/* * * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "tcg/tcg-op-gvec.h" #include "tcg/tcg-gvec-desc.h" #include "internals.h" static inline bool is_overlapped(const int8_t astart, int8_t asize, const int8_t bstart, int8_t bsize) { const int8_t aend = astart + asize; const int8_t bend = bstart + bsize; return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; } static bool require_rvv(DisasContext *s) { return s->mstatus_vs != EXT_STATUS_DISABLED; } static bool require_rvf(DisasContext *s) { if (s->mstatus_fs == EXT_STATUS_DISABLED) { return false; } switch (s->sew) { case MO_16: return s->cfg_ptr->ext_zvfh; case MO_32: return s->cfg_ptr->ext_zve32f; case MO_64: return s->cfg_ptr->ext_zve64d; default: return false; } } static bool require_rvfmin(DisasContext *s) { if (s->mstatus_fs == EXT_STATUS_DISABLED) { return false; } switch (s->sew) { case MO_16: return s->cfg_ptr->ext_zvfhmin; case MO_32: return s->cfg_ptr->ext_zve32f; default: return false; } } static bool require_scale_rvf(DisasContext *s) { if (s->mstatus_fs == EXT_STATUS_DISABLED) { return false; } switch (s->sew) { case MO_8: return s->cfg_ptr->ext_zvfh; case MO_16: return s->cfg_ptr->ext_zve32f; case MO_32: return s->cfg_ptr->ext_zve64d; default: return false; } } static bool require_scale_rvfmin(DisasContext *s) { if (s->mstatus_fs == EXT_STATUS_DISABLED) { return false; } switch (s->sew) { case MO_16: return s->cfg_ptr->ext_zve32f; case MO_32: return s->cfg_ptr->ext_zve64d; default: return false; } } /* Destination vector register group cannot overlap source mask register. */ static bool require_vm(int vm, int vd) { return (vm != 0 || vd != 0); } static bool require_nf(int vd, int nf, int lmul) { int size = nf << MAX(lmul, 0); return size <= 8 && vd + size <= 32; } /* * Vector register should aligned with the passed-in LMUL (EMUL). * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. */ static bool require_align(const int8_t val, const int8_t lmul) { return lmul <= 0 || extract32(val, 0, lmul) == 0; } /* * A destination vector register group can overlap a source vector * register group only if one of the following holds: * 1. The destination EEW equals the source EEW. * 2. The destination EEW is smaller than the source EEW and the overlap * is in the lowest-numbered part of the source register group. * 3. The destination EEW is greater than the source EEW, the source EMUL * is at least 1, and the overlap is in the highest-numbered part of * the destination register group. * (Section 5.2) * * This function returns true if one of the following holds: * * Destination vector register group does not overlap a source vector * register group. * * Rule 3 met. * For rule 1, overlap is allowed so this function doesn't need to be called. * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before * calling this function. */ static bool require_noover(const int8_t dst, const int8_t dst_lmul, const int8_t src, const int8_t src_lmul) { int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; /* Destination EEW is greater than the source EEW, check rule 3. */ if (dst_size > src_size) { if (dst < src && src_lmul >= 0 && is_overlapped(dst, dst_size, src, src_size) && !is_overlapped(dst, dst_size, src + src_size, src_size)) { return true; } } return !is_overlapped(dst, dst_size, src, src_size); } static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) { TCGv s1, dst; if (!require_rvv(s) || !s->cfg_ptr->ext_zve32x) { return false; } dst = dest_gpr(s, rd); if (rd == 0 && rs1 == 0) { s1 = tcg_temp_new(); tcg_gen_mov_tl(s1, cpu_vl); } else if (rs1 == 0) { /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ s1 = tcg_constant_tl(RV_VLEN_MAX); } else { s1 = get_gpr(s, rs1, EXT_ZERO); } gen_helper_vsetvl(dst, tcg_env, s1, s2); gen_set_gpr(s, rd, dst); finalize_rvv_inst(s); gen_update_pc(s, s->cur_insn_len); lookup_and_goto_ptr(s); s->base.is_jmp = DISAS_NORETURN; return true; } static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) { TCGv dst; if (!require_rvv(s) || !s->cfg_ptr->ext_zve32x) { return false; } dst = dest_gpr(s, rd); gen_helper_vsetvl(dst, tcg_env, s1, s2); gen_set_gpr(s, rd, dst); finalize_rvv_inst(s); gen_update_pc(s, s->cur_insn_len); lookup_and_goto_ptr(s); s->base.is_jmp = DISAS_NORETURN; return true; } static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) { TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); return do_vsetvl(s, a->rd, a->rs1, s2); } static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) { TCGv s2 = tcg_constant_tl(a->zimm); return do_vsetvl(s, a->rd, a->rs1, s2); } static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) { TCGv s1 = tcg_constant_tl(a->rs1); TCGv s2 = tcg_constant_tl(a->zimm); return do_vsetivli(s, a->rd, s1, s2); } /* vector register offset from env */ static uint32_t vreg_ofs(DisasContext *s, int reg) { return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlenb; } /* check functions */ /* * Vector unit-stride, strided, unit-stride segment, strided segment * store check function. * * Rules to be checked here: * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) * 2. Destination vector register number is multiples of EMUL. * (Section 3.4.2, 7.3) * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) * 4. Vector register numbers accessed by the segment load or store * cannot increment past 31. (Section 7.8) */ static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) { int8_t emul = eew - s->sew + s->lmul; return (emul >= -3 && emul <= 3) && require_align(vd, emul) && require_nf(vd, nf, emul); } /* * Vector unit-stride, strided, unit-stride segment, strided segment * load check function. * * Rules to be checked here: * 1. All rules applies to store instructions are applies * to load instructions. * 2. Destination vector register group for a masked vector * instruction cannot overlap the source mask register (v0). * (Section 5.3) */ static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, uint8_t eew) { return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); } /* * Vector indexed, indexed segment store check function. * * Rules to be checked here: * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) * 2. Index vector register number is multiples of EMUL. * (Section 3.4.2, 7.3) * 3. Destination vector register number is multiples of LMUL. * (Section 3.4.2, 7.3) * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) * 5. Vector register numbers accessed by the segment load or store * cannot increment past 31. (Section 7.8) */ static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, uint8_t eew) { int8_t emul = eew - s->sew + s->lmul; bool ret = (emul >= -3 && emul <= 3) && require_align(vs2, emul) && require_align(vd, s->lmul) && require_nf(vd, nf, s->lmul); /* * V extension supports all vector load and store instructions, * except V extension does not support EEW=64 for index values * when XLEN=32. (Section 18.3) */ if (get_xl(s) == MXL_RV32) { ret &= (eew != MO_64); } return ret; } /* * Vector indexed, indexed segment load check function. * * Rules to be checked here: * 1. All rules applies to store instructions are applies * to load instructions. * 2. Destination vector register group for a masked vector * instruction cannot overlap the source mask register (v0). * (Section 5.3) * 3. Destination vector register cannot overlap a source vector * register (vs2) group. * (Section 5.2) * 4. Destination vector register groups cannot overlap * the source vector register (vs2) group for * indexed segment load instructions. (Section 7.8.3) */ static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, int nf, int vm, uint8_t eew) { int8_t seg_vd; int8_t emul = eew - s->sew + s->lmul; bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && require_vm(vm, vd); /* Each segment register group has to follow overlap rules. */ for (int i = 0; i < nf; ++i) { seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; if (eew > s->sew) { if (seg_vd != vs2) { ret &= require_noover(seg_vd, s->lmul, vs2, emul); } } else if (eew < s->sew) { ret &= require_noover(seg_vd, s->lmul, vs2, emul); } /* * Destination vector register groups cannot overlap * the source vector register (vs2) group for * indexed segment load instructions. */ if (nf > 1) { ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), vs2, 1 << MAX(emul, 0)); } } return ret; } static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) { return require_vm(vm, vd) && require_align(vd, s->lmul) && require_align(vs, s->lmul); } /* * Check function for vector instruction with format: * single-width result and single-width sources (SEW = SEW op SEW) * * Rules to be checked here: * 1. Destination vector register group for a masked vector * instruction cannot overlap the source mask register (v0). * (Section 5.3) * 2. Destination vector register number is multiples of LMUL. * (Section 3.4.2) * 3. Source (vs2, vs1) vector register number are multiples of LMUL. * (Section 3.4.2) */ static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) { return vext_check_ss(s, vd, vs2, vm) && require_align(vs1, s->lmul); } static bool vext_check_ms(DisasContext *s, int vd, int vs) { bool ret = require_align(vs, s->lmul); if (vd != vs) { ret &= require_noover(vd, 0, vs, s->lmul); } return ret; } /* * Check function for maskable vector instruction with format: * single-width result and single-width sources (SEW = SEW op SEW) * * Rules to be checked here: * 1. Source (vs2, vs1) vector register number are multiples of LMUL. * (Section 3.4.2) * 2. Destination vector register cannot overlap a source vector * register (vs2, vs1) group. * (Section 5.2) * 3. The destination vector register group for a masked vector * instruction cannot overlap the source mask register (v0), * unless the destination vector register is being written * with a mask value (e.g., comparisons) or the scalar result * of a reduction. (Section 5.3) */ static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) { bool ret = vext_check_ms(s, vd, vs2) && require_align(vs1, s->lmul); if (vd != vs1) { ret &= require_noover(vd, 0, vs1, s->lmul); } return ret; } /* * Common check function for vector widening instructions * of double-width result (2*SEW). * * Rules to be checked here: * 1. The largest vector register group used by an instruction * can not be greater than 8 vector registers (Section 5.2): * => LMUL < 8. * => SEW < 64. * 2. Double-width SEW cannot greater than ELEN. * 3. Destination vector register number is multiples of 2 * LMUL. * (Section 3.4.2) * 4. Destination vector register group for a masked vector * instruction cannot overlap the source mask register (v0). * (Section 5.3) */ static bool vext_wide_check_common(DisasContext *s, int vd, int vm) { return (s->lmul <= 2) && (s->sew < MO_64) && ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && require_align(vd, s->lmul + 1) && require_vm(vm, vd); } /* * Common check function for vector narrowing instructions * of single-width result (SEW) and double-width source (2*SEW). * * Rules to be checked here: * 1. The largest vector register group used by an instruction * can not be greater than 8 vector registers (Section 5.2): * => LMUL < 8. * => SEW < 64. * 2. Double-width SEW cannot greater than ELEN. * 3. Source vector register number is multiples of 2 * LMUL. * (Section 3.4.2) * 4. Destination vector register number is multiples of LMUL. * (Section 3.4.2) * 5. Destination vector register group for a masked vector * instruction cannot overlap the source mask register (v0). * (Section 5.3) */ static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, int vm) { return (s->lmul <= 2) && (s->sew < MO_64) && ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && require_align(vs2, s->lmul + 1) && require_align(vd, s->lmul) && require_vm(vm, vd); } static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) { return vext_wide_check_common(s, vd, vm) && require_align(vs, s->lmul) && require_noover(vd, s->lmul + 1, vs, s->lmul); } static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) { return vext_wide_check_common(s, vd, vm) && require_align(vs, s->lmul + 1); } /* * Check function for vector instruction with format: * double-width result and single-width sources (2*SEW = SEW op SEW) * * Rules to be checked here: * 1. All rules in defined in widen common rules are applied. * 2. Source (vs2, vs1) vector register number are multiples of LMUL. * (Section 3.4.2) * 3. Destination vector register cannot overlap a source vector * register (vs2, vs1) group. * (Section 5.2) */ static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) { return vext_check_ds(s, vd, vs2, vm) && require_align(vs1, s->lmul) && require_noover(vd, s->lmul + 1, vs1, s->lmul); } /* * Check function for vector instruction with format: * double-width result and double-width source1 and single-width * source2 (2*SEW = 2*SEW op SEW) * * Rules to be checked here: * 1. All rules in defined in widen common rules are applied. * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. * (Section 3.4.2) * 3. Source 2 (vs1) vector register number is multiples of LMUL. * (Section 3.4.2) * 4. Destination vector register cannot overlap a source vector * register (vs1) group. * (Section 5.2) */ static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) { return vext_check_ds(s, vd, vs1, vm) && require_align(vs2, s->lmul + 1); } static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) { bool ret = vext_narrow_check_common(s, vd, vs, vm); if (vd != vs) { ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); } return ret; } /* * Check function for vector instruction with format: * single-width result and double-width source 1 and single-width * source 2 (SEW = 2*SEW op SEW) * * Rules to be checked here: * 1. All rules in defined in narrow common rules are applied. * 2. Destination vector register cannot overlap a source vector * register (vs2) group. * (Section 5.2) * 3. Source 2 (vs1) vector register number is multiples of LMUL. * (Section 3.4.2) */ static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) { return vext_check_sd(s, vd, vs2, vm) && require_align(vs1, s->lmul); } /* * Check function for vector reduction instructions. * * Rules to be checked here: * 1. Source 1 (vs2) vector register number is multiples of LMUL. * (Section 3.4.2) */ static bool vext_check_reduction(DisasContext *s, int vs2) { return require_align(vs2, s->lmul) && s->vstart_eq_zero; } /* * Check function for vector slide instructions. * * Rules to be checked here: * 1. Source 1 (vs2) vector register number is multiples of LMUL. * (Section 3.4.2) * 2. Destination vector register number is multiples of LMUL. * (Section 3.4.2) * 3. Destination vector register group for a masked vector * instruction cannot overlap the source mask register (v0). * (Section 5.3) * 4. The destination vector register group for vslideup, vslide1up, * vfslide1up, cannot overlap the source vector register (vs2) group. * (Section 5.2, 16.3.1, 16.3.3) */ static bool vext_check_slide(DisasContext *s, int vd, int vs2, int vm, bool is_over) { bool ret = require_align(vs2, s->lmul) && require_align(vd, s->lmul) && require_vm(vm, vd); if (is_over) { ret &= (vd != vs2); } return ret; } /* * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. * So RVV is also be checked in this function. */ static bool vext_check_isa_ill(DisasContext *s) { return !s->vill; } /* common translation macro */ #define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ { \ if (CHECK(s, a, EEW)) { \ return OP(s, a, EEW); \ } \ return false; \ } static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) { int8_t emul = eew - s->sew + s->lmul; return emul < 0 ? 0 : emul; } /* *** unit stride load and store */ typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, TCGv_env, TCGv_i32); static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, gen_helper_ldst_us *fn, DisasContext *s, bool is_store) { TCGv_ptr dest, mask; TCGv base; TCGv_i32 desc; dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); base = get_gpr(s, rs1, EXT_NONE); /* * As simd_desc supports at most 2048 bytes, and in this implementation, * the max vector group length is 4096 bytes. So split it into two parts. * * The first part is vlen in bytes (vlenb), encoded in maxsz of simd_desc. * The second part is lmul, encoded in data of simd_desc. */ desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); /* * According to the specification * * Additionally, if the Ztso extension is implemented, then vector memory * instructions in the V extension and Zve family of extensions follow * RVTSO at the instruction level. The Ztso extension does not * strengthen the ordering of intra-instruction element accesses. * * as a result neither ordered nor unordered accesses from the V * instructions need ordering within the loop but we do still need barriers * around the loop. */ if (is_store && s->ztso) { tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); } mark_vs_dirty(s); fn(dest, mask, base, tcg_env, desc); if (!is_store && s->ztso) { tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); } finalize_rvv_inst(s); return true; } static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) { uint32_t data = 0; gen_helper_ldst_us *fn; static gen_helper_ldst_us * const fns[2][4] = { /* masked unit stride load */ { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, /* unmasked unit stride load */ { gen_helper_vle8_v, gen_helper_vle16_v, gen_helper_vle32_v, gen_helper_vle64_v } }; fn = fns[a->vm][eew]; if (fn == NULL) { return false; } /* * Vector load/store instructions have the EEW encoded * directly in the instructions. The maximum vector size is * calculated with EMUL rather than LMUL. */ uint8_t emul = vext_get_emul(s, eew); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, emul); data = FIELD_DP32(data, VDATA, NF, a->nf); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); } static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_load(s, a->rd, a->nf, a->vm, eew); } GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) { uint32_t data = 0; gen_helper_ldst_us *fn; static gen_helper_ldst_us * const fns[2][4] = { /* masked unit stride store */ { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, /* unmasked unit stride store */ { gen_helper_vse8_v, gen_helper_vse16_v, gen_helper_vse32_v, gen_helper_vse64_v } }; fn = fns[a->vm][eew]; if (fn == NULL) { return false; } uint8_t emul = vext_get_emul(s, eew); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, emul); data = FIELD_DP32(data, VDATA, NF, a->nf); return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); } static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_store(s, a->rd, a->nf, eew); } GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) /* *** unit stride mask load and store */ static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) { uint32_t data = 0; gen_helper_ldst_us *fn = gen_helper_vlm_v; /* EMUL = 1, NFIELDS = 1 */ data = FIELD_DP32(data, VDATA, LMUL, 0); data = FIELD_DP32(data, VDATA, NF, 1); /* Mask destination register are always tail-agnostic */ data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); data = FIELD_DP32(data, VDATA, VMA, s->vma); return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); } static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) { /* EMUL = 1, NFIELDS = 1 */ return require_rvv(s) && vext_check_isa_ill(s); } static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) { uint32_t data = 0; gen_helper_ldst_us *fn = gen_helper_vsm_v; /* EMUL = 1, NFIELDS = 1 */ data = FIELD_DP32(data, VDATA, LMUL, 0); data = FIELD_DP32(data, VDATA, NF, 1); return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); } static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) { /* EMUL = 1, NFIELDS = 1 */ return require_rvv(s) && vext_check_isa_ill(s); } GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) /* *** stride load and store */ typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, TCGv, TCGv_env, TCGv_i32); static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, uint32_t data, gen_helper_ldst_stride *fn, DisasContext *s) { TCGv_ptr dest, mask; TCGv base, stride; TCGv_i32 desc; dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); base = get_gpr(s, rs1, EXT_NONE); stride = get_gpr(s, rs2, EXT_NONE); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); mark_vs_dirty(s); fn(dest, mask, base, stride, tcg_env, desc); finalize_rvv_inst(s); return true; } static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) { uint32_t data = 0; gen_helper_ldst_stride *fn; static gen_helper_ldst_stride * const fns[4] = { gen_helper_vlse8_v, gen_helper_vlse16_v, gen_helper_vlse32_v, gen_helper_vlse64_v }; fn = fns[eew]; if (fn == NULL) { return false; } uint8_t emul = vext_get_emul(s, eew); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, emul); data = FIELD_DP32(data, VDATA, NF, a->nf); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s); } static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_load(s, a->rd, a->nf, a->vm, eew); } GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) { uint32_t data = 0; gen_helper_ldst_stride *fn; static gen_helper_ldst_stride * const fns[4] = { /* masked stride store */ gen_helper_vsse8_v, gen_helper_vsse16_v, gen_helper_vsse32_v, gen_helper_vsse64_v }; uint8_t emul = vext_get_emul(s, eew); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, emul); data = FIELD_DP32(data, VDATA, NF, a->nf); fn = fns[eew]; if (fn == NULL) { return false; } return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s); } static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_store(s, a->rd, a->nf, eew); } GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) /* *** index load and store */ typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, TCGv_env, TCGv_i32); static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t data, gen_helper_ldst_index *fn, DisasContext *s) { TCGv_ptr dest, mask, index; TCGv base; TCGv_i32 desc; dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); index = tcg_temp_new_ptr(); base = get_gpr(s, rs1, EXT_NONE); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(index, tcg_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); mark_vs_dirty(s); fn(dest, mask, base, index, tcg_env, desc); finalize_rvv_inst(s); return true; } static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) { uint32_t data = 0; gen_helper_ldst_index *fn; static gen_helper_ldst_index * const fns[4][4] = { /* * offset vector register group EEW = 8, * data vector register group EEW = SEW */ { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, /* * offset vector register group EEW = 16, * data vector register group EEW = SEW */ { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, /* * offset vector register group EEW = 32, * data vector register group EEW = SEW */ { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, /* * offset vector register group EEW = 64, * data vector register group EEW = SEW */ { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } }; fn = fns[eew][s->sew]; uint8_t emul = vext_get_emul(s, s->sew); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, emul); data = FIELD_DP32(data, VDATA, NF, a->nf); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s); } static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); } GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) { uint32_t data = 0; gen_helper_ldst_index *fn; static gen_helper_ldst_index * const fns[4][4] = { /* * offset vector register group EEW = 8, * data vector register group EEW = SEW */ { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, /* * offset vector register group EEW = 16, * data vector register group EEW = SEW */ { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, /* * offset vector register group EEW = 32, * data vector register group EEW = SEW */ { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, /* * offset vector register group EEW = 64, * data vector register group EEW = SEW */ { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } }; fn = fns[eew][s->sew]; uint8_t emul = vext_get_emul(s, s->sew); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, emul); data = FIELD_DP32(data, VDATA, NF, a->nf); return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s); } static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); } GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) /* *** unit stride fault-only-first load */ static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, gen_helper_ldst_us *fn, DisasContext *s) { TCGv_ptr dest, mask; TCGv base; TCGv_i32 desc; dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); base = get_gpr(s, rs1, EXT_NONE); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); fn(dest, mask, base, tcg_env, desc); finalize_rvv_inst(s); return true; } static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) { uint32_t data = 0; gen_helper_ldst_us *fn; static gen_helper_ldst_us * const fns[4] = { gen_helper_vle8ff_v, gen_helper_vle16ff_v, gen_helper_vle32ff_v, gen_helper_vle64ff_v }; fn = fns[eew]; if (fn == NULL) { return false; } uint8_t emul = vext_get_emul(s, eew); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, emul); data = FIELD_DP32(data, VDATA, NF, a->nf); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); return ldff_trans(a->rd, a->rs1, data, fn, s); } GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) /* * load and store whole register instructions */ typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, gen_helper_ldst_whole *fn, DisasContext *s) { TCGv_ptr dest; TCGv base; TCGv_i32 desc; uint32_t data = FIELD_DP32(0, VDATA, NF, nf); dest = tcg_temp_new_ptr(); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); base = get_gpr(s, rs1, EXT_NONE); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); mark_vs_dirty(s); fn(dest, base, tcg_env, desc); finalize_rvv_inst(s); return true; } /* * load and store whole register instructions ignore vtype and vl setting. * Thus, we don't need to check vill bit. (Section 7.9) */ #define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF) \ static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ { \ if (require_rvv(s) && \ QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ return ldst_whole_trans(a->rd, a->rs1, ARG_NF, \ gen_helper_##NAME, s); \ } \ return false; \ } GEN_LDST_WHOLE_TRANS(vl1re8_v, 1) GEN_LDST_WHOLE_TRANS(vl1re16_v, 1) GEN_LDST_WHOLE_TRANS(vl1re32_v, 1) GEN_LDST_WHOLE_TRANS(vl1re64_v, 1) GEN_LDST_WHOLE_TRANS(vl2re8_v, 2) GEN_LDST_WHOLE_TRANS(vl2re16_v, 2) GEN_LDST_WHOLE_TRANS(vl2re32_v, 2) GEN_LDST_WHOLE_TRANS(vl2re64_v, 2) GEN_LDST_WHOLE_TRANS(vl4re8_v, 4) GEN_LDST_WHOLE_TRANS(vl4re16_v, 4) GEN_LDST_WHOLE_TRANS(vl4re32_v, 4) GEN_LDST_WHOLE_TRANS(vl4re64_v, 4) GEN_LDST_WHOLE_TRANS(vl8re8_v, 8) GEN_LDST_WHOLE_TRANS(vl8re16_v, 8) GEN_LDST_WHOLE_TRANS(vl8re32_v, 8) GEN_LDST_WHOLE_TRANS(vl8re64_v, 8) /* * The vector whole register store instructions are encoded similar to * unmasked unit-stride store of elements with EEW=8. */ GEN_LDST_WHOLE_TRANS(vs1r_v, 1) GEN_LDST_WHOLE_TRANS(vs2r_v, 2) GEN_LDST_WHOLE_TRANS(vs4r_v, 4) GEN_LDST_WHOLE_TRANS(vs8r_v, 8) /* *** Vector Integer Arithmetic Instructions */ /* * MAXSZ returns the maximum vector size can be operated in bytes, * which is used in GVEC IR when vl_eq_vlmax flag is set to true * to accelerate vector operation. */ static inline uint32_t MAXSZ(DisasContext *s) { int max_sz = s->cfg_ptr->vlenb * 8; return max_sz >> (3 - s->lmul); } static bool opivv_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); } typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t); static inline bool do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, gen_helper_gvec_4_ptr *fn) { if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), MAXSZ(s), MAXSZ(s)); } else { uint32_t data = 0; data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), tcg_env, s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data, fn); } finalize_rvv_inst(s); return true; } /* OPIVV with GVEC IR */ #define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_gvec_4_ptr * const fns[4] = { \ gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ }; \ if (!opivv_check(s, a)) { \ return false; \ } \ return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ } GEN_OPIVV_GVEC_TRANS(vadd_vv, add) GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, TCGv_env, TCGv_i32); static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, gen_helper_opivx *fn, DisasContext *s) { TCGv_ptr dest, src2, mask; TCGv src1; TCGv_i32 desc; uint32_t data = 0; dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); src2 = tcg_temp_new_ptr(); src1 = get_gpr(s, rs1, EXT_SIGN); data = FIELD_DP32(data, VDATA, VM, vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); data = FIELD_DP32(data, VDATA, VMA, s->vma); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(src2, tcg_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); fn(dest, mask, src1, src2, tcg_env, desc); finalize_rvv_inst(s); return true; } static bool opivx_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_ss(s, a->rd, a->rs2, a->vm); } typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, uint32_t, uint32_t); static inline bool do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, gen_helper_opivx *fn) { if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { TCGv_i64 src1 = tcg_temp_new_i64(); tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), src1, MAXSZ(s), MAXSZ(s)); finalize_rvv_inst(s); return true; } return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); } /* OPIVX with GVEC IR */ #define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_opivx * const fns[4] = { \ gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ }; \ if (!opivx_check(s, a)) { \ return false; \ } \ return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ } GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { tcg_gen_vec_sub8_i64(d, b, a); } static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { tcg_gen_vec_sub16_i64(d, b, a); } static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) { tcg_gen_sub_i32(ret, arg2, arg1); } static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) { tcg_gen_sub_i64(ret, arg2, arg1); } static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) { tcg_gen_sub_vec(vece, r, b, a); } static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) { static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; static const GVecGen2s rsub_op[4] = { { .fni8 = gen_vec_rsub8_i64, .fniv = gen_rsub_vec, .fno = gen_helper_vec_rsubs8, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_vec_rsub16_i64, .fniv = gen_rsub_vec, .fno = gen_helper_vec_rsubs16, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_rsub_i32, .fniv = gen_rsub_vec, .fno = gen_helper_vec_rsubs32, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_rsub_i64, .fniv = gen_rsub_vec, .fno = gen_helper_vec_rsubs64, .opt_opc = vecop_list, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); } GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) typedef enum { IMM_ZX, /* Zero-extended */ IMM_SX, /* Sign-extended */ IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ } imm_mode_t; static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) { switch (imm_mode) { case IMM_ZX: return extract64(imm, 0, 5); case IMM_SX: return sextract64(imm, 0, 5); case IMM_TRUNC_SEW: return extract64(imm, 0, s->sew + 3); case IMM_TRUNC_2SEW: return extract64(imm, 0, s->sew + 4); default: g_assert_not_reached(); } } static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, gen_helper_opivx *fn, DisasContext *s, imm_mode_t imm_mode) { TCGv_ptr dest, src2, mask; TCGv src1; TCGv_i32 desc; uint32_t data = 0; dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); src2 = tcg_temp_new_ptr(); src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); data = FIELD_DP32(data, VDATA, VM, vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); data = FIELD_DP32(data, VDATA, VMA, s->vma); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(src2, tcg_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); fn(dest, mask, src1, src2, tcg_env, desc); finalize_rvv_inst(s); return true; } typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, uint32_t, uint32_t); static inline bool do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, gen_helper_opivx *fn, imm_mode_t imm_mode) { if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); finalize_rvv_inst(s); return true; } return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); } /* OPIVI with GVEC IR */ #define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_opivx * const fns[4] = { \ gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ }; \ if (!opivx_check(s, a)) { \ return false; \ } \ return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ fns[s->sew], IMM_MODE); \ } GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t c, uint32_t oprsz, uint32_t maxsz) { TCGv_i64 tmp = tcg_constant_i64(c); tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); } GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) /* Vector Widening Integer Add/Subtract */ /* OPIVV with WIDEN */ static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); } static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, gen_helper_gvec_4_ptr *fn, bool (*checkfn)(DisasContext *, arg_rmrr *)) { if (checkfn(s, a)) { uint32_t data = 0; data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), tcg_env, s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data, fn); finalize_rvv_inst(s); return true; } return false; } #define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_gvec_4_ptr * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w \ }; \ return do_opivv_widen(s, a, fns[s->sew], CHECK); \ } GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) /* OPIVX with WIDEN */ static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_ds(s, a->rd, a->rs2, a->vm); } #define GEN_OPIVX_WIDEN_TRANS(NAME, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (CHECK(s, a)) { \ static gen_helper_opivx * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w \ }; \ return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); \ } \ return false; \ } GEN_OPIVX_WIDEN_TRANS(vwaddu_vx, opivx_widen_check) GEN_OPIVX_WIDEN_TRANS(vwadd_vx, opivx_widen_check) GEN_OPIVX_WIDEN_TRANS(vwsubu_vx, opivx_widen_check) GEN_OPIVX_WIDEN_TRANS(vwsub_vx, opivx_widen_check) /* WIDEN OPIVV with WIDEN */ static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); } static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, gen_helper_gvec_4_ptr *fn) { if (opiwv_widen_check(s, a)) { uint32_t data = 0; data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), tcg_env, s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data, fn); finalize_rvv_inst(s); return true; } return false; } #define GEN_OPIWV_WIDEN_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_gvec_4_ptr * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w \ }; \ return do_opiwv_widen(s, a, fns[s->sew]); \ } GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) GEN_OPIWV_WIDEN_TRANS(vwadd_wv) GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) GEN_OPIWV_WIDEN_TRANS(vwsub_wv) /* WIDEN OPIVX with WIDEN */ static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_dd(s, a->rd, a->rs2, a->vm); } static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, gen_helper_opivx *fn) { if (opiwx_widen_check(s, a)) { return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); } return false; } #define GEN_OPIWX_WIDEN_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_opivx * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w \ }; \ return do_opiwx_widen(s, a, fns[s->sew]); \ } GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) GEN_OPIWX_WIDEN_TRANS(vwadd_wx) GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) GEN_OPIWX_WIDEN_TRANS(vwsub_wx) static bool opivv_trans(uint32_t vd, uint32_t vs1, uint32_t vs2, uint32_t vm, gen_helper_gvec_4_ptr *fn, DisasContext *s) { uint32_t data = 0; data = FIELD_DP32(data, VDATA, VM, vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); data = FIELD_DP32(data, VDATA, VMA, s->vma); tcg_gen_gvec_4_ptr(vreg_ofs(s, vd), vreg_ofs(s, 0), vreg_ofs(s, vs1), vreg_ofs(s, vs2), tcg_env, s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data, fn); finalize_rvv_inst(s); return true; } /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ /* OPIVV without GVEC IR */ #define GEN_OPIVV_TRANS(NAME, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (CHECK(s, a)) { \ static gen_helper_gvec_4_ptr * const fns[4] = { \ gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ }; \ return opivv_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ } \ return false; \ } /* * For vadc and vsbc, an illegal instruction exception is raised if the * destination vector register is v0 and LMUL > 1. (Section 11.4) */ static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && (a->rd != 0) && vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); } GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) /* * For vmadc and vmsbc, an illegal instruction exception is raised if the * destination vector register overlaps a source vector register group. */ static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_mss(s, a->rd, a->rs1, a->rs2); } GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && (a->rd != 0) && vext_check_ss(s, a->rd, a->rs2, a->vm); } /* OPIVX without GVEC IR */ #define GEN_OPIVX_TRANS(NAME, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (CHECK(s, a)) { \ static gen_helper_opivx * const fns[4] = { \ gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ }; \ \ return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ } \ return false; \ } GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_ms(s, a->rd, a->rs2); } GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) /* OPIVI without GVEC IR */ #define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (CHECK(s, a)) { \ static gen_helper_opivx * const fns[4] = { \ gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ }; \ return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ fns[s->sew], s, IMM_MODE); \ } \ return false; \ } GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) /* Vector Bitwise Logical Instructions */ GEN_OPIVV_GVEC_TRANS(vand_vv, and) GEN_OPIVV_GVEC_TRANS(vor_vv, or) GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) GEN_OPIVX_GVEC_TRANS(vand_vx, ands) GEN_OPIVX_GVEC_TRANS(vor_vx, ors) GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) /* Vector Single-Width Bit Shift Instructions */ GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, uint32_t, uint32_t); static inline bool do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, gen_helper_opivx *fn) { if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { TCGv_i32 src1 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), src1, MAXSZ(s), MAXSZ(s)); finalize_rvv_inst(s); return true; } return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); } #define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ static gen_helper_opivx * const fns[4] = { \ gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ }; \ if (!opivx_check(s, a)) { \ return false; \ } \ return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ } GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) /* Vector Narrowing Integer Right Shift Instructions */ static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); } /* OPIVV with NARROW */ #define GEN_OPIWV_NARROW_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (opiwv_narrow_check(s, a)) { \ uint32_t data = 0; \ static gen_helper_gvec_4_ptr * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, \ }; \ \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs2), tcg_env, \ s->cfg_ptr->vlenb, \ s->cfg_ptr->vlenb, data, \ fns[s->sew]); \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_OPIWV_NARROW_TRANS(vnsra_wv) GEN_OPIWV_NARROW_TRANS(vnsrl_wv) static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_sd(s, a->rd, a->rs2, a->vm); } /* OPIVX with NARROW */ #define GEN_OPIWX_NARROW_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (opiwx_narrow_check(s, a)) { \ static gen_helper_opivx * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, \ }; \ return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ } \ return false; \ } GEN_OPIWX_NARROW_TRANS(vnsra_wx) GEN_OPIWX_NARROW_TRANS(vnsrl_wx) /* OPIWI with NARROW */ #define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (opiwx_narrow_check(s, a)) { \ static gen_helper_opivx * const fns[3] = { \ gen_helper_##OPIVX##_b, \ gen_helper_##OPIVX##_h, \ gen_helper_##OPIVX##_w, \ }; \ return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ fns[s->sew], s, IMM_MODE); \ } \ return false; \ } GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) /* Vector Integer Comparison Instructions */ /* * For all comparison instructions, an illegal instruction exception is raised * if the destination vector register overlaps a source vector register group * and LMUL > 1. */ static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_mss(s, a->rd, a->rs1, a->rs2); } GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_ms(s, a->rd, a->rs2); } GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) /* Vector Integer Min/Max Instructions */ GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) GEN_OPIVX_TRANS(vminu_vx, opivx_check) GEN_OPIVX_TRANS(vmin_vx, opivx_check) GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) GEN_OPIVX_TRANS(vmax_vx, opivx_check) /* Vector Single-Width Integer Multiply Instructions */ static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) { /* * All Zve* extensions support all vector integer instructions, * except that the vmulh integer multiply variants * that return the high word of the product * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) * are not included for EEW=64 in Zve64*. (Section 18.2) */ return opivv_check(s, a) && (!has_ext(s, RVV) ? s->sew != MO_64 : true); } static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) { /* * All Zve* extensions support all vector integer instructions, * except that the vmulh integer multiply variants * that return the high word of the product * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) * are not included for EEW=64 in Zve64*. (Section 18.2) */ return opivx_check(s, a) && (!has_ext(s, RVV) ? s->sew != MO_64 : true); } GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) /* Vector Integer Divide Instructions */ GEN_OPIVV_TRANS(vdivu_vv, opivv_check) GEN_OPIVV_TRANS(vdiv_vv, opivv_check) GEN_OPIVV_TRANS(vremu_vv, opivv_check) GEN_OPIVV_TRANS(vrem_vv, opivv_check) GEN_OPIVX_TRANS(vdivu_vx, opivx_check) GEN_OPIVX_TRANS(vdiv_vx, opivx_check) GEN_OPIVX_TRANS(vremu_vx, opivx_check) GEN_OPIVX_TRANS(vrem_vx, opivx_check) /* Vector Widening Integer Multiply Instructions */ GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) GEN_OPIVX_WIDEN_TRANS(vwmul_vx, opivx_widen_check) GEN_OPIVX_WIDEN_TRANS(vwmulu_vx, opivx_widen_check) GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx, opivx_widen_check) /* Vector Single-Width Integer Multiply-Add Instructions */ GEN_OPIVV_TRANS(vmacc_vv, opivv_check) GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) GEN_OPIVV_TRANS(vmadd_vv, opivv_check) GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) GEN_OPIVX_TRANS(vmacc_vx, opivx_check) GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) GEN_OPIVX_TRANS(vmadd_vx, opivx_check) GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) /* Vector Widening Integer Multiply-Add Instructions */ GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx, opivx_widen_check) GEN_OPIVX_WIDEN_TRANS(vwmacc_vx, opivx_widen_check) GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx, opivx_widen_check) GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx, opivx_widen_check) /* Vector Integer Merge and Move Instructions */ static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) { if (require_rvv(s) && vext_check_isa_ill(s) && /* vmv.v.v has rs2 = 0 and vm = 1 */ vext_check_sss(s, a->rd, a->rs1, 0, 1)) { if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), MAXSZ(s), MAXSZ(s)); } else { uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); static gen_helper_gvec_2_ptr * const fns[4] = { gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, }; tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), tcg_env, s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data, fns[s->sew]); } finalize_rvv_inst(s); return true; } return false; } typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) { if (require_rvv(s) && vext_check_isa_ill(s) && /* vmv.v.x has rs2 = 0 and vm = 1 */ vext_check_ss(s, a->rd, 0, 1)) { TCGv s1; s1 = get_gpr(s, a->rs1, EXT_SIGN); if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { if (get_xl(s) == MXL_RV32 && s->sew == MO_64) { TCGv_i64 s1_i64 = tcg_temp_new_i64(); tcg_gen_ext_tl_i64(s1_i64, s1); tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), MAXSZ(s), MAXSZ(s), s1_i64); } else { tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), MAXSZ(s), MAXSZ(s), s1); } } else { TCGv_i32 desc; TCGv_i64 s1_i64 = tcg_temp_new_i64(); TCGv_ptr dest = tcg_temp_new_ptr(); uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); static gen_helper_vmv_vx * const fns[4] = { gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, }; tcg_gen_ext_tl_i64(s1_i64, s1); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, a->rd)); fns[s->sew](dest, s1_i64, tcg_env, desc); } finalize_rvv_inst(s); return true; } return false; } static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) { if (require_rvv(s) && vext_check_isa_ill(s) && /* vmv.v.i has rs2 = 0 and vm = 1 */ vext_check_ss(s, a->rd, 0, 1)) { int64_t simm = sextract64(a->rs1, 0, 5); if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), MAXSZ(s), MAXSZ(s), simm); } else { TCGv_i32 desc; TCGv_i64 s1; TCGv_ptr dest; uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); static gen_helper_vmv_vx * const fns[4] = { gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, }; s1 = tcg_constant_i64(simm); dest = tcg_temp_new_ptr(); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, a->rd)); fns[s->sew](dest, s1, tcg_env, desc); } finalize_rvv_inst(s); return true; } return false; } GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) /* *** Vector Fixed-Point Arithmetic Instructions */ /* Vector Single-Width Saturating Add and Subtract */ GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) GEN_OPIVV_TRANS(vsadd_vv, opivv_check) GEN_OPIVV_TRANS(vssubu_vv, opivv_check) GEN_OPIVV_TRANS(vssub_vv, opivv_check) GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) GEN_OPIVX_TRANS(vsadd_vx, opivx_check) GEN_OPIVX_TRANS(vssubu_vx, opivx_check) GEN_OPIVX_TRANS(vssub_vx, opivx_check) GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) /* Vector Single-Width Averaging Add and Subtract */ GEN_OPIVV_TRANS(vaadd_vv, opivv_check) GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) GEN_OPIVV_TRANS(vasub_vv, opivv_check) GEN_OPIVV_TRANS(vasubu_vv, opivv_check) GEN_OPIVX_TRANS(vaadd_vx, opivx_check) GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) GEN_OPIVX_TRANS(vasub_vx, opivx_check) GEN_OPIVX_TRANS(vasubu_vx, opivx_check) /* Vector Single-Width Fractional Multiply with Rounding and Saturation */ static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) { /* * All Zve* extensions support all vector fixed-point arithmetic * instructions, except that vsmul.vv and vsmul.vx are not supported * for EEW=64 in Zve64*. (Section 18.2) */ return opivv_check(s, a) && (!has_ext(s, RVV) ? s->sew != MO_64 : true); } static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) { /* * All Zve* extensions support all vector fixed-point arithmetic * instructions, except that vsmul.vv and vsmul.vx are not supported * for EEW=64 in Zve64*. (Section 18.2) */ return opivx_check(s, a) && (!has_ext(s, RVV) ? s->sew != MO_64 : true); } GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) /* Vector Single-Width Scaling Shift Instructions */ GEN_OPIVV_TRANS(vssrl_vv, opivv_check) GEN_OPIVV_TRANS(vssra_vv, opivv_check) GEN_OPIVX_TRANS(vssrl_vx, opivx_check) GEN_OPIVX_TRANS(vssra_vx, opivx_check) GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) /* Vector Narrowing Fixed-Point Clip Instructions */ GEN_OPIWV_NARROW_TRANS(vnclipu_wv) GEN_OPIWV_NARROW_TRANS(vnclip_wv) GEN_OPIWX_NARROW_TRANS(vnclipu_wx) GEN_OPIWX_NARROW_TRANS(vnclip_wx) GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) /* *** Vector Float Point Arithmetic Instructions */ /* * As RVF-only cpus always have values NaN-boxed to 64-bits, * RVF and RVD can be treated equally. * We don't have to deal with the cases of: SEW > FLEN. * * If SEW < FLEN, check whether input fp register is a valid * NaN-boxed value, in which case the least-significant SEW bits * of the f register are used, else the canonical NaN value is used. */ static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) { switch (s->sew) { case 1: gen_check_nanbox_h(out, in); break; case 2: gen_check_nanbox_s(out, in); break; case 3: tcg_gen_mov_i64(out, in); break; default: g_assert_not_reached(); } } /* Vector Single-Width Floating-Point Add/Subtract Instructions */ /* * If the current SEW does not correspond to a supported IEEE floating-point * type, an illegal instruction exception is raised. */ static bool opfvv_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && require_rvf(s) && vext_check_isa_ill(s) && vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); } /* OPFVV without GVEC IR */ #define GEN_OPFVV_TRANS(NAME, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (CHECK(s, a)) { \ uint32_t data = 0; \ static gen_helper_gvec_4_ptr * const fns[3] = { \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, \ gen_helper_##NAME##_d, \ }; \ gen_set_rm(s, RISCV_FRM_DYN); \ \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = \ FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs2), tcg_env, \ s->cfg_ptr->vlenb, \ s->cfg_ptr->vlenb, data, \ fns[s->sew - 1]); \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, TCGv_env, TCGv_i32); static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t data, gen_helper_opfvf *fn, DisasContext *s) { TCGv_ptr dest, src2, mask; TCGv_i32 desc; TCGv_i64 t1; dest = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr(); src2 = tcg_temp_new_ptr(); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(src2, tcg_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); /* NaN-box f[rs1] */ t1 = tcg_temp_new_i64(); do_nanbox(s, t1, cpu_fpr[rs1]); fn(dest, mask, t1, src2, tcg_env, desc); finalize_rvv_inst(s); return true; } /* * If the current SEW does not correspond to a supported IEEE floating-point * type, an illegal instruction exception is raised */ static bool opfvf_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && require_rvf(s) && vext_check_isa_ill(s) && vext_check_ss(s, a->rd, a->rs2, a->vm); } /* OPFVF without GVEC IR */ #define GEN_OPFVF_TRANS(NAME, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (CHECK(s, a)) { \ uint32_t data = 0; \ static gen_helper_opfvf *const fns[3] = { \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, \ gen_helper_##NAME##_d, \ }; \ gen_set_rm(s, RISCV_FRM_DYN); \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = FIELD_DP32(data, VDATA, VTA_ALL_1S, \ s->cfg_vta_all_1s); \ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ fns[s->sew - 1], s); \ } \ return false; \ } GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) /* Vector Widening Floating-Point Add/Subtract Instructions */ static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && require_rvf(s) && require_scale_rvf(s) && vext_check_isa_ill(s) && vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); } /* OPFVV with WIDEN */ #define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (CHECK(s, a)) { \ uint32_t data = 0; \ static gen_helper_gvec_4_ptr * const fns[2] = { \ gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ }; \ gen_set_rm(s, RISCV_FRM_DYN); \ \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs2), tcg_env, \ s->cfg_ptr->vlenb, \ s->cfg_ptr->vlenb, data, \ fns[s->sew - 1]); \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && require_rvf(s) && require_scale_rvf(s) && vext_check_isa_ill(s) && vext_check_ds(s, a->rd, a->rs2, a->vm); } /* OPFVF with WIDEN */ #define GEN_OPFVF_WIDEN_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (opfvf_widen_check(s, a)) { \ uint32_t data = 0; \ static gen_helper_opfvf *const fns[2] = { \ gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ }; \ gen_set_rm(s, RISCV_FRM_DYN); \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ fns[s->sew - 1], s); \ } \ return false; \ } GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && require_rvf(s) && require_scale_rvf(s) && vext_check_isa_ill(s) && vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); } /* WIDEN OPFVV with WIDEN */ #define GEN_OPFWV_WIDEN_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (opfwv_widen_check(s, a)) { \ uint32_t data = 0; \ static gen_helper_gvec_4_ptr * const fns[2] = { \ gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ }; \ gen_set_rm(s, RISCV_FRM_DYN); \ \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs2), tcg_env, \ s->cfg_ptr->vlenb, \ s->cfg_ptr->vlenb, data, \ fns[s->sew - 1]); \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && require_rvf(s) && require_scale_rvf(s) && vext_check_isa_ill(s) && vext_check_dd(s, a->rd, a->rs2, a->vm); } /* WIDEN OPFVF with WIDEN */ #define GEN_OPFWF_WIDEN_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ { \ if (opfwf_widen_check(s, a)) { \ uint32_t data = 0; \ static gen_helper_opfvf *const fns[2] = { \ gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ }; \ gen_set_rm(s, RISCV_FRM_DYN); \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ fns[s->sew - 1], s); \ } \ return false; \ } GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) /* Vector Single-Width Floating-Point Multiply/Divide Instructions */ GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) /* Vector Widening Floating-Point Multiply */ GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) /* Vector Widening Floating-Point Fused Multiply-Add Instructions */ GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) /* Vector Floating-Point Square-Root Instruction */ /* * If the current SEW does not correspond to a supported IEEE floating-point * type, an illegal instruction exception is raised */ static bool opfv_check(DisasContext *s, arg_rmr *a) { return require_rvv(s) && require_rvf(s) && vext_check_isa_ill(s) && /* OPFV instructions ignore vs1 check */ vext_check_ss(s, a->rd, a->rs2, a->vm); } static bool do_opfv(DisasContext *s, arg_rmr *a, gen_helper_gvec_3_ptr *fn, bool (*checkfn)(DisasContext *, arg_rmr *), int rm) { if (checkfn(s, a)) { uint32_t data = 0; gen_set_rm_chkfrm(s, rm); data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), vreg_ofs(s, a->rs2), tcg_env, s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data, fn); finalize_rvv_inst(s); return true; } return false; } #define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ { \ static gen_helper_gvec_3_ptr * const fns[3] = { \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, \ gen_helper_##NAME##_d \ }; \ return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ } GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) /* Vector Floating-Point MIN/MAX Instructions */ GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) /* Vector Floating-Point Sign-Injection Instructions */ GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) /* Vector Floating-Point Compare Instructions */ static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && require_rvf(s) && vext_check_isa_ill(s) && vext_check_mss(s, a->rd, a->rs1, a->rs2); } GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && require_rvf(s) && vext_check_isa_ill(s) && vext_check_ms(s, a->rd, a->rs2); } GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) /* Vector Floating-Point Classify Instruction */ GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) /* Vector Floating-Point Merge Instruction */ GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) { if (require_rvv(s) && require_rvf(s) && vext_check_isa_ill(s) && require_align(a->rd, s->lmul)) { gen_set_rm(s, RISCV_FRM_DYN); TCGv_i64 t1; if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { t1 = tcg_temp_new_i64(); /* NaN-box f[rs1] */ do_nanbox(s, t1, cpu_fpr[a->rs1]); tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), MAXSZ(s), MAXSZ(s), t1); } else { TCGv_ptr dest; TCGv_i32 desc; uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); static gen_helper_vmv_vx * const fns[3] = { gen_helper_vmv_v_x_h, gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, }; t1 = tcg_temp_new_i64(); /* NaN-box f[rs1] */ do_nanbox(s, t1, cpu_fpr[a->rs1]); dest = tcg_temp_new_ptr(); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, a->rd)); fns[s->sew - 1](dest, t1, tcg_env, desc); } finalize_rvv_inst(s); return true; } return false; } /* Single-Width Floating-Point/Integer Type-Convert Instructions */ #define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ { \ static gen_helper_gvec_3_ptr * const fns[3] = { \ gen_helper_##HELPER##_h, \ gen_helper_##HELPER##_w, \ gen_helper_##HELPER##_d \ }; \ return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ } GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) /* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) /* Widening Floating-Point/Integer Type-Convert Instructions */ /* * If the current SEW does not correspond to a supported IEEE floating-point * type, an illegal instruction exception is raised */ static bool opfv_widen_check(DisasContext *s, arg_rmr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_ds(s, a->rd, a->rs2, a->vm); } static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) { return opfv_widen_check(s, a) && require_rvf(s); } static bool opffv_widen_check(DisasContext *s, arg_rmr *a) { return opfv_widen_check(s, a) && require_rvfmin(s) && require_scale_rvfmin(s); } #define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ { \ if (CHECK(s, a)) { \ uint32_t data = 0; \ static gen_helper_gvec_3_ptr * const fns[2] = { \ gen_helper_##HELPER##_h, \ gen_helper_##HELPER##_w, \ }; \ gen_set_rm_chkfrm(s, FRM); \ \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs2), tcg_env, \ s->cfg_ptr->vlenb, \ s->cfg_ptr->vlenb, data, \ fns[s->sew - 1]); \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, RISCV_FRM_DYN) GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, RISCV_FRM_DYN) GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, RISCV_FRM_DYN) /* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, RISCV_FRM_RTZ) GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, RISCV_FRM_RTZ) static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) { return require_rvv(s) && require_scale_rvf(s) && vext_check_isa_ill(s) && /* OPFV widening instructions ignore vs1 check */ vext_check_ds(s, a->rd, a->rs2, a->vm); } #define GEN_OPFXV_WIDEN_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ { \ if (opfxv_widen_check(s, a)) { \ uint32_t data = 0; \ static gen_helper_gvec_3_ptr * const fns[3] = { \ gen_helper_##NAME##_b, \ gen_helper_##NAME##_h, \ gen_helper_##NAME##_w, \ }; \ gen_set_rm(s, RISCV_FRM_DYN); \ \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs2), tcg_env, \ s->cfg_ptr->vlenb, \ s->cfg_ptr->vlenb, data, \ fns[s->sew]); \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) /* Narrowing Floating-Point/Integer Type-Convert Instructions */ /* * If the current SEW does not correspond to a supported IEEE floating-point * type, an illegal instruction exception is raised */ static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) { return require_rvv(s) && vext_check_isa_ill(s) && /* OPFV narrowing instructions ignore vs1 check */ vext_check_sd(s, a->rd, a->rs2, a->vm); } static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) { return opfv_narrow_check(s, a) && require_rvf(s) && (s->sew != MO_64); } static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) { return opfv_narrow_check(s, a) && require_rvfmin(s) && require_scale_rvfmin(s); } static bool opffv_rod_narrow_check(DisasContext *s, arg_rmr *a) { return opfv_narrow_check(s, a) && require_rvf(s) && require_scale_rvf(s); } #define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ { \ if (CHECK(s, a)) { \ uint32_t data = 0; \ static gen_helper_gvec_3_ptr * const fns[2] = { \ gen_helper_##HELPER##_h, \ gen_helper_##HELPER##_w, \ }; \ gen_set_rm_chkfrm(s, FRM); \ \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs2), tcg_env, \ s->cfg_ptr->vlenb, \ s->cfg_ptr->vlenb, data, \ fns[s->sew - 1]); \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, RISCV_FRM_DYN) GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, RISCV_FRM_DYN) GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, RISCV_FRM_DYN) /* Reuse the helper function from vfncvt.f.f.w */ GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_rod_narrow_check, vfncvt_f_f_w, RISCV_FRM_ROD) static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) { return require_rvv(s) && require_scale_rvf(s) && vext_check_isa_ill(s) && /* OPFV narrowing instructions ignore vs1 check */ vext_check_sd(s, a->rd, a->rs2, a->vm); } #define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ { \ if (opxfv_narrow_check(s, a)) { \ uint32_t data = 0; \ static gen_helper_gvec_3_ptr * const fns[3] = { \ gen_helper_##HELPER##_b, \ gen_helper_##HELPER##_h, \ gen_helper_##HELPER##_w, \ }; \ gen_set_rm_chkfrm(s, FRM); \ \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, VTA, s->vta); \ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs2), tcg_env, \ s->cfg_ptr->vlenb, \ s->cfg_ptr->vlenb, data, \ fns[s->sew]); \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) /* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) /* *** Vector Reduction Operations */ /* Vector Single-Width Integer Reduction Instructions */ static bool reduction_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_reduction(s, a->rs2); } GEN_OPIVV_TRANS(vredsum_vs, reduction_check) GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) GEN_OPIVV_TRANS(vredmax_vs, reduction_check) GEN_OPIVV_TRANS(vredminu_vs, reduction_check) GEN_OPIVV_TRANS(vredmin_vs, reduction_check) GEN_OPIVV_TRANS(vredand_vs, reduction_check) GEN_OPIVV_TRANS(vredor_vs, reduction_check) GEN_OPIVV_TRANS(vredxor_vs, reduction_check) /* Vector Widening Integer Reduction Instructions */ static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) { return reduction_check(s, a) && (s->sew < MO_64) && ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); } GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) /* Vector Single-Width Floating-Point Reduction Instructions */ static bool freduction_check(DisasContext *s, arg_rmrr *a) { return reduction_check(s, a) && require_rvf(s); } GEN_OPFVV_TRANS(vfredusum_vs, freduction_check) GEN_OPFVV_TRANS(vfredosum_vs, freduction_check) GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) /* Vector Widening Floating-Point Reduction Instructions */ static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) { return reduction_widen_check(s, a) && require_rvf(s) && require_scale_rvf(s); } GEN_OPFVV_WIDEN_TRANS(vfwredusum_vs, freduction_widen_check) GEN_OPFVV_WIDEN_TRANS(vfwredosum_vs, freduction_widen_check) /* *** Vector Mask Operations */ /* Vector Mask-Register Logical Instructions */ #define GEN_MM_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_r *a) \ { \ if (require_rvv(s) && \ vext_check_isa_ill(s)) { \ uint32_t data = 0; \ gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = \ FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs2), tcg_env, \ s->cfg_ptr->vlenb, \ s->cfg_ptr->vlenb, data, fn); \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_MM_TRANS(vmand_mm) GEN_MM_TRANS(vmnand_mm) GEN_MM_TRANS(vmandn_mm) GEN_MM_TRANS(vmxor_mm) GEN_MM_TRANS(vmor_mm) GEN_MM_TRANS(vmnor_mm) GEN_MM_TRANS(vmorn_mm) GEN_MM_TRANS(vmxnor_mm) /* Vector count population in mask vcpop */ static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) { if (require_rvv(s) && vext_check_isa_ill(s) && s->vstart_eq_zero) { TCGv_ptr src2, mask; TCGv dst; TCGv_i32 desc; uint32_t data = 0; data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); mask = tcg_temp_new_ptr(); src2 = tcg_temp_new_ptr(); dst = dest_gpr(s, a->rd); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(src2, tcg_env, vreg_ofs(s, a->rs2)); tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); gen_helper_vcpop_m(dst, mask, src2, tcg_env, desc); gen_set_gpr(s, a->rd, dst); return true; } return false; } /* vmfirst find-first-set mask bit */ static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) { if (require_rvv(s) && vext_check_isa_ill(s) && s->vstart_eq_zero) { TCGv_ptr src2, mask; TCGv dst; TCGv_i32 desc; uint32_t data = 0; data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); mask = tcg_temp_new_ptr(); src2 = tcg_temp_new_ptr(); dst = dest_gpr(s, a->rd); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data)); tcg_gen_addi_ptr(src2, tcg_env, vreg_ofs(s, a->rs2)); tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); gen_helper_vfirst_m(dst, mask, src2, tcg_env, desc); gen_set_gpr(s, a->rd, dst); return true; } return false; } /* * vmsbf.m set-before-first mask bit * vmsif.m set-including-first mask bit * vmsof.m set-only-first mask bit */ #define GEN_M_TRANS(NAME) \ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ { \ if (require_rvv(s) && \ vext_check_isa_ill(s) && \ require_vm(a->vm, a->rd) && \ (a->rd != a->rs2) && \ s->vstart_eq_zero) { \ uint32_t data = 0; \ gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ \ data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = \ FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ data = FIELD_DP32(data, VDATA, VMA, s->vma); \ tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ tcg_env, s->cfg_ptr->vlenb, \ s->cfg_ptr->vlenb, \ data, fn); \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_M_TRANS(vmsbf_m) GEN_M_TRANS(vmsif_m) GEN_M_TRANS(vmsof_m) /* * Vector Iota Instruction * * 1. The destination register cannot overlap the source register. * 2. If masked, cannot overlap the mask register ('v0'). * 3. An illegal instruction exception is raised if vstart is non-zero. */ static bool trans_viota_m(DisasContext *s, arg_viota_m *a) { if (require_rvv(s) && vext_check_isa_ill(s) && !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && require_vm(a->vm, a->rd) && require_align(a->rd, s->lmul) && s->vstart_eq_zero) { uint32_t data = 0; data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); static gen_helper_gvec_3_ptr * const fns[4] = { gen_helper_viota_m_b, gen_helper_viota_m_h, gen_helper_viota_m_w, gen_helper_viota_m_d, }; tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), vreg_ofs(s, a->rs2), tcg_env, s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data, fns[s->sew]); finalize_rvv_inst(s); return true; } return false; } /* Vector Element Index Instruction */ static bool trans_vid_v(DisasContext *s, arg_vid_v *a) { if (require_rvv(s) && vext_check_isa_ill(s) && require_align(a->rd, s->lmul) && require_vm(a->vm, a->rd)) { uint32_t data = 0; data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); static gen_helper_gvec_2_ptr * const fns[4] = { gen_helper_vid_v_b, gen_helper_vid_v_h, gen_helper_vid_v_w, gen_helper_vid_v_d, }; tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), tcg_env, s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data, fns[s->sew]); finalize_rvv_inst(s); return true; } return false; } /* *** Vector Permutation Instructions */ static void load_element(TCGv_i64 dest, TCGv_ptr base, int ofs, int sew, bool sign) { switch (sew) { case MO_8: if (!sign) { tcg_gen_ld8u_i64(dest, base, ofs); } else { tcg_gen_ld8s_i64(dest, base, ofs); } break; case MO_16: if (!sign) { tcg_gen_ld16u_i64(dest, base, ofs); } else { tcg_gen_ld16s_i64(dest, base, ofs); } break; case MO_32: if (!sign) { tcg_gen_ld32u_i64(dest, base, ofs); } else { tcg_gen_ld32s_i64(dest, base, ofs); } break; case MO_64: tcg_gen_ld_i64(dest, base, ofs); break; default: g_assert_not_reached(); } } /* offset of the idx element with base register r */ static uint32_t endian_ofs(DisasContext *s, int r, int idx) { #if HOST_BIG_ENDIAN return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); #else return vreg_ofs(s, r) + (idx << s->sew); #endif } /* adjust the index according to the endian */ static void endian_adjust(TCGv_i32 ofs, int sew) { #if HOST_BIG_ENDIAN tcg_gen_xori_i32(ofs, ofs, 7 >> sew); #endif } /* Load idx >= VLMAX ? 0 : vreg[idx] */ static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, int vreg, TCGv idx, int vlmax) { TCGv_i32 ofs = tcg_temp_new_i32(); TCGv_ptr base = tcg_temp_new_ptr(); TCGv_i64 t_idx = tcg_temp_new_i64(); TCGv_i64 t_vlmax, t_zero; /* * Mask the index to the length so that we do * not produce an out-of-range load. */ tcg_gen_trunc_tl_i32(ofs, idx); tcg_gen_andi_i32(ofs, ofs, vlmax - 1); /* Convert the index to an offset. */ endian_adjust(ofs, s->sew); tcg_gen_shli_i32(ofs, ofs, s->sew); /* Convert the index to a pointer. */ tcg_gen_ext_i32_ptr(base, ofs); tcg_gen_add_ptr(base, base, tcg_env); /* Perform the load. */ load_element(dest, base, vreg_ofs(s, vreg), s->sew, false); /* Flush out-of-range indexing to zero. */ t_vlmax = tcg_constant_i64(vlmax); t_zero = tcg_constant_i64(0); tcg_gen_extu_tl_i64(t_idx, idx); tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, t_vlmax, dest, t_zero); } static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, int vreg, int idx, bool sign) { load_element(dest, tcg_env, endian_ofs(s, vreg, idx), s->sew, sign); } /* Integer Scalar Move Instruction */ static void store_element(TCGv_i64 val, TCGv_ptr base, int ofs, int sew) { switch (sew) { case MO_8: tcg_gen_st8_i64(val, base, ofs); break; case MO_16: tcg_gen_st16_i64(val, base, ofs); break; case MO_32: tcg_gen_st32_i64(val, base, ofs); break; case MO_64: tcg_gen_st_i64(val, base, ofs); break; default: g_assert_not_reached(); } } /* * Store vreg[idx] = val. * The index must be in range of VLMAX. */ static void vec_element_storei(DisasContext *s, int vreg, int idx, TCGv_i64 val) { store_element(val, tcg_env, endian_ofs(s, vreg, idx), s->sew); } /* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) { if (require_rvv(s) && vext_check_isa_ill(s)) { TCGv_i64 t1; TCGv dest; t1 = tcg_temp_new_i64(); dest = tcg_temp_new(); /* * load vreg and sign-extend to 64 bits, * then truncate to XLEN bits before storing to gpr. */ vec_element_loadi(s, t1, a->rs2, 0, true); tcg_gen_trunc_i64_tl(dest, t1); gen_set_gpr(s, a->rd, dest); tcg_gen_movi_tl(cpu_vstart, 0); finalize_rvv_inst(s); return true; } return false; } /* vmv.s.x vd, rs1 # vd[0] = rs1 */ static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) { if (require_rvv(s) && vext_check_isa_ill(s)) { /* This instruction ignores LMUL and vector register groups */ TCGv_i64 t1; TCGv s1; TCGLabel *over = gen_new_label(); tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); t1 = tcg_temp_new_i64(); /* * load gpr and sign-extend to 64 bits, * then truncate to SEW bits when storing to vreg. */ s1 = get_gpr(s, a->rs1, EXT_NONE); tcg_gen_ext_tl_i64(t1, s1); vec_element_storei(s, a->rd, 0, t1); gen_set_label(over); tcg_gen_movi_tl(cpu_vstart, 0); finalize_rvv_inst(s); return true; } return false; } /* Floating-Point Scalar Move Instructions */ static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) { if (require_rvv(s) && require_rvf(s) && vext_check_isa_ill(s)) { gen_set_rm(s, RISCV_FRM_DYN); unsigned int ofs = (8 << s->sew); unsigned int len = 64 - ofs; TCGv_i64 t_nan; vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); /* NaN-box f[rd] as necessary for SEW */ if (len) { t_nan = tcg_constant_i64(UINT64_MAX); tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], t_nan, ofs, len); } mark_fs_dirty(s); tcg_gen_movi_tl(cpu_vstart, 0); finalize_rvv_inst(s); return true; } return false; } /* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) { if (require_rvv(s) && require_rvf(s) && vext_check_isa_ill(s)) { gen_set_rm(s, RISCV_FRM_DYN); /* The instructions ignore LMUL and vector register group. */ TCGv_i64 t1; TCGLabel *over = gen_new_label(); /* if vstart >= vl, skip vector register write back */ tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); /* NaN-box f[rs1] */ t1 = tcg_temp_new_i64(); do_nanbox(s, t1, cpu_fpr[a->rs1]); vec_element_storei(s, a->rd, 0, t1); gen_set_label(over); tcg_gen_movi_tl(cpu_vstart, 0); finalize_rvv_inst(s); return true; } return false; } /* Vector Slide Instructions */ static bool slideup_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_slide(s, a->rd, a->rs2, a->vm, true); } GEN_OPIVX_TRANS(vslideup_vx, slideup_check) GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) static bool slidedown_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && vext_check_slide(s, a->rd, a->rs2, a->vm, false); } GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) /* Vector Floating-Point Slide Instructions */ static bool fslideup_check(DisasContext *s, arg_rmrr *a) { return slideup_check(s, a) && require_rvf(s); } static bool fslidedown_check(DisasContext *s, arg_rmrr *a) { return slidedown_check(s, a) && require_rvf(s); } GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) /* Vector Register Gather Instruction */ static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && require_align(a->rd, s->lmul) && require_align(a->rs1, s->lmul) && require_align(a->rs2, s->lmul) && (a->rd != a->rs2 && a->rd != a->rs1) && require_vm(a->vm, a->rd); } static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) { int8_t emul = MO_16 - s->sew + s->lmul; return require_rvv(s) && vext_check_isa_ill(s) && (emul >= -3 && emul <= 3) && require_align(a->rd, s->lmul) && require_align(a->rs1, emul) && require_align(a->rs2, s->lmul) && (a->rd != a->rs2 && a->rd != a->rs1) && !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1 << MAX(emul, 0)) && !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1 << MAX(s->lmul, 0)) && require_vm(a->vm, a->rd); } GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) { return require_rvv(s) && vext_check_isa_ill(s) && require_align(a->rd, s->lmul) && require_align(a->rs2, s->lmul) && (a->rd != a->rs2) && require_vm(a->vm, a->rd); } /* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) { if (!vrgather_vx_check(s, a)) { return false; } if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { int vlmax = vext_get_vlmax(s->cfg_ptr->vlenb, s->sew, s->lmul); TCGv_i64 dest = tcg_temp_new_i64(); if (a->rs1 == 0) { vec_element_loadi(s, dest, a->rs2, 0, false); } else { vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); } tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), MAXSZ(s), MAXSZ(s), dest); finalize_rvv_inst(s); } else { static gen_helper_opivx * const fns[4] = { gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d }; return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); } return true; } /* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) { if (!vrgather_vx_check(s, a)) { return false; } if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { int vlmax = vext_get_vlmax(s->cfg_ptr->vlenb, s->sew, s->lmul); if (a->rs1 >= vlmax) { tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), MAXSZ(s), MAXSZ(s), 0); } else { tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), endian_ofs(s, a->rs2, a->rs1), MAXSZ(s), MAXSZ(s)); } finalize_rvv_inst(s); } else { static gen_helper_opivx * const fns[4] = { gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d }; return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s, IMM_ZX); } return true; } /* * Vector Compress Instruction * * The destination vector register group cannot overlap the * source vector register group or the source mask register. */ static bool vcompress_vm_check(DisasContext *s, arg_r *a) { return require_rvv(s) && vext_check_isa_ill(s) && require_align(a->rd, s->lmul) && require_align(a->rs2, s->lmul) && (a->rd != a->rs2) && !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && s->vstart_eq_zero; } static bool trans_vcompress_vm(DisasContext *s, arg_r *a) { if (vcompress_vm_check(s, a)) { uint32_t data = 0; static gen_helper_gvec_4_ptr * const fns[4] = { gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, }; data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), tcg_env, s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data, fns[s->sew]); finalize_rvv_inst(s); return true; } return false; } /* * Whole Vector Register Move Instructions depend on vtype register(vsew). * Thus, we need to check vill bit. (Section 16.6) */ #define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ { \ if (require_rvv(s) && \ vext_check_isa_ill(s) && \ QEMU_IS_ALIGNED(a->rd, LEN) && \ QEMU_IS_ALIGNED(a->rs2, LEN)) { \ uint32_t maxsz = s->cfg_ptr->vlenb * LEN; \ if (s->vstart_eq_zero) { \ tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), \ vreg_ofs(s, a->rs2), maxsz, maxsz); \ } else { \ tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ tcg_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ } \ finalize_rvv_inst(s); \ return true; \ } \ return false; \ } GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) { uint8_t from = (s->sew + 3) - div; bool ret = require_rvv(s) && (from >= 3 && from <= 8) && (a->rd != a->rs2) && require_align(a->rd, s->lmul) && require_align(a->rs2, s->lmul - div) && require_vm(a->vm, a->rd) && require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); return ret; } static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) { uint32_t data = 0; gen_helper_gvec_3_ptr *fn; static gen_helper_gvec_3_ptr * const fns[6][4] = { { NULL, gen_helper_vzext_vf2_h, gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d }, { NULL, NULL, gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, }, { NULL, NULL, NULL, gen_helper_vzext_vf8_d }, { NULL, gen_helper_vsext_vf2_h, gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d }, { NULL, NULL, gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, }, { NULL, NULL, NULL, gen_helper_vsext_vf8_d } }; fn = fns[seq][s->sew]; if (fn == NULL) { return false; } data = FIELD_DP32(data, VDATA, VM, a->vm); data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, VTA, s->vta); data = FIELD_DP32(data, VDATA, VMA, s->vma); tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), vreg_ofs(s, a->rs2), tcg_env, s->cfg_ptr->vlenb, s->cfg_ptr->vlenb, data, fn); finalize_rvv_inst(s); return true; } /* Vector Integer Extension */ #define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ { \ if (int_ext_check(s, a, DIV)) { \ return int_ext_op(s, a, SEQ); \ } \ return false; \ } GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) GEN_INT_EXT_TRANS(vsext_vf8, 3, 5)