/* * PowerPC integer and vector emulation helpers for QEMU. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "internal.h" #include "qemu/host-utils.h" #include "qemu/main-loop.h" #include "exec/helper-proto.h" #include "crypto/aes.h" #include "fpu/softfloat.h" #include "qapi/error.h" #include "qemu/guest-random.h" #include "helper_regs.h" /*****************************************************************************/ /* Fixed point operations helpers */ static inline void helper_update_ov_legacy(CPUPPCState *env, int ov) { if (unlikely(ov)) { env->so = env->ov = 1; } else { env->ov = 0; } } target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb, uint32_t oe) { uint64_t rt = 0; int overflow = 0; uint64_t dividend = (uint64_t)ra << 32; uint64_t divisor = (uint32_t)rb; if (unlikely(divisor == 0)) { overflow = 1; } else { rt = dividend / divisor; overflow = rt > UINT32_MAX; } if (unlikely(overflow)) { rt = 0; /* Undefined */ } if (oe) { helper_update_ov_legacy(env, overflow); } return (target_ulong)rt; } target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb, uint32_t oe) { int64_t rt = 0; int overflow = 0; int64_t dividend = (int64_t)ra << 32; int64_t divisor = (int64_t)((int32_t)rb); if (unlikely((divisor == 0) || ((divisor == -1ull) && (dividend == INT64_MIN)))) { overflow = 1; } else { rt = dividend / divisor; overflow = rt != (int32_t)rt; } if (unlikely(overflow)) { rt = 0; /* Undefined */ } if (oe) { helper_update_ov_legacy(env, overflow); } return (target_ulong)rt; } #if defined(TARGET_PPC64) uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe) { uint64_t rt = 0; int overflow = 0; overflow = divu128(&rt, &ra, rb); if (unlikely(overflow)) { rt = 0; /* Undefined */ } if (oe) { helper_update_ov_legacy(env, overflow); } return rt; } uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe) { int64_t rt = 0; int64_t ra = (int64_t)rau; int64_t rb = (int64_t)rbu; int overflow = divs128(&rt, &ra, rb); if (unlikely(overflow)) { rt = 0; /* Undefined */ } if (oe) { helper_update_ov_legacy(env, overflow); } return rt; } #endif #if defined(TARGET_PPC64) /* if x = 0xab, returns 0xababababababababa */ #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff)) /* * subtract 1 from each byte, and with inverse, check if MSB is set at each * byte. * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found) */ #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80)) /* When you XOR the pattern and there is a match, that byte will be zero */ #define hasvalue(x, n) (haszero((x) ^ pattern(n))) uint32_t helper_cmpeqb(target_ulong ra, target_ulong rb) { return hasvalue(rb, ra) ? CRF_GT : 0; } #undef pattern #undef haszero #undef hasvalue /* * Return a random number. */ uint64_t helper_darn32(void) { Error *err = NULL; uint32_t ret; if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s", error_get_pretty(err)); error_free(err); return -1; } return ret; } uint64_t helper_darn64(void) { Error *err = NULL; uint64_t ret; if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s", error_get_pretty(err)); error_free(err); return -1; } return ret; } uint64_t helper_bpermd(uint64_t rs, uint64_t rb) { int i; uint64_t ra = 0; for (i = 0; i < 8; i++) { int index = (rs >> (i * 8)) & 0xFF; if (index < 64) { if (rb & PPC_BIT(index)) { ra |= 1 << i; } } } return ra; } #endif target_ulong helper_cmpb(target_ulong rs, target_ulong rb) { target_ulong mask = 0xff; target_ulong ra = 0; int i; for (i = 0; i < sizeof(target_ulong); i++) { if ((rs & mask) == (rb & mask)) { ra |= mask; } mask <<= 8; } return ra; } /* shift right arithmetic helper */ target_ulong helper_sraw(CPUPPCState *env, target_ulong value, target_ulong shift) { int32_t ret; if (likely(!(shift & 0x20))) { if (likely((uint32_t)shift != 0)) { shift &= 0x1f; ret = (int32_t)value >> shift; if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { env->ca32 = env->ca = 0; } else { env->ca32 = env->ca = 1; } } else { ret = (int32_t)value; env->ca32 = env->ca = 0; } } else { ret = (int32_t)value >> 31; env->ca32 = env->ca = (ret != 0); } return (target_long)ret; } #if defined(TARGET_PPC64) target_ulong helper_srad(CPUPPCState *env, target_ulong value, target_ulong shift) { int64_t ret; if (likely(!(shift & 0x40))) { if (likely((uint64_t)shift != 0)) { shift &= 0x3f; ret = (int64_t)value >> shift; if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) { env->ca32 = env->ca = 0; } else { env->ca32 = env->ca = 1; } } else { ret = (int64_t)value; env->ca32 = env->ca = 0; } } else { ret = (int64_t)value >> 63; env->ca32 = env->ca = (ret != 0); } return ret; } #endif #if defined(TARGET_PPC64) target_ulong helper_popcntb(target_ulong val) { /* Note that we don't fold past bytes */ val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL); val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL); val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL); return val; } target_ulong helper_popcntw(target_ulong val) { /* Note that we don't fold past words. */ val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL); val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL); val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL); val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) & 0x00ff00ff00ff00ffULL); val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) & 0x0000ffff0000ffffULL); return val; } #else target_ulong helper_popcntb(target_ulong val) { /* Note that we don't fold past bytes */ val = (val & 0x55555555) + ((val >> 1) & 0x55555555); val = (val & 0x33333333) + ((val >> 2) & 0x33333333); val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); return val; } #endif /*****************************************************************************/ /* PowerPC 601 specific instructions (POWER bridge) */ target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2) { uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || (int32_t)arg2 == 0) { env->spr[SPR_MQ] = 0; return INT32_MIN; } else { env->spr[SPR_MQ] = tmp % arg2; return tmp / (int32_t)arg2; } } target_ulong helper_divo(CPUPPCState *env, target_ulong arg1, target_ulong arg2) { uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || (int32_t)arg2 == 0) { env->so = env->ov = 1; env->spr[SPR_MQ] = 0; return INT32_MIN; } else { env->spr[SPR_MQ] = tmp % arg2; tmp /= (int32_t)arg2; if ((int32_t)tmp != tmp) { env->so = env->ov = 1; } else { env->ov = 0; } return tmp; } } target_ulong helper_divs(CPUPPCState *env, target_ulong arg1, target_ulong arg2) { if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || (int32_t)arg2 == 0) { env->spr[SPR_MQ] = 0; return INT32_MIN; } else { env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; return (int32_t)arg1 / (int32_t)arg2; } } target_ulong helper_divso(CPUPPCState *env, target_ulong arg1, target_ulong arg2) { if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || (int32_t)arg2 == 0) { env->so = env->ov = 1; env->spr[SPR_MQ] = 0; return INT32_MIN; } else { env->ov = 0; env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; return (int32_t)arg1 / (int32_t)arg2; } } /*****************************************************************************/ /* 602 specific instructions */ /* mfrom is the most crazy instruction ever seen, imho ! */ /* Real implementation uses a ROM table. Do the same */ /* * Extremely decomposed: * -arg / 256 * return 256 * log10(10 + 1.0) + 0.5 */ #if !defined(CONFIG_USER_ONLY) target_ulong helper_602_mfrom(target_ulong arg) { if (likely(arg < 602)) { #include "mfrom_table.inc.c" return mfrom_ROM_table[arg]; } else { return 0; } } #endif /*****************************************************************************/ /* Altivec extension helpers */ #if defined(HOST_WORDS_BIGENDIAN) #define VECTOR_FOR_INORDER_I(index, element) \ for (index = 0; index < ARRAY_SIZE(r->element); index++) #else #define VECTOR_FOR_INORDER_I(index, element) \ for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--) #endif /* Saturating arithmetic helpers. */ #define SATCVT(from, to, from_type, to_type, min, max) \ static inline to_type cvt##from##to(from_type x, int *sat) \ { \ to_type r; \ \ if (x < (from_type)min) { \ r = min; \ *sat = 1; \ } else if (x > (from_type)max) { \ r = max; \ *sat = 1; \ } else { \ r = x; \ } \ return r; \ } #define SATCVTU(from, to, from_type, to_type, min, max) \ static inline to_type cvt##from##to(from_type x, int *sat) \ { \ to_type r; \ \ if (x > (from_type)max) { \ r = max; \ *sat = 1; \ } else { \ r = x; \ } \ return r; \ } SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX) SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX) SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX) SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX) SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX) SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX) SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX) SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX) SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX) #undef SATCVT #undef SATCVTU void helper_mtvscr(CPUPPCState *env, uint32_t vscr) { env->vscr = vscr & ~(1u << VSCR_SAT); /* Which bit we set is completely arbitrary, but clear the rest. */ env->vscr_sat.u64[0] = vscr & (1u << VSCR_SAT); env->vscr_sat.u64[1] = 0; set_flush_to_zero((vscr >> VSCR_NJ) & 1, &env->vec_status); } uint32_t helper_mfvscr(CPUPPCState *env) { uint32_t sat = (env->vscr_sat.u64[0] | env->vscr_sat.u64[1]) != 0; return env->vscr | (sat << VSCR_SAT); } static inline void set_vscr_sat(CPUPPCState *env) { /* The choice of non-zero value is arbitrary. */ env->vscr_sat.u32[0] = 1; } void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int i; for (i = 0; i < ARRAY_SIZE(r->u32); i++) { r->u32[i] = ~a->u32[i] < b->u32[i]; } } /* vprtybw */ void helper_vprtybw(ppc_avr_t *r, ppc_avr_t *b) { int i; for (i = 0; i < ARRAY_SIZE(r->u32); i++) { uint64_t res = b->u32[i] ^ (b->u32[i] >> 16); res ^= res >> 8; r->u32[i] = res & 1; } } /* vprtybd */ void helper_vprtybd(ppc_avr_t *r, ppc_avr_t *b) { int i; for (i = 0; i < ARRAY_SIZE(r->u64); i++) { uint64_t res = b->u64[i] ^ (b->u64[i] >> 32); res ^= res >> 16; res ^= res >> 8; r->u64[i] = res & 1; } } /* vprtybq */ void helper_vprtybq(ppc_avr_t *r, ppc_avr_t *b) { uint64_t res = b->u64[0] ^ b->u64[1]; res ^= res >> 32; res ^= res >> 16; res ^= res >> 8; r->VsrD(1) = res & 1; r->VsrD(0) = 0; } #define VARITH_DO(name, op, element) \ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ { \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ r->element[i] = a->element[i] op b->element[i]; \ } \ } VARITH_DO(muluwm, *, u32) #undef VARITH_DO #undef VARITH #define VARITHFP(suffix, func) \ void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \ ppc_avr_t *b) \ { \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \ r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status); \ } \ } VARITHFP(addfp, float32_add) VARITHFP(subfp, float32_sub) VARITHFP(minfp, float32_min) VARITHFP(maxfp, float32_max) #undef VARITHFP #define VARITHFPFMA(suffix, type) \ void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \ ppc_avr_t *b, ppc_avr_t *c) \ { \ int i; \ for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \ r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \ type, &env->vec_status); \ } \ } VARITHFPFMA(maddfp, 0); VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c); #undef VARITHFPFMA #define VARITHSAT_CASE(type, op, cvt, element) \ { \ type result = (type)a->element[i] op (type)b->element[i]; \ r->element[i] = cvt(result, &sat); \ } #define VARITHSAT_DO(name, op, optype, cvt, element) \ void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat, \ ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \ { \ int sat = 0; \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ VARITHSAT_CASE(optype, op, cvt, element); \ } \ if (sat) { \ vscr_sat->u32[0] = 1; \ } \ } #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \ VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \ VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element) #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \ VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \ VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element) VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb) VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh) VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw) VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub) VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh) VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw) #undef VARITHSAT_CASE #undef VARITHSAT_DO #undef VARITHSAT_SIGNED #undef VARITHSAT_UNSIGNED #define VAVG_DO(name, element, etype) \ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ { \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \ r->element[i] = x >> 1; \ } \ } #define VAVG(type, signed_element, signed_type, unsigned_element, \ unsigned_type) \ VAVG_DO(avgs##type, signed_element, signed_type) \ VAVG_DO(avgu##type, unsigned_element, unsigned_type) VAVG(b, s8, int16_t, u8, uint16_t) VAVG(h, s16, int32_t, u16, uint32_t) VAVG(w, s32, int64_t, u32, uint64_t) #undef VAVG_DO #undef VAVG #define VABSDU_DO(name, element) \ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ { \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ r->element[i] = (a->element[i] > b->element[i]) ? \ (a->element[i] - b->element[i]) : \ (b->element[i] - a->element[i]); \ } \ } /* * VABSDU - Vector absolute difference unsigned * name - instruction mnemonic suffix (b: byte, h: halfword, w: word) * element - element type to access from vector */ #define VABSDU(type, element) \ VABSDU_DO(absdu##type, element) VABSDU(b, u8) VABSDU(h, u16) VABSDU(w, u32) #undef VABSDU_DO #undef VABSDU #define VCF(suffix, cvt, element) \ void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \ ppc_avr_t *b, uint32_t uim) \ { \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \ float32 t = cvt(b->element[i], &env->vec_status); \ r->f32[i] = float32_scalbn(t, -uim, &env->vec_status); \ } \ } VCF(ux, uint32_to_float32, u32) VCF(sx, int32_to_float32, s32) #undef VCF #define VCMP_DO(suffix, compare, element, record) \ void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \ ppc_avr_t *a, ppc_avr_t *b) \ { \ uint64_t ones = (uint64_t)-1; \ uint64_t all = ones; \ uint64_t none = 0; \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ uint64_t result = (a->element[i] compare b->element[i] ? \ ones : 0x0); \ switch (sizeof(a->element[0])) { \ case 8: \ r->u64[i] = result; \ break; \ case 4: \ r->u32[i] = result; \ break; \ case 2: \ r->u16[i] = result; \ break; \ case 1: \ r->u8[i] = result; \ break; \ } \ all &= result; \ none |= result; \ } \ if (record) { \ env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ } \ } #define VCMP(suffix, compare, element) \ VCMP_DO(suffix, compare, element, 0) \ VCMP_DO(suffix##_dot, compare, element, 1) VCMP(equb, ==, u8) VCMP(equh, ==, u16) VCMP(equw, ==, u32) VCMP(equd, ==, u64) VCMP(gtub, >, u8) VCMP(gtuh, >, u16) VCMP(gtuw, >, u32) VCMP(gtud, >, u64) VCMP(gtsb, >, s8) VCMP(gtsh, >, s16) VCMP(gtsw, >, s32) VCMP(gtsd, >, s64) #undef VCMP_DO #undef VCMP #define VCMPNE_DO(suffix, element, etype, cmpzero, record) \ void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \ ppc_avr_t *a, ppc_avr_t *b) \ { \ etype ones = (etype)-1; \ etype all = ones; \ etype result, none = 0; \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ if (cmpzero) { \ result = ((a->element[i] == 0) \ || (b->element[i] == 0) \ || (a->element[i] != b->element[i]) ? \ ones : 0x0); \ } else { \ result = (a->element[i] != b->element[i]) ? ones : 0x0; \ } \ r->element[i] = result; \ all &= result; \ none |= result; \ } \ if (record) { \ env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ } \ } /* * VCMPNEZ - Vector compare not equal to zero * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word) * element - element type to access from vector */ #define VCMPNE(suffix, element, etype, cmpzero) \ VCMPNE_DO(suffix, element, etype, cmpzero, 0) \ VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1) VCMPNE(zb, u8, uint8_t, 1) VCMPNE(zh, u16, uint16_t, 1) VCMPNE(zw, u32, uint32_t, 1) VCMPNE(b, u8, uint8_t, 0) VCMPNE(h, u16, uint16_t, 0) VCMPNE(w, u32, uint32_t, 0) #undef VCMPNE_DO #undef VCMPNE #define VCMPFP_DO(suffix, compare, order, record) \ void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \ ppc_avr_t *a, ppc_avr_t *b) \ { \ uint32_t ones = (uint32_t)-1; \ uint32_t all = ones; \ uint32_t none = 0; \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \ uint32_t result; \ FloatRelation rel = \ float32_compare_quiet(a->f32[i], b->f32[i], \ &env->vec_status); \ if (rel == float_relation_unordered) { \ result = 0; \ } else if (rel compare order) { \ result = ones; \ } else { \ result = 0; \ } \ r->u32[i] = result; \ all &= result; \ none |= result; \ } \ if (record) { \ env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ } \ } #define VCMPFP(suffix, compare, order) \ VCMPFP_DO(suffix, compare, order, 0) \ VCMPFP_DO(suffix##_dot, compare, order, 1) VCMPFP(eqfp, ==, float_relation_equal) VCMPFP(gefp, !=, float_relation_less) VCMPFP(gtfp, ==, float_relation_greater) #undef VCMPFP_DO #undef VCMPFP static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, int record) { int i; int all_in = 0; for (i = 0; i < ARRAY_SIZE(r->f32); i++) { FloatRelation le_rel = float32_compare_quiet(a->f32[i], b->f32[i], &env->vec_status); if (le_rel == float_relation_unordered) { r->u32[i] = 0xc0000000; all_in = 1; } else { float32 bneg = float32_chs(b->f32[i]); FloatRelation ge_rel = float32_compare_quiet(a->f32[i], bneg, &env->vec_status); int le = le_rel != float_relation_greater; int ge = ge_rel != float_relation_less; r->u32[i] = ((!le) << 31) | ((!ge) << 30); all_in |= (!le | !ge); } } if (record) { env->crf[6] = (all_in == 0) << 1; } } void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { vcmpbfp_internal(env, r, a, b, 0); } void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { vcmpbfp_internal(env, r, a, b, 1); } #define VCT(suffix, satcvt, element) \ void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \ ppc_avr_t *b, uint32_t uim) \ { \ int i; \ int sat = 0; \ float_status s = env->vec_status; \ \ set_float_rounding_mode(float_round_to_zero, &s); \ for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \ if (float32_is_any_nan(b->f32[i])) { \ r->element[i] = 0; \ } else { \ float64 t = float32_to_float64(b->f32[i], &s); \ int64_t j; \ \ t = float64_scalbn(t, uim, &s); \ j = float64_to_int64(t, &s); \ r->element[i] = satcvt(j, &sat); \ } \ } \ if (sat) { \ set_vscr_sat(env); \ } \ } VCT(uxs, cvtsduw, u32) VCT(sxs, cvtsdsw, s32) #undef VCT target_ulong helper_vclzlsbb(ppc_avr_t *r) { target_ulong count = 0; int i; for (i = 0; i < ARRAY_SIZE(r->u8); i++) { if (r->VsrB(i) & 0x01) { break; } count++; } return count; } target_ulong helper_vctzlsbb(ppc_avr_t *r) { target_ulong count = 0; int i; for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) { if (r->VsrB(i) & 0x01) { break; } count++; } return count; } void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { int sat = 0; int i; for (i = 0; i < ARRAY_SIZE(r->s16); i++) { int32_t prod = a->s16[i] * b->s16[i]; int32_t t = (int32_t)c->s16[i] + (prod >> 15); r->s16[i] = cvtswsh(t, &sat); } if (sat) { set_vscr_sat(env); } } void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { int sat = 0; int i; for (i = 0; i < ARRAY_SIZE(r->s16); i++) { int32_t prod = a->s16[i] * b->s16[i] + 0x00004000; int32_t t = (int32_t)c->s16[i] + (prod >> 15); r->s16[i] = cvtswsh(t, &sat); } if (sat) { set_vscr_sat(env); } } void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { int i; for (i = 0; i < ARRAY_SIZE(r->s16); i++) { int32_t prod = a->s16[i] * b->s16[i]; r->s16[i] = (int16_t) (prod + c->s16[i]); } } #define VMRG_DO(name, element, access, ofs) \ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ { \ ppc_avr_t result; \ int i, half = ARRAY_SIZE(r->element) / 2; \ \ for (i = 0; i < half; i++) { \ result.access(i * 2 + 0) = a->access(i + ofs); \ result.access(i * 2 + 1) = b->access(i + ofs); \ } \ *r = result; \ } #define VMRG(suffix, element, access) \ VMRG_DO(mrgl##suffix, element, access, half) \ VMRG_DO(mrgh##suffix, element, access, 0) VMRG(b, u8, VsrB) VMRG(h, u16, VsrH) VMRG(w, u32, VsrW) #undef VMRG_DO #undef VMRG void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { int32_t prod[16]; int i; for (i = 0; i < ARRAY_SIZE(r->s8); i++) { prod[i] = (int32_t)a->s8[i] * b->u8[i]; } VECTOR_FOR_INORDER_I(i, s32) { r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] + prod[4 * i + 2] + prod[4 * i + 3]; } } void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { int32_t prod[8]; int i; for (i = 0; i < ARRAY_SIZE(r->s16); i++) { prod[i] = a->s16[i] * b->s16[i]; } VECTOR_FOR_INORDER_I(i, s32) { r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1]; } } void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { int32_t prod[8]; int i; int sat = 0; for (i = 0; i < ARRAY_SIZE(r->s16); i++) { prod[i] = (int32_t)a->s16[i] * b->s16[i]; } VECTOR_FOR_INORDER_I(i, s32) { int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1]; r->u32[i] = cvtsdsw(t, &sat); } if (sat) { set_vscr_sat(env); } } void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { uint16_t prod[16]; int i; for (i = 0; i < ARRAY_SIZE(r->u8); i++) { prod[i] = a->u8[i] * b->u8[i]; } VECTOR_FOR_INORDER_I(i, u32) { r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] + prod[4 * i + 2] + prod[4 * i + 3]; } } void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { uint32_t prod[8]; int i; for (i = 0; i < ARRAY_SIZE(r->u16); i++) { prod[i] = a->u16[i] * b->u16[i]; } VECTOR_FOR_INORDER_I(i, u32) { r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1]; } } void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { uint32_t prod[8]; int i; int sat = 0; for (i = 0; i < ARRAY_SIZE(r->u16); i++) { prod[i] = a->u16[i] * b->u16[i]; } VECTOR_FOR_INORDER_I(i, s32) { uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1]; r->u32[i] = cvtuduw(t, &sat); } if (sat) { set_vscr_sat(env); } } #define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast) \ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ { \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \ r->prod_access(i >> 1) = (cast)a->mul_access(i) * \ (cast)b->mul_access(i); \ } \ } #define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast) \ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ { \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \ r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) * \ (cast)b->mul_access(i + 1); \ } \ } #define VMUL(suffix, mul_element, mul_access, prod_access, cast) \ VMUL_DO_EVN(mule##suffix, mul_element, mul_access, prod_access, cast) \ VMUL_DO_ODD(mulo##suffix, mul_element, mul_access, prod_access, cast) VMUL(sb, s8, VsrSB, VsrSH, int16_t) VMUL(sh, s16, VsrSH, VsrSW, int32_t) VMUL(sw, s32, VsrSW, VsrSD, int64_t) VMUL(ub, u8, VsrB, VsrH, uint16_t) VMUL(uh, u16, VsrH, VsrW, uint32_t) VMUL(uw, u32, VsrW, VsrD, uint64_t) #undef VMUL_DO_EVN #undef VMUL_DO_ODD #undef VMUL void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { ppc_avr_t result; int i; for (i = 0; i < ARRAY_SIZE(r->u8); i++) { int s = c->VsrB(i) & 0x1f; int index = s & 0xf; if (s & 0x10) { result.VsrB(i) = b->VsrB(index); } else { result.VsrB(i) = a->VsrB(index); } } *r = result; } void helper_vpermr(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { ppc_avr_t result; int i; for (i = 0; i < ARRAY_SIZE(r->u8); i++) { int s = c->VsrB(i) & 0x1f; int index = 15 - (s & 0xf); if (s & 0x10) { result.VsrB(i) = a->VsrB(index); } else { result.VsrB(i) = b->VsrB(index); } } *r = result; } #if defined(HOST_WORDS_BIGENDIAN) #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)]) #define VBPERMD_INDEX(i) (i) #define VBPERMQ_DW(index) (((index) & 0x40) != 0) #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1)) #else #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)]) #define VBPERMD_INDEX(i) (1 - i) #define VBPERMQ_DW(index) (((index) & 0x40) == 0) #define EXTRACT_BIT(avr, i, index) \ (extract64((avr)->u64[1 - i], 63 - index, 1)) #endif void helper_vbpermd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int i, j; ppc_avr_t result = { .u64 = { 0, 0 } }; VECTOR_FOR_INORDER_I(i, u64) { for (j = 0; j < 8; j++) { int index = VBPERMQ_INDEX(b, (i * 8) + j); if (index < 64 && EXTRACT_BIT(a, i, index)) { result.u64[VBPERMD_INDEX(i)] |= (0x80 >> j); } } } *r = result; } void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int i; uint64_t perm = 0; VECTOR_FOR_INORDER_I(i, u8) { int index = VBPERMQ_INDEX(b, i); if (index < 128) { uint64_t mask = (1ull << (63 - (index & 0x3F))); if (a->u64[VBPERMQ_DW(index)] & mask) { perm |= (0x8000 >> i); } } } r->VsrD(0) = perm; r->VsrD(1) = 0; } #undef VBPERMQ_INDEX #undef VBPERMQ_DW #define PMSUM(name, srcfld, trgfld, trgtyp) \ void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ { \ int i, j; \ trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])]; \ \ VECTOR_FOR_INORDER_I(i, srcfld) { \ prod[i] = 0; \ for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \ if (a->srcfld[i] & (1ull << j)) { \ prod[i] ^= ((trgtyp)b->srcfld[i] << j); \ } \ } \ } \ \ VECTOR_FOR_INORDER_I(i, trgfld) { \ r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1]; \ } \ } PMSUM(vpmsumb, u8, u16, uint16_t) PMSUM(vpmsumh, u16, u32, uint32_t) PMSUM(vpmsumw, u32, u64, uint64_t) void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { #ifdef CONFIG_INT128 int i, j; __uint128_t prod[2]; VECTOR_FOR_INORDER_I(i, u64) { prod[i] = 0; for (j = 0; j < 64; j++) { if (a->u64[i] & (1ull << j)) { prod[i] ^= (((__uint128_t)b->u64[i]) << j); } } } r->u128 = prod[0] ^ prod[1]; #else int i, j; ppc_avr_t prod[2]; VECTOR_FOR_INORDER_I(i, u64) { prod[i].VsrD(1) = prod[i].VsrD(0) = 0; for (j = 0; j < 64; j++) { if (a->u64[i] & (1ull << j)) { ppc_avr_t bshift; if (j == 0) { bshift.VsrD(0) = 0; bshift.VsrD(1) = b->u64[i]; } else { bshift.VsrD(0) = b->u64[i] >> (64 - j); bshift.VsrD(1) = b->u64[i] << j; } prod[i].VsrD(1) ^= bshift.VsrD(1); prod[i].VsrD(0) ^= bshift.VsrD(0); } } } r->VsrD(1) = prod[0].VsrD(1) ^ prod[1].VsrD(1); r->VsrD(0) = prod[0].VsrD(0) ^ prod[1].VsrD(0); #endif } #if defined(HOST_WORDS_BIGENDIAN) #define PKBIG 1 #else #define PKBIG 0 #endif void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int i, j; ppc_avr_t result; #if defined(HOST_WORDS_BIGENDIAN) const ppc_avr_t *x[2] = { a, b }; #else const ppc_avr_t *x[2] = { b, a }; #endif VECTOR_FOR_INORDER_I(i, u64) { VECTOR_FOR_INORDER_I(j, u32) { uint32_t e = x[i]->u32[j]; result.u16[4 * i + j] = (((e >> 9) & 0xfc00) | ((e >> 6) & 0x3e0) | ((e >> 3) & 0x1f)); } } *r = result; } #define VPK(suffix, from, to, cvt, dosat) \ void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \ ppc_avr_t *a, ppc_avr_t *b) \ { \ int i; \ int sat = 0; \ ppc_avr_t result; \ ppc_avr_t *a0 = PKBIG ? a : b; \ ppc_avr_t *a1 = PKBIG ? b : a; \ \ VECTOR_FOR_INORDER_I(i, from) { \ result.to[i] = cvt(a0->from[i], &sat); \ result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\ } \ *r = result; \ if (dosat && sat) { \ set_vscr_sat(env); \ } \ } #define I(x, y) (x) VPK(shss, s16, s8, cvtshsb, 1) VPK(shus, s16, u8, cvtshub, 1) VPK(swss, s32, s16, cvtswsh, 1) VPK(swus, s32, u16, cvtswuh, 1) VPK(sdss, s64, s32, cvtsdsw, 1) VPK(sdus, s64, u32, cvtsduw, 1) VPK(uhus, u16, u8, cvtuhub, 1) VPK(uwus, u32, u16, cvtuwuh, 1) VPK(udus, u64, u32, cvtuduw, 1) VPK(uhum, u16, u8, I, 0) VPK(uwum, u32, u16, I, 0) VPK(udum, u64, u32, I, 0) #undef I #undef VPK #undef PKBIG void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) { int i; for (i = 0; i < ARRAY_SIZE(r->f32); i++) { r->f32[i] = float32_div(float32_one, b->f32[i], &env->vec_status); } } #define VRFI(suffix, rounding) \ void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \ ppc_avr_t *b) \ { \ int i; \ float_status s = env->vec_status; \ \ set_float_rounding_mode(rounding, &s); \ for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \ r->f32[i] = float32_round_to_int (b->f32[i], &s); \ } \ } VRFI(n, float_round_nearest_even) VRFI(m, float_round_down) VRFI(p, float_round_up) VRFI(z, float_round_to_zero) #undef VRFI #define VROTATE(suffix, element, mask) \ void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ { \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ unsigned int shift = b->element[i] & mask; \ r->element[i] = (a->element[i] << shift) | \ (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \ } \ } VROTATE(b, u8, 0x7) VROTATE(h, u16, 0xF) VROTATE(w, u32, 0x1F) VROTATE(d, u64, 0x3F) #undef VROTATE void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) { int i; for (i = 0; i < ARRAY_SIZE(r->f32); i++) { float32 t = float32_sqrt(b->f32[i], &env->vec_status); r->f32[i] = float32_div(float32_one, t, &env->vec_status); } } #define VRLMI(name, size, element, insert) \ void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ { \ int i; \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ uint##size##_t src1 = a->element[i]; \ uint##size##_t src2 = b->element[i]; \ uint##size##_t src3 = r->element[i]; \ uint##size##_t begin, end, shift, mask, rot_val; \ \ shift = extract##size(src2, 0, 6); \ end = extract##size(src2, 8, 6); \ begin = extract##size(src2, 16, 6); \ rot_val = rol##size(src1, shift); \ mask = mask_u##size(begin, end); \ if (insert) { \ r->element[i] = (rot_val & mask) | (src3 & ~mask); \ } else { \ r->element[i] = (rot_val & mask); \ } \ } \ } VRLMI(vrldmi, 64, u64, 1); VRLMI(vrlwmi, 32, u32, 1); VRLMI(vrldnm, 64, u64, 0); VRLMI(vrlwnm, 32, u32, 0); void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]); r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]); } void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) { int i; for (i = 0; i < ARRAY_SIZE(r->f32); i++) { r->f32[i] = float32_exp2(b->f32[i], &env->vec_status); } } void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) { int i; for (i = 0; i < ARRAY_SIZE(r->f32); i++) { r->f32[i] = float32_log2(b->f32[i], &env->vec_status); } } #if defined(HOST_WORDS_BIGENDIAN) #define VEXTU_X_DO(name, size, left) \ target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \ { \ int index; \ if (left) { \ index = (a & 0xf) * 8; \ } else { \ index = ((15 - (a & 0xf) + 1) * 8) - size; \ } \ return int128_getlo(int128_rshift(b->s128, index)) & \ MAKE_64BIT_MASK(0, size); \ } #else #define VEXTU_X_DO(name, size, left) \ target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \ { \ int index; \ if (left) { \ index = ((15 - (a & 0xf) + 1) * 8) - size; \ } else { \ index = (a & 0xf) * 8; \ } \ return int128_getlo(int128_rshift(b->s128, index)) & \ MAKE_64BIT_MASK(0, size); \ } #endif VEXTU_X_DO(vextublx, 8, 1) VEXTU_X_DO(vextuhlx, 16, 1) VEXTU_X_DO(vextuwlx, 32, 1) VEXTU_X_DO(vextubrx, 8, 0) VEXTU_X_DO(vextuhrx, 16, 0) VEXTU_X_DO(vextuwrx, 32, 0) #undef VEXTU_X_DO void helper_vslv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int i; unsigned int shift, bytes, size; size = ARRAY_SIZE(r->u8); for (i = 0; i < size; i++) { shift = b->VsrB(i) & 0x7; /* extract shift value */ bytes = (a->VsrB(i) << 8) + /* extract adjacent bytes */ (((i + 1) < size) ? a->VsrB(i + 1) : 0); r->VsrB(i) = (bytes << shift) >> 8; /* shift and store result */ } } void helper_vsrv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int i; unsigned int shift, bytes; /* * Use reverse order, as destination and source register can be * same. Its being modified in place saving temporary, reverse * order will guarantee that computed result is not fed back. */ for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) { shift = b->VsrB(i) & 0x7; /* extract shift value */ bytes = ((i ? a->VsrB(i - 1) : 0) << 8) + a->VsrB(i); /* extract adjacent bytes */ r->VsrB(i) = (bytes >> shift) & 0xFF; /* shift and store result */ } } void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift) { int sh = shift & 0xf; int i; ppc_avr_t result; for (i = 0; i < ARRAY_SIZE(r->u8); i++) { int index = sh + i; if (index > 0xf) { result.VsrB(i) = b->VsrB(index - 0x10); } else { result.VsrB(i) = a->VsrB(index); } } *r = result; } void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int sh = (b->VsrB(0xf) >> 3) & 0xf; #if defined(HOST_WORDS_BIGENDIAN) memmove(&r->u8[0], &a->u8[sh], 16 - sh); memset(&r->u8[16 - sh], 0, sh); #else memmove(&r->u8[sh], &a->u8[0], 16 - sh); memset(&r->u8[0], 0, sh); #endif } #if defined(HOST_WORDS_BIGENDIAN) #define VINSERT(suffix, element) \ void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \ { \ memmove(&r->u8[index], &b->u8[8 - sizeof(r->element[0])], \ sizeof(r->element[0])); \ } #else #define VINSERT(suffix, element) \ void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \ { \ uint32_t d = (16 - index) - sizeof(r->element[0]); \ memmove(&r->u8[d], &b->u8[8], sizeof(r->element[0])); \ } #endif VINSERT(b, u8) VINSERT(h, u16) VINSERT(w, u32) VINSERT(d, u64) #undef VINSERT #if defined(HOST_WORDS_BIGENDIAN) #define VEXTRACT(suffix, element) \ void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \ { \ uint32_t es = sizeof(r->element[0]); \ memmove(&r->u8[8 - es], &b->u8[index], es); \ memset(&r->u8[8], 0, 8); \ memset(&r->u8[0], 0, 8 - es); \ } #else #define VEXTRACT(suffix, element) \ void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \ { \ uint32_t es = sizeof(r->element[0]); \ uint32_t s = (16 - index) - es; \ memmove(&r->u8[8], &b->u8[s], es); \ memset(&r->u8[0], 0, 8); \ memset(&r->u8[8 + es], 0, 8 - es); \ } #endif VEXTRACT(ub, u8) VEXTRACT(uh, u16) VEXTRACT(uw, u32) VEXTRACT(d, u64) #undef VEXTRACT void helper_xxextractuw(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb, uint32_t index) { ppc_vsr_t t = { }; size_t es = sizeof(uint32_t); uint32_t ext_index; int i; ext_index = index; for (i = 0; i < es; i++, ext_index++) { t.VsrB(8 - es + i) = xb->VsrB(ext_index % 16); } *xt = t; } void helper_xxinsertw(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb, uint32_t index) { ppc_vsr_t t = *xt; size_t es = sizeof(uint32_t); int ins_index, i = 0; ins_index = index; for (i = 0; i < es && ins_index < 16; i++, ins_index++) { t.VsrB(ins_index) = xb->VsrB(8 - es + i); } *xt = t; } #define VEXT_SIGNED(name, element, cast) \ void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \ { \ int i; \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ r->element[i] = (cast)b->element[i]; \ } \ } VEXT_SIGNED(vextsb2w, s32, int8_t) VEXT_SIGNED(vextsb2d, s64, int8_t) VEXT_SIGNED(vextsh2w, s32, int16_t) VEXT_SIGNED(vextsh2d, s64, int16_t) VEXT_SIGNED(vextsw2d, s64, int32_t) #undef VEXT_SIGNED #define VNEG(name, element) \ void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \ { \ int i; \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ r->element[i] = -b->element[i]; \ } \ } VNEG(vnegw, s32) VNEG(vnegd, s64) #undef VNEG void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int sh = (b->VsrB(0xf) >> 3) & 0xf; #if defined(HOST_WORDS_BIGENDIAN) memmove(&r->u8[sh], &a->u8[0], 16 - sh); memset(&r->u8[0], 0, sh); #else memmove(&r->u8[0], &a->u8[sh], 16 - sh); memset(&r->u8[16 - sh], 0, sh); #endif } void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int i; for (i = 0; i < ARRAY_SIZE(r->u32); i++) { r->u32[i] = a->u32[i] >= b->u32[i]; } } void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int64_t t; int i, upper; ppc_avr_t result; int sat = 0; upper = ARRAY_SIZE(r->s32) - 1; t = (int64_t)b->VsrSW(upper); for (i = 0; i < ARRAY_SIZE(r->s32); i++) { t += a->VsrSW(i); result.VsrSW(i) = 0; } result.VsrSW(upper) = cvtsdsw(t, &sat); *r = result; if (sat) { set_vscr_sat(env); } } void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int i, j, upper; ppc_avr_t result; int sat = 0; upper = 1; for (i = 0; i < ARRAY_SIZE(r->u64); i++) { int64_t t = (int64_t)b->VsrSW(upper + i * 2); result.VsrD(i) = 0; for (j = 0; j < ARRAY_SIZE(r->u64); j++) { t += a->VsrSW(2 * i + j); } result.VsrSW(upper + i * 2) = cvtsdsw(t, &sat); } *r = result; if (sat) { set_vscr_sat(env); } } void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int i, j; int sat = 0; for (i = 0; i < ARRAY_SIZE(r->s32); i++) { int64_t t = (int64_t)b->s32[i]; for (j = 0; j < ARRAY_SIZE(r->s32); j++) { t += a->s8[4 * i + j]; } r->s32[i] = cvtsdsw(t, &sat); } if (sat) { set_vscr_sat(env); } } void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int sat = 0; int i; for (i = 0; i < ARRAY_SIZE(r->s32); i++) { int64_t t = (int64_t)b->s32[i]; t += a->s16[2 * i] + a->s16[2 * i + 1]; r->s32[i] = cvtsdsw(t, &sat); } if (sat) { set_vscr_sat(env); } } void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { int i, j; int sat = 0; for (i = 0; i < ARRAY_SIZE(r->u32); i++) { uint64_t t = (uint64_t)b->u32[i]; for (j = 0; j < ARRAY_SIZE(r->u32); j++) { t += a->u8[4 * i + j]; } r->u32[i] = cvtuduw(t, &sat); } if (sat) { set_vscr_sat(env); } } #if defined(HOST_WORDS_BIGENDIAN) #define UPKHI 1 #define UPKLO 0 #else #define UPKHI 0 #define UPKLO 1 #endif #define VUPKPX(suffix, hi) \ void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \ { \ int i; \ ppc_avr_t result; \ \ for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \ uint16_t e = b->u16[hi ? i : i + 4]; \ uint8_t a = (e >> 15) ? 0xff : 0; \ uint8_t r = (e >> 10) & 0x1f; \ uint8_t g = (e >> 5) & 0x1f; \ uint8_t b = e & 0x1f; \ \ result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \ } \ *r = result; \ } VUPKPX(lpx, UPKLO) VUPKPX(hpx, UPKHI) #undef VUPKPX #define VUPK(suffix, unpacked, packee, hi) \ void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \ { \ int i; \ ppc_avr_t result; \ \ if (hi) { \ for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \ result.unpacked[i] = b->packee[i]; \ } \ } else { \ for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \ i++) { \ result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \ } \ } \ *r = result; \ } VUPK(hsb, s16, s8, UPKHI) VUPK(hsh, s32, s16, UPKHI) VUPK(hsw, s64, s32, UPKHI) VUPK(lsb, s16, s8, UPKLO) VUPK(lsh, s32, s16, UPKLO) VUPK(lsw, s64, s32, UPKLO) #undef VUPK #undef UPKHI #undef UPKLO #define VGENERIC_DO(name, element) \ void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \ { \ int i; \ \ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ r->element[i] = name(b->element[i]); \ } \ } #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8) #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16) VGENERIC_DO(clzb, u8) VGENERIC_DO(clzh, u16) #undef clzb #undef clzh #define ctzb(v) ((v) ? ctz32(v) : 8) #define ctzh(v) ((v) ? ctz32(v) : 16) #define ctzw(v) ctz32((v)) #define ctzd(v) ctz64((v)) VGENERIC_DO(ctzb, u8) VGENERIC_DO(ctzh, u16) VGENERIC_DO(ctzw, u32) VGENERIC_DO(ctzd, u64) #undef ctzb #undef ctzh #undef ctzw #undef ctzd #define popcntb(v) ctpop8(v) #define popcnth(v) ctpop16(v) #define popcntw(v) ctpop32(v) #define popcntd(v) ctpop64(v) VGENERIC_DO(popcntb, u8) VGENERIC_DO(popcnth, u16) VGENERIC_DO(popcntw, u32) VGENERIC_DO(popcntd, u64) #undef popcntb #undef popcnth #undef popcntw #undef popcntd #undef VGENERIC_DO #if defined(HOST_WORDS_BIGENDIAN) #define QW_ONE { .u64 = { 0, 1 } } #else #define QW_ONE { .u64 = { 1, 0 } } #endif #ifndef CONFIG_INT128 static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a) { t->u64[0] = ~a.u64[0]; t->u64[1] = ~a.u64[1]; } static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b) { if (a.VsrD(0) < b.VsrD(0)) { return -1; } else if (a.VsrD(0) > b.VsrD(0)) { return 1; } else if (a.VsrD(1) < b.VsrD(1)) { return -1; } else if (a.VsrD(1) > b.VsrD(1)) { return 1; } else { return 0; } } static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b) { t->VsrD(1) = a.VsrD(1) + b.VsrD(1); t->VsrD(0) = a.VsrD(0) + b.VsrD(0) + (~a.VsrD(1) < b.VsrD(1)); } static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b) { ppc_avr_t not_a; t->VsrD(1) = a.VsrD(1) + b.VsrD(1); t->VsrD(0) = a.VsrD(0) + b.VsrD(0) + (~a.VsrD(1) < b.VsrD(1)); avr_qw_not(¬_a, a); return avr_qw_cmpu(not_a, b) < 0; } #endif void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { #ifdef CONFIG_INT128 r->u128 = a->u128 + b->u128; #else avr_qw_add(r, *a, *b); #endif } void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { #ifdef CONFIG_INT128 r->u128 = a->u128 + b->u128 + (c->u128 & 1); #else if (c->VsrD(1) & 1) { ppc_avr_t tmp; tmp.VsrD(0) = 0; tmp.VsrD(1) = c->VsrD(1) & 1; avr_qw_add(&tmp, *a, tmp); avr_qw_add(r, tmp, *b); } else { avr_qw_add(r, *a, *b); } #endif } void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { #ifdef CONFIG_INT128 r->u128 = (~a->u128 < b->u128); #else ppc_avr_t not_a; avr_qw_not(¬_a, *a); r->VsrD(0) = 0; r->VsrD(1) = (avr_qw_cmpu(not_a, *b) < 0); #endif } void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { #ifdef CONFIG_INT128 int carry_out = (~a->u128 < b->u128); if (!carry_out && (c->u128 & 1)) { carry_out = ((a->u128 + b->u128 + 1) == 0) && ((a->u128 != 0) || (b->u128 != 0)); } r->u128 = carry_out; #else int carry_in = c->VsrD(1) & 1; int carry_out = 0; ppc_avr_t tmp; carry_out = avr_qw_addc(&tmp, *a, *b); if (!carry_out && carry_in) { ppc_avr_t one = QW_ONE; carry_out = avr_qw_addc(&tmp, tmp, one); } r->VsrD(0) = 0; r->VsrD(1) = carry_out; #endif } void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { #ifdef CONFIG_INT128 r->u128 = a->u128 - b->u128; #else ppc_avr_t tmp; ppc_avr_t one = QW_ONE; avr_qw_not(&tmp, *b); avr_qw_add(&tmp, *a, tmp); avr_qw_add(r, tmp, one); #endif } void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { #ifdef CONFIG_INT128 r->u128 = a->u128 + ~b->u128 + (c->u128 & 1); #else ppc_avr_t tmp, sum; avr_qw_not(&tmp, *b); avr_qw_add(&sum, *a, tmp); tmp.VsrD(0) = 0; tmp.VsrD(1) = c->VsrD(1) & 1; avr_qw_add(r, sum, tmp); #endif } void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { #ifdef CONFIG_INT128 r->u128 = (~a->u128 < ~b->u128) || (a->u128 + ~b->u128 == (__uint128_t)-1); #else int carry = (avr_qw_cmpu(*a, *b) > 0); if (!carry) { ppc_avr_t tmp; avr_qw_not(&tmp, *b); avr_qw_add(&tmp, *a, tmp); carry = ((tmp.VsrSD(0) == -1ull) && (tmp.VsrSD(1) == -1ull)); } r->VsrD(0) = 0; r->VsrD(1) = carry; #endif } void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { #ifdef CONFIG_INT128 r->u128 = (~a->u128 < ~b->u128) || ((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1)); #else int carry_in = c->VsrD(1) & 1; int carry_out = (avr_qw_cmpu(*a, *b) > 0); if (!carry_out && carry_in) { ppc_avr_t tmp; avr_qw_not(&tmp, *b); avr_qw_add(&tmp, *a, tmp); carry_out = ((tmp.VsrD(0) == -1ull) && (tmp.VsrD(1) == -1ull)); } r->VsrD(0) = 0; r->VsrD(1) = carry_out; #endif } #define BCD_PLUS_PREF_1 0xC #define BCD_PLUS_PREF_2 0xF #define BCD_PLUS_ALT_1 0xA #define BCD_NEG_PREF 0xD #define BCD_NEG_ALT 0xB #define BCD_PLUS_ALT_2 0xE #define NATIONAL_PLUS 0x2B #define NATIONAL_NEG 0x2D #define BCD_DIG_BYTE(n) (15 - ((n) / 2)) static int bcd_get_sgn(ppc_avr_t *bcd) { switch (bcd->VsrB(BCD_DIG_BYTE(0)) & 0xF) { case BCD_PLUS_PREF_1: case BCD_PLUS_PREF_2: case BCD_PLUS_ALT_1: case BCD_PLUS_ALT_2: { return 1; } case BCD_NEG_PREF: case BCD_NEG_ALT: { return -1; } default: { return 0; } } } static int bcd_preferred_sgn(int sgn, int ps) { if (sgn >= 0) { return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2; } else { return BCD_NEG_PREF; } } static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid) { uint8_t result; if (n & 1) { result = bcd->VsrB(BCD_DIG_BYTE(n)) >> 4; } else { result = bcd->VsrB(BCD_DIG_BYTE(n)) & 0xF; } if (unlikely(result > 9)) { *invalid = true; } return result; } static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n) { if (n & 1) { bcd->VsrB(BCD_DIG_BYTE(n)) &= 0x0F; bcd->VsrB(BCD_DIG_BYTE(n)) |= (digit << 4); } else { bcd->VsrB(BCD_DIG_BYTE(n)) &= 0xF0; bcd->VsrB(BCD_DIG_BYTE(n)) |= digit; } } static bool bcd_is_valid(ppc_avr_t *bcd) { int i; int invalid = 0; if (bcd_get_sgn(bcd) == 0) { return false; } for (i = 1; i < 32; i++) { bcd_get_digit(bcd, i, &invalid); if (unlikely(invalid)) { return false; } } return true; } static int bcd_cmp_zero(ppc_avr_t *bcd) { if (bcd->VsrD(0) == 0 && (bcd->VsrD(1) >> 4) == 0) { return CRF_EQ; } else { return (bcd_get_sgn(bcd) == 1) ? CRF_GT : CRF_LT; } } static uint16_t get_national_digit(ppc_avr_t *reg, int n) { return reg->VsrH(7 - n); } static void set_national_digit(ppc_avr_t *reg, uint8_t val, int n) { reg->VsrH(7 - n) = val; } static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b) { int i; int invalid = 0; for (i = 31; i > 0; i--) { uint8_t dig_a = bcd_get_digit(a, i, &invalid); uint8_t dig_b = bcd_get_digit(b, i, &invalid); if (unlikely(invalid)) { return 0; /* doesn't matter */ } else if (dig_a > dig_b) { return 1; } else if (dig_a < dig_b) { return -1; } } return 0; } static void bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid, int *overflow) { int carry = 0; int i; for (i = 1; i <= 31; i++) { uint8_t digit = bcd_get_digit(a, i, invalid) + bcd_get_digit(b, i, invalid) + carry; if (digit > 9) { carry = 1; digit -= 10; } else { carry = 0; } bcd_put_digit(t, digit, i); } *overflow = carry; } static void bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid, int *overflow) { int carry = 0; int i; for (i = 1; i <= 31; i++) { uint8_t digit = bcd_get_digit(a, i, invalid) - bcd_get_digit(b, i, invalid) + carry; if (digit & 0x80) { carry = -1; digit += 10; } else { carry = 0; } bcd_put_digit(t, digit, i); } *overflow = carry; } uint32_t helper_bcdadd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps) { int sgna = bcd_get_sgn(a); int sgnb = bcd_get_sgn(b); int invalid = (sgna == 0) || (sgnb == 0); int overflow = 0; uint32_t cr = 0; ppc_avr_t result = { .u64 = { 0, 0 } }; if (!invalid) { if (sgna == sgnb) { result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps); bcd_add_mag(&result, a, b, &invalid, &overflow); cr = bcd_cmp_zero(&result); } else { int magnitude = bcd_cmp_mag(a, b); if (magnitude > 0) { result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps); bcd_sub_mag(&result, a, b, &invalid, &overflow); cr = (sgna > 0) ? CRF_GT : CRF_LT; } else if (magnitude < 0) { result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgnb, ps); bcd_sub_mag(&result, b, a, &invalid, &overflow); cr = (sgnb > 0) ? CRF_GT : CRF_LT; } else { result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(0, ps); cr = CRF_EQ; } } } if (unlikely(invalid)) { result.VsrD(0) = result.VsrD(1) = -1; cr = CRF_SO; } else if (overflow) { cr |= CRF_SO; } *r = result; return cr; } uint32_t helper_bcdsub(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps) { ppc_avr_t bcopy = *b; int sgnb = bcd_get_sgn(b); if (sgnb < 0) { bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0); } else if (sgnb > 0) { bcd_put_digit(&bcopy, BCD_NEG_PREF, 0); } /* else invalid ... defer to bcdadd code for proper handling */ return helper_bcdadd(r, a, &bcopy, ps); } uint32_t helper_bcdcfn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps) { int i; int cr = 0; uint16_t national = 0; uint16_t sgnb = get_national_digit(b, 0); ppc_avr_t ret = { .u64 = { 0, 0 } }; int invalid = (sgnb != NATIONAL_PLUS && sgnb != NATIONAL_NEG); for (i = 1; i < 8; i++) { national = get_national_digit(b, i); if (unlikely(national < 0x30 || national > 0x39)) { invalid = 1; break; } bcd_put_digit(&ret, national & 0xf, i); } if (sgnb == NATIONAL_PLUS) { bcd_put_digit(&ret, (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2, 0); } else { bcd_put_digit(&ret, BCD_NEG_PREF, 0); } cr = bcd_cmp_zero(&ret); if (unlikely(invalid)) { cr = CRF_SO; } *r = ret; return cr; } uint32_t helper_bcdctn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps) { int i; int cr = 0; int sgnb = bcd_get_sgn(b); int invalid = (sgnb == 0); ppc_avr_t ret = { .u64 = { 0, 0 } }; int ox_flag = (b->VsrD(0) != 0) || ((b->VsrD(1) >> 32) != 0); for (i = 1; i < 8; i++) { set_national_digit(&ret, 0x30 + bcd_get_digit(b, i, &invalid), i); if (unlikely(invalid)) { break; } } set_national_digit(&ret, (sgnb == -1) ? NATIONAL_NEG : NATIONAL_PLUS, 0); cr = bcd_cmp_zero(b); if (ox_flag) { cr |= CRF_SO; } if (unlikely(invalid)) { cr = CRF_SO; } *r = ret; return cr; } uint32_t helper_bcdcfz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps) { int i; int cr = 0; int invalid = 0; int zone_digit = 0; int zone_lead = ps ? 0xF : 0x3; int digit = 0; ppc_avr_t ret = { .u64 = { 0, 0 } }; int sgnb = b->VsrB(BCD_DIG_BYTE(0)) >> 4; if (unlikely((sgnb < 0xA) && ps)) { invalid = 1; } for (i = 0; i < 16; i++) { zone_digit = i ? b->VsrB(BCD_DIG_BYTE(i * 2)) >> 4 : zone_lead; digit = b->VsrB(BCD_DIG_BYTE(i * 2)) & 0xF; if (unlikely(zone_digit != zone_lead || digit > 0x9)) { invalid = 1; break; } bcd_put_digit(&ret, digit, i + 1); } if ((ps && (sgnb == 0xB || sgnb == 0xD)) || (!ps && (sgnb & 0x4))) { bcd_put_digit(&ret, BCD_NEG_PREF, 0); } else { bcd_put_digit(&ret, BCD_PLUS_PREF_1, 0); } cr = bcd_cmp_zero(&ret); if (unlikely(invalid)) { cr = CRF_SO; } *r = ret; return cr; } uint32_t helper_bcdctz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps) { int i; int cr = 0; uint8_t digit = 0; int sgnb = bcd_get_sgn(b); int zone_lead = (ps) ? 0xF0 : 0x30; int invalid = (sgnb == 0); ppc_avr_t ret = { .u64 = { 0, 0 } }; int ox_flag = ((b->VsrD(0) >> 4) != 0); for (i = 0; i < 16; i++) { digit = bcd_get_digit(b, i + 1, &invalid); if (unlikely(invalid)) { break; } ret.VsrB(BCD_DIG_BYTE(i * 2)) = zone_lead + digit; } if (ps) { bcd_put_digit(&ret, (sgnb == 1) ? 0xC : 0xD, 1); } else { bcd_put_digit(&ret, (sgnb == 1) ? 0x3 : 0x7, 1); } cr = bcd_cmp_zero(b); if (ox_flag) { cr |= CRF_SO; } if (unlikely(invalid)) { cr = CRF_SO; } *r = ret; return cr; } uint32_t helper_bcdcfsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps) { int i; int cr = 0; uint64_t lo_value; uint64_t hi_value; ppc_avr_t ret = { .u64 = { 0, 0 } }; if (b->VsrSD(0) < 0) { lo_value = -b->VsrSD(1); hi_value = ~b->VsrD(0) + !lo_value; bcd_put_digit(&ret, 0xD, 0); } else { lo_value = b->VsrD(1); hi_value = b->VsrD(0); bcd_put_digit(&ret, bcd_preferred_sgn(0, ps), 0); } if (divu128(&lo_value, &hi_value, 1000000000000000ULL) || lo_value > 9999999999999999ULL) { cr = CRF_SO; } for (i = 1; i < 16; hi_value /= 10, i++) { bcd_put_digit(&ret, hi_value % 10, i); } for (; i < 32; lo_value /= 10, i++) { bcd_put_digit(&ret, lo_value % 10, i); } cr |= bcd_cmp_zero(&ret); *r = ret; return cr; } uint32_t helper_bcdctsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps) { uint8_t i; int cr; uint64_t carry; uint64_t unused; uint64_t lo_value; uint64_t hi_value = 0; int sgnb = bcd_get_sgn(b); int invalid = (sgnb == 0); lo_value = bcd_get_digit(b, 31, &invalid); for (i = 30; i > 0; i--) { mulu64(&lo_value, &carry, lo_value, 10ULL); mulu64(&hi_value, &unused, hi_value, 10ULL); lo_value += bcd_get_digit(b, i, &invalid); hi_value += carry; if (unlikely(invalid)) { break; } } if (sgnb == -1) { r->VsrSD(1) = -lo_value; r->VsrSD(0) = ~hi_value + !r->VsrSD(1); } else { r->VsrSD(1) = lo_value; r->VsrSD(0) = hi_value; } cr = bcd_cmp_zero(b); if (unlikely(invalid)) { cr = CRF_SO; } return cr; } uint32_t helper_bcdcpsgn(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps) { int i; int invalid = 0; if (bcd_get_sgn(a) == 0 || bcd_get_sgn(b) == 0) { return CRF_SO; } *r = *a; bcd_put_digit(r, b->VsrB(BCD_DIG_BYTE(0)) & 0xF, 0); for (i = 1; i < 32; i++) { bcd_get_digit(a, i, &invalid); bcd_get_digit(b, i, &invalid); if (unlikely(invalid)) { return CRF_SO; } } return bcd_cmp_zero(r); } uint32_t helper_bcdsetsgn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps) { int sgnb = bcd_get_sgn(b); *r = *b; bcd_put_digit(r, bcd_preferred_sgn(sgnb, ps), 0); if (bcd_is_valid(b) == false) { return CRF_SO; } return bcd_cmp_zero(r); } uint32_t helper_bcds(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps) { int cr; int i = a->VsrSB(7); bool ox_flag = false; int sgnb = bcd_get_sgn(b); ppc_avr_t ret = *b; ret.VsrD(1) &= ~0xf; if (bcd_is_valid(b) == false) { return CRF_SO; } if (unlikely(i > 31)) { i = 31; } else if (unlikely(i < -31)) { i = -31; } if (i > 0) { ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag); } else { urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4); } bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0); *r = ret; cr = bcd_cmp_zero(r); if (ox_flag) { cr |= CRF_SO; } return cr; } uint32_t helper_bcdus(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps) { int cr; int i; int invalid = 0; bool ox_flag = false; ppc_avr_t ret = *b; for (i = 0; i < 32; i++) { bcd_get_digit(b, i, &invalid); if (unlikely(invalid)) { return CRF_SO; } } i = a->VsrSB(7); if (i >= 32) { ox_flag = true; ret.VsrD(1) = ret.VsrD(0) = 0; } else if (i <= -32) { ret.VsrD(1) = ret.VsrD(0) = 0; } else if (i > 0) { ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag); } else { urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4); } *r = ret; cr = bcd_cmp_zero(r); if (ox_flag) { cr |= CRF_SO; } return cr; } uint32_t helper_bcdsr(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps) { int cr; int unused = 0; int invalid = 0; bool ox_flag = false; int sgnb = bcd_get_sgn(b); ppc_avr_t ret = *b; ret.VsrD(1) &= ~0xf; int i = a->VsrSB(7); ppc_avr_t bcd_one; bcd_one.VsrD(0) = 0; bcd_one.VsrD(1) = 0x10; if (bcd_is_valid(b) == false) { return CRF_SO; } if (unlikely(i > 31)) { i = 31; } else if (unlikely(i < -31)) { i = -31; } if (i > 0) { ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag); } else { urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4); if (bcd_get_digit(&ret, 0, &invalid) >= 5) { bcd_add_mag(&ret, &ret, &bcd_one, &invalid, &unused); } } bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0); cr = bcd_cmp_zero(&ret); if (ox_flag) { cr |= CRF_SO; } *r = ret; return cr; } uint32_t helper_bcdtrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps) { uint64_t mask; uint32_t ox_flag = 0; int i = a->VsrSH(3) + 1; ppc_avr_t ret = *b; if (bcd_is_valid(b) == false) { return CRF_SO; } if (i > 16 && i < 32) { mask = (uint64_t)-1 >> (128 - i * 4); if (ret.VsrD(0) & ~mask) { ox_flag = CRF_SO; } ret.VsrD(0) &= mask; } else if (i >= 0 && i <= 16) { mask = (uint64_t)-1 >> (64 - i * 4); if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) { ox_flag = CRF_SO; } ret.VsrD(1) &= mask; ret.VsrD(0) = 0; } bcd_put_digit(&ret, bcd_preferred_sgn(bcd_get_sgn(b), ps), 0); *r = ret; return bcd_cmp_zero(&ret) | ox_flag; } uint32_t helper_bcdutrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps) { int i; uint64_t mask; uint32_t ox_flag = 0; int invalid = 0; ppc_avr_t ret = *b; for (i = 0; i < 32; i++) { bcd_get_digit(b, i, &invalid); if (unlikely(invalid)) { return CRF_SO; } } i = a->VsrSH(3); if (i > 16 && i < 33) { mask = (uint64_t)-1 >> (128 - i * 4); if (ret.VsrD(0) & ~mask) { ox_flag = CRF_SO; } ret.VsrD(0) &= mask; } else if (i > 0 && i <= 16) { mask = (uint64_t)-1 >> (64 - i * 4); if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) { ox_flag = CRF_SO; } ret.VsrD(1) &= mask; ret.VsrD(0) = 0; } else if (i == 0) { if (ret.VsrD(0) || ret.VsrD(1)) { ox_flag = CRF_SO; } ret.VsrD(0) = ret.VsrD(1) = 0; } *r = ret; if (r->VsrD(0) == 0 && r->VsrD(1) == 0) { return ox_flag | CRF_EQ; } return ox_flag | CRF_GT; } void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a) { int i; VECTOR_FOR_INORDER_I(i, u8) { r->u8[i] = AES_sbox[a->u8[i]]; } } void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { ppc_avr_t result; int i; VECTOR_FOR_INORDER_I(i, u32) { result.VsrW(i) = b->VsrW(i) ^ (AES_Te0[a->VsrB(AES_shifts[4 * i + 0])] ^ AES_Te1[a->VsrB(AES_shifts[4 * i + 1])] ^ AES_Te2[a->VsrB(AES_shifts[4 * i + 2])] ^ AES_Te3[a->VsrB(AES_shifts[4 * i + 3])]); } *r = result; } void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { ppc_avr_t result; int i; VECTOR_FOR_INORDER_I(i, u8) { result.VsrB(i) = b->VsrB(i) ^ (AES_sbox[a->VsrB(AES_shifts[i])]); } *r = result; } void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { /* This differs from what is written in ISA V2.07. The RTL is */ /* incorrect and will be fixed in V2.07B. */ int i; ppc_avr_t tmp; VECTOR_FOR_INORDER_I(i, u8) { tmp.VsrB(i) = b->VsrB(i) ^ AES_isbox[a->VsrB(AES_ishifts[i])]; } VECTOR_FOR_INORDER_I(i, u32) { r->VsrW(i) = AES_imc[tmp.VsrB(4 * i + 0)][0] ^ AES_imc[tmp.VsrB(4 * i + 1)][1] ^ AES_imc[tmp.VsrB(4 * i + 2)][2] ^ AES_imc[tmp.VsrB(4 * i + 3)][3]; } } void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) { ppc_avr_t result; int i; VECTOR_FOR_INORDER_I(i, u8) { result.VsrB(i) = b->VsrB(i) ^ (AES_isbox[a->VsrB(AES_ishifts[i])]); } *r = result; } void helper_vshasigmaw(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six) { int st = (st_six & 0x10) != 0; int six = st_six & 0xF; int i; for (i = 0; i < ARRAY_SIZE(r->u32); i++) { if (st == 0) { if ((six & (0x8 >> i)) == 0) { r->VsrW(i) = ror32(a->VsrW(i), 7) ^ ror32(a->VsrW(i), 18) ^ (a->VsrW(i) >> 3); } else { /* six.bit[i] == 1 */ r->VsrW(i) = ror32(a->VsrW(i), 17) ^ ror32(a->VsrW(i), 19) ^ (a->VsrW(i) >> 10); } } else { /* st == 1 */ if ((six & (0x8 >> i)) == 0) { r->VsrW(i) = ror32(a->VsrW(i), 2) ^ ror32(a->VsrW(i), 13) ^ ror32(a->VsrW(i), 22); } else { /* six.bit[i] == 1 */ r->VsrW(i) = ror32(a->VsrW(i), 6) ^ ror32(a->VsrW(i), 11) ^ ror32(a->VsrW(i), 25); } } } } void helper_vshasigmad(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six) { int st = (st_six & 0x10) != 0; int six = st_six & 0xF; int i; for (i = 0; i < ARRAY_SIZE(r->u64); i++) { if (st == 0) { if ((six & (0x8 >> (2 * i))) == 0) { r->VsrD(i) = ror64(a->VsrD(i), 1) ^ ror64(a->VsrD(i), 8) ^ (a->VsrD(i) >> 7); } else { /* six.bit[2*i] == 1 */ r->VsrD(i) = ror64(a->VsrD(i), 19) ^ ror64(a->VsrD(i), 61) ^ (a->VsrD(i) >> 6); } } else { /* st == 1 */ if ((six & (0x8 >> (2 * i))) == 0) { r->VsrD(i) = ror64(a->VsrD(i), 28) ^ ror64(a->VsrD(i), 34) ^ ror64(a->VsrD(i), 39); } else { /* six.bit[2*i] == 1 */ r->VsrD(i) = ror64(a->VsrD(i), 14) ^ ror64(a->VsrD(i), 18) ^ ror64(a->VsrD(i), 41); } } } } void helper_vpermxor(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) { ppc_avr_t result; int i; for (i = 0; i < ARRAY_SIZE(r->u8); i++) { int indexA = c->VsrB(i) >> 4; int indexB = c->VsrB(i) & 0xF; result.VsrB(i) = a->VsrB(indexA) ^ b->VsrB(indexB); } *r = result; } #undef VECTOR_FOR_INORDER_I /*****************************************************************************/ /* SPE extension helpers */ /* Use a table to make this quicker */ static const uint8_t hbrev[16] = { 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, }; static inline uint8_t byte_reverse(uint8_t val) { return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); } static inline uint32_t word_reverse(uint32_t val) { return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); } #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */ target_ulong helper_brinc(target_ulong arg1, target_ulong arg2) { uint32_t a, b, d, mask; mask = UINT32_MAX >> (32 - MASKBITS); a = arg1 & mask; b = arg2 & mask; d = word_reverse(1 + word_reverse(a | ~b)); return (arg1 & ~mask) | (d & b); } uint32_t helper_cntlsw32(uint32_t val) { if (val & 0x80000000) { return clz32(~val); } else { return clz32(val); } } uint32_t helper_cntlzw32(uint32_t val) { return clz32(val); } /* 440 specific */ target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high, target_ulong low, uint32_t update_Rc) { target_ulong mask; int i; i = 1; for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { if ((high & mask) == 0) { if (update_Rc) { env->crf[0] = 0x4; } goto done; } i++; } for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { if ((low & mask) == 0) { if (update_Rc) { env->crf[0] = 0x8; } goto done; } i++; } i = 8; if (update_Rc) { env->crf[0] = 0x2; } done: env->xer = (env->xer & ~0x7F) | i; if (update_Rc) { env->crf[0] |= xer_so; } return i; }