/* * PowerPC emulation special registers manipulation helpers for qemu. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "qemu/main-loop.h" #include "exec/exec-all.h" #include "sysemu/kvm.h" #include "helper_regs.h" #include "power8-pmu.h" /* Swap temporary saved registers with GPRs */ void hreg_swap_gpr_tgpr(CPUPPCState *env) { target_ulong tmp; tmp = env->gpr[0]; env->gpr[0] = env->tgpr[0]; env->tgpr[0] = tmp; tmp = env->gpr[1]; env->gpr[1] = env->tgpr[1]; env->tgpr[1] = tmp; tmp = env->gpr[2]; env->gpr[2] = env->tgpr[2]; env->tgpr[2] = tmp; tmp = env->gpr[3]; env->gpr[3] = env->tgpr[3]; env->tgpr[3] = tmp; } static uint32_t hreg_compute_hflags_value(CPUPPCState *env) { target_ulong msr = env->msr; uint32_t ppc_flags = env->flags; uint32_t hflags = 0; uint32_t msr_mask; /* Some bits come straight across from MSR. */ QEMU_BUILD_BUG_ON(MSR_LE != HFLAGS_LE); QEMU_BUILD_BUG_ON(MSR_PR != HFLAGS_PR); QEMU_BUILD_BUG_ON(MSR_DR != HFLAGS_DR); QEMU_BUILD_BUG_ON(MSR_FP != HFLAGS_FP); msr_mask = ((1 << MSR_LE) | (1 << MSR_PR) | (1 << MSR_DR) | (1 << MSR_FP)); if (ppc_flags & POWERPC_FLAG_DE) { target_ulong dbcr0 = env->spr[SPR_BOOKE_DBCR0]; if (dbcr0 & DBCR0_ICMP) { hflags |= 1 << HFLAGS_SE; } if (dbcr0 & DBCR0_BRT) { hflags |= 1 << HFLAGS_BE; } } else { if (ppc_flags & POWERPC_FLAG_BE) { QEMU_BUILD_BUG_ON(MSR_BE != HFLAGS_BE); msr_mask |= 1 << MSR_BE; } if (ppc_flags & POWERPC_FLAG_SE) { QEMU_BUILD_BUG_ON(MSR_SE != HFLAGS_SE); msr_mask |= 1 << MSR_SE; } } if (msr_is_64bit(env, msr)) { hflags |= 1 << HFLAGS_64; } if ((ppc_flags & POWERPC_FLAG_SPE) && (msr & (1 << MSR_SPE))) { hflags |= 1 << HFLAGS_SPE; } if (ppc_flags & POWERPC_FLAG_VRE) { QEMU_BUILD_BUG_ON(MSR_VR != HFLAGS_VR); msr_mask |= 1 << MSR_VR; } if (ppc_flags & POWERPC_FLAG_VSX) { QEMU_BUILD_BUG_ON(MSR_VSX != HFLAGS_VSX); msr_mask |= 1 << MSR_VSX; } if ((ppc_flags & POWERPC_FLAG_TM) && (msr & (1ull << MSR_TM))) { hflags |= 1 << HFLAGS_TM; } if (env->spr[SPR_LPCR] & LPCR_GTSE) { hflags |= 1 << HFLAGS_GTSE; } if (env->spr[SPR_LPCR] & LPCR_HR) { hflags |= 1 << HFLAGS_HR; } if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMCC0) { hflags |= 1 << HFLAGS_PMCC0; } if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMCC1) { hflags |= 1 << HFLAGS_PMCC1; } #ifndef CONFIG_USER_ONLY if (!env->has_hv_mode || (msr & (1ull << MSR_HV))) { hflags |= 1 << HFLAGS_HV; } #if defined(TARGET_PPC64) if (env->pmc_ins_cnt) { hflags |= 1 << HFLAGS_INSN_CNT; } #endif /* * This is our encoding for server processors. The architecture * specifies that there is no such thing as userspace with * translation off, however it appears that MacOS does it and some * 32-bit CPUs support it. Weird... * * 0 = Guest User space virtual mode * 1 = Guest Kernel space virtual mode * 2 = Guest User space real mode * 3 = Guest Kernel space real mode * 4 = HV User space virtual mode * 5 = HV Kernel space virtual mode * 6 = HV User space real mode * 7 = HV Kernel space real mode * * For BookE, we need 8 MMU modes as follow: * * 0 = AS 0 HV User space * 1 = AS 0 HV Kernel space * 2 = AS 1 HV User space * 3 = AS 1 HV Kernel space * 4 = AS 0 Guest User space * 5 = AS 0 Guest Kernel space * 6 = AS 1 Guest User space * 7 = AS 1 Guest Kernel space */ unsigned immu_idx, dmmu_idx; dmmu_idx = msr & (1 << MSR_PR) ? 0 : 1; if (env->mmu_model == POWERPC_MMU_BOOKE || env->mmu_model == POWERPC_MMU_BOOKE206) { dmmu_idx |= msr & (1 << MSR_GS) ? 4 : 0; immu_idx = dmmu_idx; immu_idx |= msr & (1 << MSR_IS) ? 2 : 0; dmmu_idx |= msr & (1 << MSR_DS) ? 2 : 0; } else { dmmu_idx |= msr & (1ull << MSR_HV) ? 4 : 0; immu_idx = dmmu_idx; immu_idx |= msr & (1 << MSR_IR) ? 0 : 2; dmmu_idx |= msr & (1 << MSR_DR) ? 0 : 2; } hflags |= immu_idx << HFLAGS_IMMU_IDX; hflags |= dmmu_idx << HFLAGS_DMMU_IDX; #endif return hflags | (msr & msr_mask); } void hreg_compute_hflags(CPUPPCState *env) { env->hflags = hreg_compute_hflags_value(env); } #ifdef CONFIG_DEBUG_TCG void cpu_get_tb_cpu_state(CPUPPCState *env, target_ulong *pc, target_ulong *cs_base, uint32_t *flags) { uint32_t hflags_current = env->hflags; uint32_t hflags_rebuilt; *pc = env->nip; *cs_base = 0; *flags = hflags_current; hflags_rebuilt = hreg_compute_hflags_value(env); if (unlikely(hflags_current != hflags_rebuilt)) { cpu_abort(env_cpu(env), "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", hflags_current, hflags_rebuilt); } } #endif void cpu_interrupt_exittb(CPUState *cs) { /* * We don't need to worry about translation blocks * when running with KVM. */ if (kvm_enabled()) { return; } if (!qemu_mutex_iothread_locked()) { qemu_mutex_lock_iothread(); cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); qemu_mutex_unlock_iothread(); } else { cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); } } int hreg_store_msr(CPUPPCState *env, target_ulong value, int alter_hv) { int excp; #if !defined(CONFIG_USER_ONLY) CPUState *cs = env_cpu(env); #endif excp = 0; value &= env->msr_mask; #if !defined(CONFIG_USER_ONLY) /* Neither mtmsr nor guest state can alter HV */ if (!alter_hv || !(env->msr & MSR_HVB)) { value &= ~MSR_HVB; value |= env->msr & MSR_HVB; } if (((value >> MSR_IR) & 1) != msr_ir || ((value >> MSR_DR) & 1) != msr_dr) { cpu_interrupt_exittb(cs); } if ((env->mmu_model == POWERPC_MMU_BOOKE || env->mmu_model == POWERPC_MMU_BOOKE206) && ((value >> MSR_GS) & 1) != msr_gs) { cpu_interrupt_exittb(cs); } if (unlikely((env->flags & POWERPC_FLAG_TGPR) && ((value ^ env->msr) & (1 << MSR_TGPR)))) { /* Swap temporary saved registers with GPRs */ hreg_swap_gpr_tgpr(env); } if (unlikely((value >> MSR_EP) & 1) != msr_ep) { env->excp_prefix = ((value >> MSR_EP) & 1) * 0xFFF00000; } /* * If PR=1 then EE, IR and DR must be 1 * * Note: We only enforce this on 64-bit server processors. * It appears that: * - 32-bit implementations supports PR=1 and EE/DR/IR=0 and MacOS * exploits it. * - 64-bit embedded implementations do not need any operation to be * performed when PR is set. */ if (is_book3s_arch2x(env) && ((value >> MSR_PR) & 1)) { value |= (1 << MSR_EE) | (1 << MSR_DR) | (1 << MSR_IR); } #endif env->msr = value; hreg_compute_hflags(env); #if !defined(CONFIG_USER_ONLY) if (unlikely(msr_pow == 1)) { if (!env->pending_interrupts && (*env->check_pow)(env)) { cs->halted = 1; excp = EXCP_HALTED; } } #endif return excp; } #ifdef CONFIG_SOFTMMU void store_40x_sler(CPUPPCState *env, uint32_t val) { /* XXX: TO BE FIXED */ if (val != 0x00000000) { cpu_abort(env_cpu(env), "Little-endian regions are not supported by now\n"); } env->spr[SPR_405_SLER] = val; } #endif /* CONFIG_SOFTMMU */ #ifndef CONFIG_USER_ONLY void check_tlb_flush(CPUPPCState *env, bool global) { CPUState *cs = env_cpu(env); /* Handle global flushes first */ if (global && (env->tlb_need_flush & TLB_NEED_GLOBAL_FLUSH)) { env->tlb_need_flush &= ~TLB_NEED_GLOBAL_FLUSH; env->tlb_need_flush &= ~TLB_NEED_LOCAL_FLUSH; tlb_flush_all_cpus_synced(cs); return; } /* Then handle local ones */ if (env->tlb_need_flush & TLB_NEED_LOCAL_FLUSH) { env->tlb_need_flush &= ~TLB_NEED_LOCAL_FLUSH; tlb_flush(cs); } } #endif