/* * Power ISA decode for Fixed-Point Facility instructions * * Copyright (c) 2021 Instituto de Pesquisas Eldorado (eldorado.org.br) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * Fixed-Point Load/Store Instructions */ static bool do_ldst(DisasContext *ctx, int rt, int ra, TCGv displ, bool update, bool store, MemOp mop) { TCGv ea; if (update && (ra == 0 || (!store && ra == rt))) { gen_invalid(ctx); return true; } gen_set_access_type(ctx, ACCESS_INT); ea = do_ea_calc(ctx, ra, displ); mop ^= ctx->default_tcg_memop_mask; if (store) { tcg_gen_qemu_st_tl(cpu_gpr[rt], ea, ctx->mem_idx, mop); } else { tcg_gen_qemu_ld_tl(cpu_gpr[rt], ea, ctx->mem_idx, mop); } if (update) { tcg_gen_mov_tl(cpu_gpr[ra], ea); } return true; } static bool do_ldst_D(DisasContext *ctx, arg_D *a, bool update, bool store, MemOp mop) { return do_ldst(ctx, a->rt, a->ra, tcg_constant_tl(a->si), update, store, mop); } static bool do_ldst_PLS_D(DisasContext *ctx, arg_PLS_D *a, bool update, bool store, MemOp mop) { arg_D d; if (!resolve_PLS_D(ctx, &d, a)) { return true; } return do_ldst_D(ctx, &d, update, store, mop); } static bool do_ldst_X(DisasContext *ctx, arg_X *a, bool update, bool store, MemOp mop) { return do_ldst(ctx, a->rt, a->ra, cpu_gpr[a->rb], update, store, mop); } static bool do_ldst_quad(DisasContext *ctx, arg_D *a, bool store, bool prefixed) { #if defined(TARGET_PPC64) TCGv ea; TCGv_i64 lo, hi; TCGv_i128 t16; REQUIRE_INSNS_FLAGS(ctx, 64BX); if (!prefixed && !(ctx->insns_flags2 & PPC2_LSQ_ISA207)) { /* lq and stq were privileged prior to V. 2.07 */ REQUIRE_SV(ctx); if (ctx->le_mode) { gen_align_no_le(ctx); return true; } } if (!store && unlikely(a->ra == a->rt)) { gen_invalid(ctx); return true; } gen_set_access_type(ctx, ACCESS_INT); ea = do_ea_calc(ctx, a->ra, tcg_constant_tl(a->si)); if (ctx->le_mode && prefixed) { lo = cpu_gpr[a->rt]; hi = cpu_gpr[a->rt + 1]; } else { lo = cpu_gpr[a->rt + 1]; hi = cpu_gpr[a->rt]; } t16 = tcg_temp_new_i128(); if (store) { tcg_gen_concat_i64_i128(t16, lo, hi); tcg_gen_qemu_st_i128(t16, ea, ctx->mem_idx, DEF_MEMOP(MO_128)); } else { tcg_gen_qemu_ld_i128(t16, ea, ctx->mem_idx, DEF_MEMOP(MO_128)); tcg_gen_extr_i128_i64(lo, hi, t16); } #else qemu_build_not_reached(); #endif return true; } static bool do_ldst_quad_PLS_D(DisasContext *ctx, arg_PLS_D *a, bool store) { arg_D d; if (!resolve_PLS_D(ctx, &d, a)) { return true; } return do_ldst_quad(ctx, &d, store, true); } /* Load Byte and Zero */ TRANS(LBZ, do_ldst_D, false, false, MO_UB) TRANS(LBZX, do_ldst_X, false, false, MO_UB) TRANS(LBZU, do_ldst_D, true, false, MO_UB) TRANS(LBZUX, do_ldst_X, true, false, MO_UB) TRANS(PLBZ, do_ldst_PLS_D, false, false, MO_UB) /* Load Halfword and Zero */ TRANS(LHZ, do_ldst_D, false, false, MO_UW) TRANS(LHZX, do_ldst_X, false, false, MO_UW) TRANS(LHZU, do_ldst_D, true, false, MO_UW) TRANS(LHZUX, do_ldst_X, true, false, MO_UW) TRANS(PLHZ, do_ldst_PLS_D, false, false, MO_UW) /* Load Halfword Algebraic */ TRANS(LHA, do_ldst_D, false, false, MO_SW) TRANS(LHAX, do_ldst_X, false, false, MO_SW) TRANS(LHAU, do_ldst_D, true, false, MO_SW) TRANS(LHAXU, do_ldst_X, true, false, MO_SW) TRANS(PLHA, do_ldst_PLS_D, false, false, MO_SW) /* Load Word and Zero */ TRANS(LWZ, do_ldst_D, false, false, MO_UL) TRANS(LWZX, do_ldst_X, false, false, MO_UL) TRANS(LWZU, do_ldst_D, true, false, MO_UL) TRANS(LWZUX, do_ldst_X, true, false, MO_UL) TRANS(PLWZ, do_ldst_PLS_D, false, false, MO_UL) /* Load Word Algebraic */ TRANS64(LWA, do_ldst_D, false, false, MO_SL) TRANS64(LWAX, do_ldst_X, false, false, MO_SL) TRANS64(LWAUX, do_ldst_X, true, false, MO_SL) TRANS64(PLWA, do_ldst_PLS_D, false, false, MO_SL) /* Load Doubleword */ TRANS64(LD, do_ldst_D, false, false, MO_UQ) TRANS64(LDX, do_ldst_X, false, false, MO_UQ) TRANS64(LDU, do_ldst_D, true, false, MO_UQ) TRANS64(LDUX, do_ldst_X, true, false, MO_UQ) TRANS64(PLD, do_ldst_PLS_D, false, false, MO_UQ) /* Load Quadword */ TRANS64(LQ, do_ldst_quad, false, false); TRANS64(PLQ, do_ldst_quad_PLS_D, false); /* Store Byte */ TRANS(STB, do_ldst_D, false, true, MO_UB) TRANS(STBX, do_ldst_X, false, true, MO_UB) TRANS(STBU, do_ldst_D, true, true, MO_UB) TRANS(STBUX, do_ldst_X, true, true, MO_UB) TRANS(PSTB, do_ldst_PLS_D, false, true, MO_UB) /* Store Halfword */ TRANS(STH, do_ldst_D, false, true, MO_UW) TRANS(STHX, do_ldst_X, false, true, MO_UW) TRANS(STHU, do_ldst_D, true, true, MO_UW) TRANS(STHUX, do_ldst_X, true, true, MO_UW) TRANS(PSTH, do_ldst_PLS_D, false, true, MO_UW) /* Store Word */ TRANS(STW, do_ldst_D, false, true, MO_UL) TRANS(STWX, do_ldst_X, false, true, MO_UL) TRANS(STWU, do_ldst_D, true, true, MO_UL) TRANS(STWUX, do_ldst_X, true, true, MO_UL) TRANS(PSTW, do_ldst_PLS_D, false, true, MO_UL) /* Store Doubleword */ TRANS64(STD, do_ldst_D, false, true, MO_UQ) TRANS64(STDX, do_ldst_X, false, true, MO_UQ) TRANS64(STDU, do_ldst_D, true, true, MO_UQ) TRANS64(STDUX, do_ldst_X, true, true, MO_UQ) TRANS64(PSTD, do_ldst_PLS_D, false, true, MO_UQ) /* Store Quadword */ TRANS64(STQ, do_ldst_quad, true, false); TRANS64(PSTQ, do_ldst_quad_PLS_D, true); /* * Fixed-Point Compare Instructions */ static bool do_cmp_X(DisasContext *ctx, arg_X_bfl *a, bool s) { if ((ctx->insns_flags & PPC_64B) == 0) { /* * For 32-bit implementations, The Programming Environments Manual says * that "the L field must be cleared, otherwise the instruction form is * invalid." It seems, however, that most 32-bit CPUs ignore invalid * forms (e.g., section "Instruction Formats" of the 405 and 440 * manuals, "Integer Compare Instructions" of the 601 manual), with the * notable exception of the e500 and e500mc, where L=1 was reported to * cause an exception. */ if (a->l) { if ((ctx->insns_flags2 & PPC2_BOOKE206)) { /* * For 32-bit Book E v2.06 implementations (i.e. e500/e500mc), * generate an illegal instruction exception. */ return false; } else { qemu_log_mask(LOG_GUEST_ERROR, "Invalid form of CMP%s at 0x" TARGET_FMT_lx ", L = 1\n", s ? "" : "L", ctx->cia); } } gen_op_cmp32(cpu_gpr[a->ra], cpu_gpr[a->rb], s, a->bf); return true; } /* For 64-bit implementations, deal with bit L accordingly. */ if (a->l) { gen_op_cmp(cpu_gpr[a->ra], cpu_gpr[a->rb], s, a->bf); } else { gen_op_cmp32(cpu_gpr[a->ra], cpu_gpr[a->rb], s, a->bf); } return true; } static bool do_cmp_D(DisasContext *ctx, arg_D_bf *a, bool s) { if ((ctx->insns_flags & PPC_64B) == 0) { /* * For 32-bit implementations, The Programming Environments Manual says * that "the L field must be cleared, otherwise the instruction form is * invalid." It seems, however, that most 32-bit CPUs ignore invalid * forms (e.g., section "Instruction Formats" of the 405 and 440 * manuals, "Integer Compare Instructions" of the 601 manual), with the * notable exception of the e500 and e500mc, where L=1 was reported to * cause an exception. */ if (a->l) { if ((ctx->insns_flags2 & PPC2_BOOKE206)) { /* * For 32-bit Book E v2.06 implementations (i.e. e500/e500mc), * generate an illegal instruction exception. */ return false; } else { qemu_log_mask(LOG_GUEST_ERROR, "Invalid form of CMP%s at 0x" TARGET_FMT_lx ", L = 1\n", s ? "I" : "LI", ctx->cia); } } gen_op_cmp32(cpu_gpr[a->ra], tcg_constant_tl(a->imm), s, a->bf); return true; } /* For 64-bit implementations, deal with bit L accordingly. */ if (a->l) { gen_op_cmp(cpu_gpr[a->ra], tcg_constant_tl(a->imm), s, a->bf); } else { gen_op_cmp32(cpu_gpr[a->ra], tcg_constant_tl(a->imm), s, a->bf); } return true; } TRANS(CMP, do_cmp_X, true); TRANS(CMPL, do_cmp_X, false); TRANS(CMPI, do_cmp_D, true); TRANS(CMPLI, do_cmp_D, false); /* * Fixed-Point Arithmetic Instructions */ static bool trans_ADDI(DisasContext *ctx, arg_D *a) { if (a->ra) { tcg_gen_addi_tl(cpu_gpr[a->rt], cpu_gpr[a->ra], a->si); } else { tcg_gen_movi_tl(cpu_gpr[a->rt], a->si); } return true; } static bool trans_PADDI(DisasContext *ctx, arg_PLS_D *a) { arg_D d; if (!resolve_PLS_D(ctx, &d, a)) { return true; } return trans_ADDI(ctx, &d); } static bool trans_ADDIS(DisasContext *ctx, arg_D *a) { a->si <<= 16; return trans_ADDI(ctx, a); } static bool trans_ADDPCIS(DisasContext *ctx, arg_DX *a) { REQUIRE_INSNS_FLAGS2(ctx, ISA300); tcg_gen_movi_tl(cpu_gpr[a->rt], ctx->base.pc_next + (a->d << 16)); return true; } static bool trans_ADDEX(DisasContext *ctx, arg_X *a) { REQUIRE_INSNS_FLAGS2(ctx, ISA300); gen_op_arith_add(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], cpu_gpr[a->rb], cpu_ov, cpu_ov32, true, true, false, false); return true; } static bool do_add_D(DisasContext *ctx, arg_D *a, bool add_ca, bool compute_ca, bool compute_ov, bool compute_rc0) { gen_op_arith_add(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], tcg_constant_tl(a->si), cpu_ca, cpu_ca32, add_ca, compute_ca, compute_ov, compute_rc0); return true; } static bool do_add_XO(DisasContext *ctx, arg_XO *a, bool add_ca, bool compute_ca) { gen_op_arith_add(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], cpu_gpr[a->rb], cpu_ca, cpu_ca32, add_ca, compute_ca, a->oe, a->rc); return true; } static bool do_add_const_XO(DisasContext *ctx, arg_XO_ta *a, TCGv const_val, bool add_ca, bool compute_ca) { gen_op_arith_add(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], const_val, cpu_ca, cpu_ca32, add_ca, compute_ca, a->oe, a->rc); return true; } TRANS(ADD, do_add_XO, false, false); TRANS(ADDC, do_add_XO, false, true); TRANS(ADDE, do_add_XO, true, true); TRANS(ADDME, do_add_const_XO, tcg_constant_tl(-1LL), true, true); TRANS(ADDZE, do_add_const_XO, tcg_constant_tl(0), true, true); TRANS(ADDIC, do_add_D, false, true, false, false); TRANS(ADDIC_, do_add_D, false, true, false, true); static bool trans_SUBFIC(DisasContext *ctx, arg_D *a) { gen_op_arith_subf(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], tcg_constant_tl(a->si), false, true, false, false); return true; } static bool do_subf_XO(DisasContext *ctx, arg_XO *a, bool add_ca, bool compute_ca) { gen_op_arith_subf(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], cpu_gpr[a->rb], add_ca, compute_ca, a->oe, a->rc); return true; } static bool do_subf_const_XO(DisasContext *ctx, arg_XO_ta *a, TCGv const_val, bool add_ca, bool compute_ca) { gen_op_arith_subf(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], const_val, add_ca, compute_ca, a->oe, a->rc); return true; } TRANS(SUBF, do_subf_XO, false, false) TRANS(SUBFC, do_subf_XO, false, true) TRANS(SUBFE, do_subf_XO, true, true) TRANS(SUBFME, do_subf_const_XO, tcg_constant_tl(-1LL), true, true) TRANS(SUBFZE, do_subf_const_XO, tcg_constant_tl(0), true, true) static bool trans_INVALID(DisasContext *ctx, arg_INVALID *a) { gen_invalid(ctx); return true; } static bool trans_PNOP(DisasContext *ctx, arg_PNOP *a) { return true; } static bool do_set_bool_cond(DisasContext *ctx, arg_X_bi *a, bool neg, bool rev) { REQUIRE_INSNS_FLAGS2(ctx, ISA310); uint32_t mask = 0x08 >> (a->bi & 0x03); TCGCond cond = rev ? TCG_COND_EQ : TCG_COND_NE; TCGv temp = tcg_temp_new(); TCGv zero = tcg_constant_tl(0); tcg_gen_extu_i32_tl(temp, cpu_crf[a->bi >> 2]); tcg_gen_andi_tl(temp, temp, mask); if (neg) { tcg_gen_negsetcond_tl(cond, cpu_gpr[a->rt], temp, zero); } else { tcg_gen_setcond_tl(cond, cpu_gpr[a->rt], temp, zero); } return true; } TRANS(SETBC, do_set_bool_cond, false, false) TRANS(SETBCR, do_set_bool_cond, false, true) TRANS(SETNBC, do_set_bool_cond, true, false) TRANS(SETNBCR, do_set_bool_cond, true, true) static bool trans_CFUGED(DisasContext *ctx, arg_X *a) { REQUIRE_64BIT(ctx); REQUIRE_INSNS_FLAGS2(ctx, ISA310); #if defined(TARGET_PPC64) gen_helper_CFUGED(cpu_gpr[a->ra], cpu_gpr[a->rt], cpu_gpr[a->rb]); #else qemu_build_not_reached(); #endif return true; } static void do_cntzdm(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 mask, int64_t trail) { TCGv_i64 t0, t1; t0 = tcg_temp_new_i64(); t1 = tcg_temp_new_i64(); tcg_gen_and_i64(t0, src, mask); if (trail) { tcg_gen_ctzi_i64(t0, t0, -1); } else { tcg_gen_clzi_i64(t0, t0, -1); } tcg_gen_setcondi_i64(TCG_COND_NE, t1, t0, -1); tcg_gen_andi_i64(t0, t0, 63); tcg_gen_xori_i64(t0, t0, 63); if (trail) { tcg_gen_shl_i64(t0, mask, t0); tcg_gen_shl_i64(t0, t0, t1); } else { tcg_gen_shr_i64(t0, mask, t0); tcg_gen_shr_i64(t0, t0, t1); } tcg_gen_ctpop_i64(dst, t0); } static bool trans_CNTLZDM(DisasContext *ctx, arg_X *a) { REQUIRE_64BIT(ctx); REQUIRE_INSNS_FLAGS2(ctx, ISA310); #if defined(TARGET_PPC64) do_cntzdm(cpu_gpr[a->ra], cpu_gpr[a->rt], cpu_gpr[a->rb], false); #else qemu_build_not_reached(); #endif return true; } static bool trans_CNTTZDM(DisasContext *ctx, arg_X *a) { REQUIRE_64BIT(ctx); REQUIRE_INSNS_FLAGS2(ctx, ISA310); #if defined(TARGET_PPC64) do_cntzdm(cpu_gpr[a->ra], cpu_gpr[a->rt], cpu_gpr[a->rb], true); #else qemu_build_not_reached(); #endif return true; } static bool trans_PDEPD(DisasContext *ctx, arg_X *a) { REQUIRE_64BIT(ctx); REQUIRE_INSNS_FLAGS2(ctx, ISA310); #if defined(TARGET_PPC64) gen_helper_PDEPD(cpu_gpr[a->ra], cpu_gpr[a->rt], cpu_gpr[a->rb]); #else qemu_build_not_reached(); #endif return true; } static bool trans_PEXTD(DisasContext *ctx, arg_X *a) { REQUIRE_64BIT(ctx); REQUIRE_INSNS_FLAGS2(ctx, ISA310); #if defined(TARGET_PPC64) gen_helper_PEXTD(cpu_gpr[a->ra], cpu_gpr[a->rt], cpu_gpr[a->rb]); #else qemu_build_not_reached(); #endif return true; } static bool trans_ADDG6S(DisasContext *ctx, arg_X *a) { const target_ulong carry_bits = (target_ulong)-1 / 0xf; TCGv in1, in2, carryl, carryh, tmp; TCGv zero = tcg_constant_tl(0); REQUIRE_INSNS_FLAGS2(ctx, BCDA_ISA206); in1 = cpu_gpr[a->ra]; in2 = cpu_gpr[a->rb]; tmp = tcg_temp_new(); carryl = tcg_temp_new(); carryh = tcg_temp_new(); /* Addition with carry. */ tcg_gen_add2_tl(carryl, carryh, in1, zero, in2, zero); /* Addition without carry. */ tcg_gen_xor_tl(tmp, in1, in2); /* Difference between the two is carry in to each bit. */ tcg_gen_xor_tl(carryl, carryl, tmp); /* * The carry-out that we're looking for is the carry-in to * the next nibble. Shift the double-word down one nibble, * which puts all of the bits back into one word. */ tcg_gen_extract2_tl(carryl, carryl, carryh, 4); /* Invert, isolate the carry bits, and produce 6's. */ tcg_gen_andc_tl(carryl, tcg_constant_tl(carry_bits), carryl); tcg_gen_muli_tl(cpu_gpr[a->rt], carryl, 6); return true; } static bool trans_CDTBCD(DisasContext *ctx, arg_X_sa *a) { REQUIRE_INSNS_FLAGS2(ctx, BCDA_ISA206); gen_helper_CDTBCD(cpu_gpr[a->ra], cpu_gpr[a->rs]); return true; } static bool trans_CBCDTD(DisasContext *ctx, arg_X_sa *a) { REQUIRE_INSNS_FLAGS2(ctx, BCDA_ISA206); gen_helper_CBCDTD(cpu_gpr[a->ra], cpu_gpr[a->rs]); return true; } static bool do_hash(DisasContext *ctx, arg_X *a, bool priv, void (*helper)(TCGv_ptr, TCGv, TCGv, TCGv)) { TCGv ea; if (!(ctx->insns_flags2 & PPC2_ISA310)) { /* if version is before v3.1, this operation is a nop */ return true; } if (priv) { /* if instruction is privileged but the context is in user space */ REQUIRE_SV(ctx); } if (unlikely(a->ra == 0)) { /* if RA=0, the instruction form is invalid */ gen_invalid(ctx); return true; } ea = do_ea_calc(ctx, a->ra, tcg_constant_tl(a->rt)); helper(tcg_env, ea, cpu_gpr[a->ra], cpu_gpr[a->rb]); return true; } TRANS(HASHST, do_hash, false, gen_helper_HASHST) TRANS(HASHCHK, do_hash, false, gen_helper_HASHCHK) TRANS(HASHSTP, do_hash, true, gen_helper_HASHSTP) TRANS(HASHCHKP, do_hash, true, gen_helper_HASHCHKP)