlenb.supported) {
error_setg(errp, "Unable to set 'vlenb': register not supported");
return;
}
reg.id = kvm_v_vlenb.kvm_reg_id;
reg.addr = (uint64_t)&val;
ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®);
if (ret != 0) {
error_setg(errp, "Unable to read vlenb register, error %d", errno);
return;
}
if (cpu->cfg.vlenb != val) {
error_setg(errp, "Unable to set 'vlen' to a different "
"value than the host (%lu)", val * 8);
return;
}
}
kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
}
static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data)
{
AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
acc->cpu_instance_init = kvm_cpu_instance_init;
acc->cpu_target_realize = kvm_cpu_realize;
}
static const TypeInfo kvm_cpu_accel_type_info = {
.name = ACCEL_CPU_NAME("kvm"),
.parent = TYPE_ACCEL_CPU,
.class_init = kvm_cpu_accel_class_init,
.abstract = true,
};
static void kvm_cpu_accel_register_types(void)
{
type_register_static(&kvm_cpu_accel_type_info);
}
type_init(kvm_cpu_accel_register_types);
static void riscv_host_cpu_class_init(ObjectClass *c, void *data)
{
RISCVCPUClass *mcc = RISCV_CPU_CLASS(c);
#if defined(TARGET_RISCV32)
mcc->misa_mxl_max = MXL_RV32;
#elif defined(TARGET_RISCV64)
mcc->misa_mxl_max = MXL_RV64;
#endif
}
static const TypeInfo riscv_kvm_cpu_type_infos[] = {
{
.name = TYPE_RISCV_CPU_HOST,
.parent = TYPE_RISCV_CPU,
.class_init = riscv_host_cpu_class_init,
}
};
DEFINE_TYPES(riscv_kvm_cpu_type_infos)
static const uint32_t ebreak_insn = 0x00100073;
static const uint16_t c_ebreak_insn = 0x9002;
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 0)) {
return -EINVAL;
}
if ((bp->saved_insn & 0x3) == 0x3) {
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0)
|| cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak_insn, 4, 1)) {
return -EINVAL;
}
} else {
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak_insn, 2, 1)) {
return -EINVAL;
}
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
uint32_t ebreak;
uint16_t c_ebreak;
if ((bp->saved_insn & 0x3) == 0x3) {
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak, 4, 0) ||
ebreak != ebreak_insn ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
return -EINVAL;
}
} else {
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak, 2, 0) ||
c_ebreak != c_ebreak_insn ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 1)) {
return -EINVAL;
}
}
return 0;
}
int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
{
/* TODO; To be implemented later. */
return -EINVAL;
}
int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
{
/* TODO; To be implemented later. */
return -EINVAL;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
/* TODO; To be implemented later. */
}
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
if (kvm_sw_breakpoints_active(cs)) {
dbg->control |= KVM_GUESTDBG_ENABLE;
}
}