/* * RISC-V GDB Server Stub * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "exec/gdbstub.h" #include "cpu.h" struct TypeSize { const char *gdb_type; const char *id; int size; const char suffix; }; static const struct TypeSize vec_lanes[] = { /* quads */ { "uint128", "quads", 128, 'q' }, /* 64 bit */ { "uint64", "longs", 64, 'l' }, /* 32 bit */ { "uint32", "words", 32, 'w' }, /* 16 bit */ { "uint16", "shorts", 16, 's' }, /* * TODO: currently there is no reliable way of telling * if the remote gdb actually understands ieee_half so * we don't expose it in the target description for now. * { "ieee_half", 16, 'h', 'f' }, */ /* bytes */ { "uint8", "bytes", 8, 'b' }, }; int riscv_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; if (n < 32) { return gdb_get_regl(mem_buf, env->gpr[n]); } else if (n == 32) { return gdb_get_regl(mem_buf, env->pc); } return 0; } int riscv_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; if (n == 0) { /* discard writes to x0 */ return sizeof(target_ulong); } else if (n < 32) { env->gpr[n] = ldtul_p(mem_buf); return sizeof(target_ulong); } else if (n == 32) { env->pc = ldtul_p(mem_buf); return sizeof(target_ulong); } return 0; } static int riscv_gdb_get_fpu(CPURISCVState *env, GByteArray *buf, int n) { if (n < 32) { if (env->misa_ext & RVD) { return gdb_get_reg64(buf, env->fpr[n]); } if (env->misa_ext & RVF) { return gdb_get_reg32(buf, env->fpr[n]); } /* there is hole between ft11 and fflags in fpu.xml */ } else if (n < 36 && n > 32) { target_ulong val = 0; int result; /* * CSR_FFLAGS is at index 1 in csr_register, and gdb says it is FP * register 33, so we recalculate the map index. * This also works for CSR_FRM and CSR_FCSR. */ result = riscv_csrrw_debug(env, n - 32, &val, 0, 0); if (result == RISCV_EXCP_NONE) { return gdb_get_regl(buf, val); } } return 0; } static int riscv_gdb_set_fpu(CPURISCVState *env, uint8_t *mem_buf, int n) { if (n < 32) { env->fpr[n] = ldq_p(mem_buf); /* always 64-bit */ return sizeof(uint64_t); /* there is hole between ft11 and fflags in fpu.xml */ } else if (n < 36 && n > 32) { target_ulong val = ldtul_p(mem_buf); int result; /* * CSR_FFLAGS is at index 1 in csr_register, and gdb says it is FP * register 33, so we recalculate the map index. * This also works for CSR_FRM and CSR_FCSR. */ result = riscv_csrrw_debug(env, n - 32, NULL, val, -1); if (result == RISCV_EXCP_NONE) { return sizeof(target_ulong); } } return 0; } /* * Convert register index number passed by GDB to the correspond * vector CSR number. Vector CSRs are defined after vector registers * in dynamic generated riscv-vector.xml, thus the starting register index * of vector CSRs is 32. * Return 0 if register index number is out of range. */ static int riscv_gdb_vector_csrno(int num_regs) { /* * The order of vector CSRs in the switch case * should match with the order defined in csr_ops[]. */ switch (num_regs) { case 32: return CSR_VSTART; case 33: return CSR_VXSAT; case 34: return CSR_VXRM; case 35: return CSR_VCSR; case 36: return CSR_VL; case 37: return CSR_VTYPE; case 38: return CSR_VLENB; default: /* Unknown register. */ return 0; } } static int riscv_gdb_get_vector(CPURISCVState *env, GByteArray *buf, int n) { uint16_t vlenb = env_archcpu(env)->cfg.vlen >> 3; if (n < 32) { int i; int cnt = 0; for (i = 0; i < vlenb; i += 8) { cnt += gdb_get_reg64(buf, env->vreg[(n * vlenb + i) / 8]); } return cnt; } int csrno = riscv_gdb_vector_csrno(n); if (!csrno) { return 0; } target_ulong val = 0; int result = riscv_csrrw_debug(env, csrno, &val, 0, 0); if (result == 0) { return gdb_get_regl(buf, val); } return 0; } static int riscv_gdb_set_vector(CPURISCVState *env, uint8_t *mem_buf, int n) { uint16_t vlenb = env_archcpu(env)->cfg.vlen >> 3; if (n < 32) { int i; for (i = 0; i < vlenb; i += 8) { env->vreg[(n * vlenb + i) / 8] = ldq_p(mem_buf + i); } return vlenb; } int csrno = riscv_gdb_vector_csrno(n); if (!csrno) { return 0; } target_ulong val = ldtul_p(mem_buf); int result = riscv_csrrw_debug(env, csrno, NULL, val, -1); if (result == 0) { return sizeof(target_ulong); } return 0; } static int riscv_gdb_get_csr(CPURISCVState *env, GByteArray *buf, int n) { if (n < CSR_TABLE_SIZE) { target_ulong val = 0; int result; result = riscv_csrrw_debug(env, n, &val, 0, 0); if (result == RISCV_EXCP_NONE) { return gdb_get_regl(buf, val); } } return 0; } static int riscv_gdb_set_csr(CPURISCVState *env, uint8_t *mem_buf, int n) { if (n < CSR_TABLE_SIZE) { target_ulong val = ldtul_p(mem_buf); int result; result = riscv_csrrw_debug(env, n, NULL, val, -1); if (result == RISCV_EXCP_NONE) { return sizeof(target_ulong); } } return 0; } static int riscv_gdb_get_virtual(CPURISCVState *cs, GByteArray *buf, int n) { if (n == 0) { #ifdef CONFIG_USER_ONLY return gdb_get_regl(buf, 0); #else return gdb_get_regl(buf, cs->priv); #endif } return 0; } static int riscv_gdb_set_virtual(CPURISCVState *cs, uint8_t *mem_buf, int n) { if (n == 0) { #ifndef CONFIG_USER_ONLY cs->priv = ldtul_p(mem_buf) & 0x3; if (cs->priv == PRV_H) { cs->priv = PRV_S; } #endif return sizeof(target_ulong); } return 0; } static int riscv_gen_dynamic_csr_xml(CPUState *cs, int base_reg) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; GString *s = g_string_new(NULL); riscv_csr_predicate_fn predicate; int bitsize = 16 << env->misa_mxl_max; int i; /* Until gdb knows about 128-bit registers */ if (bitsize > 64) { bitsize = 64; } g_string_printf(s, ""); g_string_append_printf(s, ""); g_string_append_printf(s, ""); for (i = 0; i < CSR_TABLE_SIZE; i++) { predicate = csr_ops[i].predicate; if (predicate && (predicate(env, i) == RISCV_EXCP_NONE)) { if (csr_ops[i].name) { g_string_append_printf(s, "", base_reg + i); } } g_string_append_printf(s, ""); cpu->dyn_csr_xml = g_string_free(s, false); return CSR_TABLE_SIZE; } static int ricsv_gen_dynamic_vector_xml(CPUState *cs, int base_reg) { RISCVCPU *cpu = RISCV_CPU(cs); GString *s = g_string_new(NULL); g_autoptr(GString) ts = g_string_new(""); int reg_width = cpu->cfg.vlen; int num_regs = 0; int i; g_string_printf(s, ""); g_string_append_printf(s, ""); g_string_append_printf(s, ""); /* First define types and totals in a whole VL */ for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) { int count = reg_width / vec_lanes[i].size; g_string_printf(ts, "%s", vec_lanes[i].id); g_string_append_printf(s, "", ts->str, vec_lanes[i].gdb_type, count); } /* Define unions */ g_string_append_printf(s, ""); for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) { g_string_append_printf(s, "", vec_lanes[i].suffix, vec_lanes[i].id); } g_string_append(s, ""); /* Define vector registers */ for (i = 0; i < 32; i++) { g_string_append_printf(s, "", i, reg_width, base_reg++); num_regs++; } /* Define vector CSRs */ const char *vector_csrs[7] = { "vstart", "vxsat", "vxrm", "vcsr", "vl", "vtype", "vlenb" }; for (i = 0; i < 7; i++) { g_string_append_printf(s, "", vector_csrs[i], TARGET_LONG_BITS, base_reg++); num_regs++; } g_string_append_printf(s, ""); cpu->dyn_vreg_xml = g_string_free(s, false); return num_regs; } void riscv_cpu_register_gdb_regs_for_features(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; if (env->misa_ext & RVD) { gdb_register_coprocessor(cs, riscv_gdb_get_fpu, riscv_gdb_set_fpu, 36, "riscv-64bit-fpu.xml", 0); } else if (env->misa_ext & RVF) { gdb_register_coprocessor(cs, riscv_gdb_get_fpu, riscv_gdb_set_fpu, 36, "riscv-32bit-fpu.xml", 0); } if (env->misa_ext & RVV) { gdb_register_coprocessor(cs, riscv_gdb_get_vector, riscv_gdb_set_vector, ricsv_gen_dynamic_vector_xml(cs, cs->gdb_num_regs), "riscv-vector.xml", 0); } #if defined(TARGET_RISCV32) gdb_register_coprocessor(cs, riscv_gdb_get_virtual, riscv_gdb_set_virtual, 1, "riscv-32bit-virtual.xml", 0); #elif defined(TARGET_RISCV64) gdb_register_coprocessor(cs, riscv_gdb_get_virtual, riscv_gdb_set_virtual, 1, "riscv-64bit-virtual.xml", 0); #endif gdb_register_coprocessor(cs, riscv_gdb_get_csr, riscv_gdb_set_csr, riscv_gen_dynamic_csr_xml(cs, cs->gdb_num_regs), "riscv-csr.xml", 0); }