/* * PowerPC exception emulation helpers for QEMU. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "qemu/log.h" #include "sysemu/sysemu.h" #include "sysemu/runstate.h" #include "cpu.h" #include "exec/exec-all.h" #include "internal.h" #include "helper_regs.h" #include "hw/ppc/ppc.h" #include "trace.h" #ifdef CONFIG_TCG #include "sysemu/tcg.h" #include "exec/helper-proto.h" #include "exec/cpu_ldst.h" #endif /*****************************************************************************/ /* Exception processing */ #ifndef CONFIG_USER_ONLY static const char *powerpc_excp_name(int excp) { switch (excp) { case POWERPC_EXCP_CRITICAL: return "CRITICAL"; case POWERPC_EXCP_MCHECK: return "MCHECK"; case POWERPC_EXCP_DSI: return "DSI"; case POWERPC_EXCP_ISI: return "ISI"; case POWERPC_EXCP_EXTERNAL: return "EXTERNAL"; case POWERPC_EXCP_ALIGN: return "ALIGN"; case POWERPC_EXCP_PROGRAM: return "PROGRAM"; case POWERPC_EXCP_FPU: return "FPU"; case POWERPC_EXCP_SYSCALL: return "SYSCALL"; case POWERPC_EXCP_APU: return "APU"; case POWERPC_EXCP_DECR: return "DECR"; case POWERPC_EXCP_FIT: return "FIT"; case POWERPC_EXCP_WDT: return "WDT"; case POWERPC_EXCP_DTLB: return "DTLB"; case POWERPC_EXCP_ITLB: return "ITLB"; case POWERPC_EXCP_DEBUG: return "DEBUG"; case POWERPC_EXCP_SPEU: return "SPEU"; case POWERPC_EXCP_EFPDI: return "EFPDI"; case POWERPC_EXCP_EFPRI: return "EFPRI"; case POWERPC_EXCP_EPERFM: return "EPERFM"; case POWERPC_EXCP_DOORI: return "DOORI"; case POWERPC_EXCP_DOORCI: return "DOORCI"; case POWERPC_EXCP_GDOORI: return "GDOORI"; case POWERPC_EXCP_GDOORCI: return "GDOORCI"; case POWERPC_EXCP_HYPPRIV: return "HYPPRIV"; case POWERPC_EXCP_RESET: return "RESET"; case POWERPC_EXCP_DSEG: return "DSEG"; case POWERPC_EXCP_ISEG: return "ISEG"; case POWERPC_EXCP_HDECR: return "HDECR"; case POWERPC_EXCP_TRACE: return "TRACE"; case POWERPC_EXCP_HDSI: return "HDSI"; case POWERPC_EXCP_HISI: return "HISI"; case POWERPC_EXCP_HDSEG: return "HDSEG"; case POWERPC_EXCP_HISEG: return "HISEG"; case POWERPC_EXCP_VPU: return "VPU"; case POWERPC_EXCP_PIT: return "PIT"; case POWERPC_EXCP_EMUL: return "EMUL"; case POWERPC_EXCP_IFTLB: return "IFTLB"; case POWERPC_EXCP_DLTLB: return "DLTLB"; case POWERPC_EXCP_DSTLB: return "DSTLB"; case POWERPC_EXCP_FPA: return "FPA"; case POWERPC_EXCP_DABR: return "DABR"; case POWERPC_EXCP_IABR: return "IABR"; case POWERPC_EXCP_SMI: return "SMI"; case POWERPC_EXCP_PERFM: return "PERFM"; case POWERPC_EXCP_THERM: return "THERM"; case POWERPC_EXCP_VPUA: return "VPUA"; case POWERPC_EXCP_SOFTP: return "SOFTP"; case POWERPC_EXCP_MAINT: return "MAINT"; case POWERPC_EXCP_MEXTBR: return "MEXTBR"; case POWERPC_EXCP_NMEXTBR: return "NMEXTBR"; case POWERPC_EXCP_ITLBE: return "ITLBE"; case POWERPC_EXCP_DTLBE: return "DTLBE"; case POWERPC_EXCP_VSXU: return "VSXU"; case POWERPC_EXCP_FU: return "FU"; case POWERPC_EXCP_HV_EMU: return "HV_EMU"; case POWERPC_EXCP_HV_MAINT: return "HV_MAINT"; case POWERPC_EXCP_HV_FU: return "HV_FU"; case POWERPC_EXCP_SDOOR: return "SDOOR"; case POWERPC_EXCP_SDOOR_HV: return "SDOOR_HV"; case POWERPC_EXCP_HVIRT: return "HVIRT"; case POWERPC_EXCP_SYSCALL_VECTORED: return "SYSCALL_VECTORED"; default: g_assert_not_reached(); } } static void dump_syscall(CPUPPCState *env) { qemu_log_mask(CPU_LOG_INT, "syscall r0=%016" PRIx64 " r3=%016" PRIx64 " r4=%016" PRIx64 " r5=%016" PRIx64 " r6=%016" PRIx64 " r7=%016" PRIx64 " r8=%016" PRIx64 " nip=" TARGET_FMT_lx "\n", ppc_dump_gpr(env, 0), ppc_dump_gpr(env, 3), ppc_dump_gpr(env, 4), ppc_dump_gpr(env, 5), ppc_dump_gpr(env, 6), ppc_dump_gpr(env, 7), ppc_dump_gpr(env, 8), env->nip); } static void dump_hcall(CPUPPCState *env) { qemu_log_mask(CPU_LOG_INT, "hypercall r3=%016" PRIx64 " r4=%016" PRIx64 " r5=%016" PRIx64 " r6=%016" PRIx64 " r7=%016" PRIx64 " r8=%016" PRIx64 " r9=%016" PRIx64 " r10=%016" PRIx64 " r11=%016" PRIx64 " r12=%016" PRIx64 " nip=" TARGET_FMT_lx "\n", ppc_dump_gpr(env, 3), ppc_dump_gpr(env, 4), ppc_dump_gpr(env, 5), ppc_dump_gpr(env, 6), ppc_dump_gpr(env, 7), ppc_dump_gpr(env, 8), ppc_dump_gpr(env, 9), ppc_dump_gpr(env, 10), ppc_dump_gpr(env, 11), ppc_dump_gpr(env, 12), env->nip); } #ifdef CONFIG_TCG /* Return true iff byteswap is needed to load instruction */ static inline bool insn_need_byteswap(CPUArchState *env) { /* SYSTEM builds TARGET_BIG_ENDIAN. Need to swap when MSR[LE] is set */ return !!(env->msr & ((target_ulong)1 << MSR_LE)); } static uint32_t ppc_ldl_code(CPUArchState *env, target_ulong addr) { uint32_t insn = cpu_ldl_code(env, addr); if (insn_need_byteswap(env)) { insn = bswap32(insn); } return insn; } #endif static void ppc_excp_debug_sw_tlb(CPUPPCState *env, int excp) { const char *es; target_ulong *miss, *cmp; int en; if (!qemu_loglevel_mask(CPU_LOG_MMU)) { return; } if (excp == POWERPC_EXCP_IFTLB) { es = "I"; en = 'I'; miss = &env->spr[SPR_IMISS]; cmp = &env->spr[SPR_ICMP]; } else { if (excp == POWERPC_EXCP_DLTLB) { es = "DL"; } else { es = "DS"; } en = 'D'; miss = &env->spr[SPR_DMISS]; cmp = &env->spr[SPR_DCMP]; } qemu_log("6xx %sTLB miss: %cM " TARGET_FMT_lx " %cC " TARGET_FMT_lx " H1 " TARGET_FMT_lx " H2 " TARGET_FMT_lx " %08x\n", es, en, *miss, en, *cmp, env->spr[SPR_HASH1], env->spr[SPR_HASH2], env->error_code); } #ifdef TARGET_PPC64 static int powerpc_reset_wakeup(CPUPPCState *env, int excp, target_ulong *msr) { /* We no longer are in a PM state */ env->resume_as_sreset = false; /* Pretend to be returning from doze always as we don't lose state */ *msr |= SRR1_WS_NOLOSS; /* Machine checks are sent normally */ if (excp == POWERPC_EXCP_MCHECK) { return excp; } switch (excp) { case POWERPC_EXCP_RESET: *msr |= SRR1_WAKERESET; break; case POWERPC_EXCP_EXTERNAL: *msr |= SRR1_WAKEEE; break; case POWERPC_EXCP_DECR: *msr |= SRR1_WAKEDEC; break; case POWERPC_EXCP_SDOOR: *msr |= SRR1_WAKEDBELL; break; case POWERPC_EXCP_SDOOR_HV: *msr |= SRR1_WAKEHDBELL; break; case POWERPC_EXCP_HV_MAINT: *msr |= SRR1_WAKEHMI; break; case POWERPC_EXCP_HVIRT: *msr |= SRR1_WAKEHVI; break; default: cpu_abort(env_cpu(env), "Unsupported exception %d in Power Save mode\n", excp); } return POWERPC_EXCP_RESET; } /* * AIL - Alternate Interrupt Location, a mode that allows interrupts to be * taken with the MMU on, and which uses an alternate location (e.g., so the * kernel/hv can map the vectors there with an effective address). * * An interrupt is considered to be taken "with AIL" or "AIL applies" if they * are delivered in this way. AIL requires the LPCR to be set to enable this * mode, and then a number of conditions have to be true for AIL to apply. * * First of all, SRESET, MCE, and HMI are always delivered without AIL, because * they specifically want to be in real mode (e.g., the MCE might be signaling * a SLB multi-hit which requires SLB flush before the MMU can be enabled). * * After that, behaviour depends on the current MSR[IR], MSR[DR], MSR[HV], * whether or not the interrupt changes MSR[HV] from 0 to 1, and the current * radix mode (LPCR[HR]). * * POWER8, POWER9 with LPCR[HR]=0 * | LPCR[AIL] | MSR[IR||DR] | MSR[HV] | new MSR[HV] | AIL | * +-----------+-------------+---------+-------------+-----+ * | a | 00/01/10 | x | x | 0 | * | a | 11 | 0 | 1 | 0 | * | a | 11 | 1 | 1 | a | * | a | 11 | 0 | 0 | a | * +-------------------------------------------------------+ * * POWER9 with LPCR[HR]=1 * | LPCR[AIL] | MSR[IR||DR] | MSR[HV] | new MSR[HV] | AIL | * +-----------+-------------+---------+-------------+-----+ * | a | 00/01/10 | x | x | 0 | * | a | 11 | x | x | a | * +-------------------------------------------------------+ * * The difference with POWER9 being that MSR[HV] 0->1 interrupts can be sent to * the hypervisor in AIL mode if the guest is radix. This is good for * performance but allows the guest to influence the AIL of hypervisor * interrupts using its MSR, and also the hypervisor must disallow guest * interrupts (MSR[HV] 0->0) from using AIL if the hypervisor does not want to * use AIL for its MSR[HV] 0->1 interrupts. * * POWER10 addresses those issues with a new LPCR[HAIL] bit that is applied to * interrupts that begin execution with MSR[HV]=1 (so both MSR[HV] 0->1 and * MSR[HV] 1->1). * * HAIL=1 is equivalent to AIL=3, for interrupts delivered with MSR[HV]=1. * * POWER10 behaviour is * | LPCR[AIL] | LPCR[HAIL] | MSR[IR||DR] | MSR[HV] | new MSR[HV] | AIL | * +-----------+------------+-------------+---------+-------------+-----+ * | a | h | 00/01/10 | 0 | 0 | 0 | * | a | h | 11 | 0 | 0 | a | * | a | h | x | 0 | 1 | h | * | a | h | 00/01/10 | 1 | 1 | 0 | * | a | h | 11 | 1 | 1 | h | * +--------------------------------------------------------------------+ */ static void ppc_excp_apply_ail(PowerPCCPU *cpu, int excp, target_ulong msr, target_ulong *new_msr, target_ulong *vector) { PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); CPUPPCState *env = &cpu->env; bool mmu_all_on = ((msr >> MSR_IR) & 1) && ((msr >> MSR_DR) & 1); bool hv_escalation = !(msr & MSR_HVB) && (*new_msr & MSR_HVB); int ail = 0; if (excp == POWERPC_EXCP_MCHECK || excp == POWERPC_EXCP_RESET || excp == POWERPC_EXCP_HV_MAINT) { /* SRESET, MCE, HMI never apply AIL */ return; } if (!(pcc->lpcr_mask & LPCR_AIL)) { /* This CPU does not have AIL */ return; } /* P8 & P9 */ if (!(pcc->lpcr_mask & LPCR_HAIL)) { if (!mmu_all_on) { /* AIL only works if MSR[IR] and MSR[DR] are both enabled. */ return; } if (hv_escalation && !(env->spr[SPR_LPCR] & LPCR_HR)) { /* * AIL does not work if there is a MSR[HV] 0->1 transition and the * partition is in HPT mode. For radix guests, such interrupts are * allowed to be delivered to the hypervisor in ail mode. */ return; } ail = (env->spr[SPR_LPCR] & LPCR_AIL) >> LPCR_AIL_SHIFT; if (ail == 0 || ail == 1) { /* AIL=1 is reserved, treat it like AIL=0 */ return; } /* P10 and up */ } else { if (!mmu_all_on && !hv_escalation) { /* * AIL works for HV interrupts even with guest MSR[IR/DR] disabled. * Guest->guest and HV->HV interrupts do require MMU on. */ return; } if (*new_msr & MSR_HVB) { if (!(env->spr[SPR_LPCR] & LPCR_HAIL)) { /* HV interrupts depend on LPCR[HAIL] */ return; } ail = 3; /* HAIL=1 gives AIL=3 behaviour for HV interrupts */ } else { ail = (env->spr[SPR_LPCR] & LPCR_AIL) >> LPCR_AIL_SHIFT; } if (ail == 0 || ail == 1 || ail == 2) { /* AIL=1 and AIL=2 are reserved, treat them like AIL=0 */ return; } } /* * AIL applies, so the new MSR gets IR and DR set, and an offset applied * to the new IP. */ *new_msr |= (1 << MSR_IR) | (1 << MSR_DR); if (excp != POWERPC_EXCP_SYSCALL_VECTORED) { if (ail == 2) { *vector |= 0x0000000000018000ull; } else if (ail == 3) { *vector |= 0xc000000000004000ull; } } else { /* * scv AIL is a little different. AIL=2 does not change the address, * only the MSR. AIL=3 replaces the 0x17000 base with 0xc...3000. */ if (ail == 3) { *vector &= ~0x0000000000017000ull; /* Un-apply the base offset */ *vector |= 0xc000000000003000ull; /* Apply scv's AIL=3 offset */ } } } #endif /* TARGET_PPC64 */ static void powerpc_reset_excp_state(PowerPCCPU *cpu) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; /* Reset exception state */ cs->exception_index = POWERPC_EXCP_NONE; env->error_code = 0; } static void powerpc_set_excp_state(PowerPCCPU *cpu, target_ulong vector, target_ulong msr) { CPUPPCState *env = &cpu->env; assert((msr & env->msr_mask) == msr); /* * We don't use hreg_store_msr here as already have treated any * special case that could occur. Just store MSR and update hflags * * Note: We *MUST* not use hreg_store_msr() as-is anyway because it will * prevent setting of the HV bit which some exceptions might need to do. */ env->nip = vector; env->msr = msr; hreg_compute_hflags(env); ppc_maybe_interrupt(env); powerpc_reset_excp_state(cpu); /* * Any interrupt is context synchronizing, check if TCG TLB needs * a delayed flush on ppc64 */ check_tlb_flush(env, false); /* Reset the reservation */ env->reserve_addr = -1; } #ifdef CONFIG_TCG /* * This stops the machine and logs CPU state without killing QEMU (like * cpu_abort()) because it is often a guest error as opposed to a QEMU error, * so the machine can still be debugged. */ static G_NORETURN void powerpc_checkstop(CPUPPCState *env, const char *reason) { CPUState *cs = env_cpu(env); FILE *f; f = qemu_log_trylock(); if (f) { fprintf(f, "Entering checkstop state: %s\n", reason); cpu_dump_state(cs, f, CPU_DUMP_FPU | CPU_DUMP_CCOP); qemu_log_unlock(f); } /* * This stops the machine and logs CPU state without killing QEMU * (like cpu_abort()) so the machine can still be debugged (because * it is often a guest error). */ qemu_system_guest_panicked(NULL); cpu_loop_exit_noexc(cs); } #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) void helper_attn(CPUPPCState *env) { /* POWER attn is unprivileged when enabled by HID, otherwise illegal */ if ((*env->check_attn)(env)) { powerpc_checkstop(env, "host executed attn"); } else { raise_exception_err(env, POWERPC_EXCP_HV_EMU, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); } } #endif #endif /* CONFIG_TCG */ static void powerpc_mcheck_checkstop(CPUPPCState *env) { /* KVM guests always have MSR[ME] enabled */ #ifdef CONFIG_TCG if (FIELD_EX64(env->msr, MSR, ME)) { return; } powerpc_checkstop(env, "machine check with MSR[ME]=0"); #endif } static void powerpc_excp_40x(PowerPCCPU *cpu, int excp) { CPUPPCState *env = &cpu->env; target_ulong msr, new_msr, vector; int srr0 = SPR_SRR0, srr1 = SPR_SRR1; /* new srr1 value excluding must-be-zero bits */ msr = env->msr & ~0x783f0000ULL; /* new interrupt handler msr preserves ME unless explicitly overridden */ new_msr = env->msr & (((target_ulong)1 << MSR_ME)); /* HV emu assistance interrupt only exists on server arch 2.05 or later */ if (excp == POWERPC_EXCP_HV_EMU) { excp = POWERPC_EXCP_PROGRAM; } vector = env->excp_vectors[excp]; if (vector == (target_ulong)-1ULL) { cpu_abort(env_cpu(env), "Raised an exception without defined vector %d\n", excp); } vector |= env->excp_prefix; switch (excp) { case POWERPC_EXCP_CRITICAL: /* Critical input */ srr0 = SPR_40x_SRR2; srr1 = SPR_40x_SRR3; break; case POWERPC_EXCP_MCHECK: /* Machine check exception */ powerpc_mcheck_checkstop(env); /* machine check exceptions don't have ME set */ new_msr &= ~((target_ulong)1 << MSR_ME); srr0 = SPR_40x_SRR2; srr1 = SPR_40x_SRR3; break; case POWERPC_EXCP_DSI: /* Data storage exception */ trace_ppc_excp_dsi(env->spr[SPR_40x_ESR], env->spr[SPR_40x_DEAR]); break; case POWERPC_EXCP_ISI: /* Instruction storage exception */ trace_ppc_excp_isi(msr, env->nip); break; case POWERPC_EXCP_EXTERNAL: /* External input */ break; case POWERPC_EXCP_ALIGN: /* Alignment exception */ break; case POWERPC_EXCP_PROGRAM: /* Program exception */ switch (env->error_code & ~0xF) { case POWERPC_EXCP_FP: if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) { trace_ppc_excp_fp_ignore(); powerpc_reset_excp_state(cpu); return; } env->spr[SPR_40x_ESR] = ESR_FP; break; case POWERPC_EXCP_INVAL: trace_ppc_excp_inval(env->nip); env->spr[SPR_40x_ESR] = ESR_PIL; break; case POWERPC_EXCP_PRIV: env->spr[SPR_40x_ESR] = ESR_PPR; break; case POWERPC_EXCP_TRAP: env->spr[SPR_40x_ESR] = ESR_PTR; break; default: cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n", env->error_code); break; } break; case POWERPC_EXCP_SYSCALL: /* System call exception */ dump_syscall(env); /* * We need to correct the NIP which in this case is supposed * to point to the next instruction */ env->nip += 4; break; case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ trace_ppc_excp_print("FIT"); break; case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ trace_ppc_excp_print("WDT"); break; case POWERPC_EXCP_DTLB: /* Data TLB error */ case POWERPC_EXCP_ITLB: /* Instruction TLB error */ break; case POWERPC_EXCP_PIT: /* Programmable interval timer interrupt */ trace_ppc_excp_print("PIT"); break; case POWERPC_EXCP_DEBUG: /* Debug interrupt */ cpu_abort(env_cpu(env), "%s exception not implemented\n", powerpc_excp_name(excp)); break; default: cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n", excp); break; } env->spr[srr0] = env->nip; env->spr[srr1] = msr; powerpc_set_excp_state(cpu, vector, new_msr); } static void powerpc_excp_6xx(PowerPCCPU *cpu, int excp) { CPUPPCState *env = &cpu->env; target_ulong msr, new_msr, vector; /* new srr1 value excluding must-be-zero bits */ msr = env->msr & ~0x783f0000ULL; /* new interrupt handler msr preserves ME unless explicitly overridden */ new_msr = env->msr & ((target_ulong)1 << MSR_ME); /* HV emu assistance interrupt only exists on server arch 2.05 or later */ if (excp == POWERPC_EXCP_HV_EMU) { excp = POWERPC_EXCP_PROGRAM; } vector = env->excp_vectors[excp]; if (vector == (target_ulong)-1ULL) { cpu_abort(env_cpu(env), "Raised an exception without defined vector %d\n", excp); } vector |= env->excp_prefix; switch (excp) { case POWERPC_EXCP_CRITICAL: /* Critical input */ break; case POWERPC_EXCP_MCHECK: /* Machine check exception */ powerpc_mcheck_checkstop(env); /* machine check exceptions don't have ME set */ new_msr &= ~((target_ulong)1 << MSR_ME); break; case POWERPC_EXCP_DSI: /* Data storage exception */ trace_ppc_excp_dsi(env->spr[SPR_DSISR], env->spr[SPR_DAR]); break; case POWERPC_EXCP_ISI: /* Instruction storage exception */ trace_ppc_excp_isi(msr, env->nip); msr |= env->error_code; break; case POWERPC_EXCP_EXTERNAL: /* External input */ break; case POWERPC_EXCP_ALIGN: /* Alignment exception */ /* Get rS/rD and rA from faulting opcode */ /* * Note: the opcode fields will not be set properly for a * direct store load/store, but nobody cares as nobody * actually uses direct store segments. */ env->spr[SPR_DSISR] |= (env->error_code & 0x03FF0000) >> 16; break; case POWERPC_EXCP_PROGRAM: /* Program exception */ switch (env->error_code & ~0xF) { case POWERPC_EXCP_FP: if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) { trace_ppc_excp_fp_ignore(); powerpc_reset_excp_state(cpu); return; } /* * NIP always points to the faulting instruction for FP exceptions, * so always use store_next and claim we are precise in the MSR. */ msr |= 0x00100000; break; case POWERPC_EXCP_INVAL: trace_ppc_excp_inval(env->nip); msr |= 0x00080000; break; case POWERPC_EXCP_PRIV: msr |= 0x00040000; break; case POWERPC_EXCP_TRAP: msr |= 0x00020000; break; default: /* Should never occur */ cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n", env->error_code); break; } break; case POWERPC_EXCP_SYSCALL: /* System call exception */ dump_syscall(env); /* * We need to correct the NIP which in this case is supposed * to point to the next instruction */ env->nip += 4; break; case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ case POWERPC_EXCP_DECR: /* Decrementer exception */ break; case POWERPC_EXCP_DTLB: /* Data TLB error */ case POWERPC_EXCP_ITLB: /* Instruction TLB error */ break; case POWERPC_EXCP_RESET: /* System reset exception */ if (FIELD_EX64(env->msr, MSR, POW)) { cpu_abort(env_cpu(env), "Trying to deliver power-saving system reset exception " "%d with no HV support\n", excp); } break; case POWERPC_EXCP_TRACE: /* Trace exception */ break; case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ /* Swap temporary saved registers with GPRs */ if (!(new_msr & ((target_ulong)1 << MSR_TGPR))) { new_msr |= (target_ulong)1 << MSR_TGPR; hreg_swap_gpr_tgpr(env); } ppc_excp_debug_sw_tlb(env, excp); msr |= env->crf[0] << 28; msr |= env->error_code; /* key, D/I, S/L bits */ /* Set way using a LRU mechanism */ msr |= ((env->last_way + 1) & (env->nb_ways - 1)) << 17; break; case POWERPC_EXCP_FPA: /* Floating-point assist exception */ case POWERPC_EXCP_DABR: /* Data address breakpoint */ case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ case POWERPC_EXCP_SMI: /* System management interrupt */ case POWERPC_EXCP_MEXTBR: /* Maskable external breakpoint */ case POWERPC_EXCP_NMEXTBR: /* Non maskable external breakpoint */ cpu_abort(env_cpu(env), "%s exception not implemented\n", powerpc_excp_name(excp)); break; default: cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n", excp); break; } if (ppc_interrupts_little_endian(cpu, !!(new_msr & MSR_HVB))) { new_msr |= (target_ulong)1 << MSR_LE; } env->spr[SPR_SRR0] = env->nip; env->spr[SPR_SRR1] = msr; powerpc_set_excp_state(cpu, vector, new_msr); } static void powerpc_excp_7xx(PowerPCCPU *cpu, int excp) { CPUPPCState *env = &cpu->env; target_ulong msr, new_msr, vector; /* new srr1 value excluding must-be-zero bits */ msr = env->msr & ~0x783f0000ULL; /* new interrupt handler msr preserves ME unless explicitly overridden */ new_msr = env->msr & ((target_ulong)1 << MSR_ME); /* HV emu assistance interrupt only exists on server arch 2.05 or later */ if (excp == POWERPC_EXCP_HV_EMU) { excp = POWERPC_EXCP_PROGRAM; } vector = env->excp_vectors[excp]; if (vector == (target_ulong)-1ULL) { cpu_abort(env_cpu(env), "Raised an exception without defined vector %d\n", excp); } vector |= env->excp_prefix; switch (excp) { case POWERPC_EXCP_MCHECK: /* Machine check exception */ powerpc_mcheck_checkstop(env); /* machine check exceptions don't have ME set */ new_msr &= ~((target_ulong)1 << MSR_ME); break; case POWERPC_EXCP_DSI: /* Data storage exception */ trace_ppc_excp_dsi(env->spr[SPR_DSISR], env->spr[SPR_DAR]); break; case POWERPC_EXCP_ISI: /* Instruction storage exception */ trace_ppc_excp_isi(msr, env->nip); msr |= env->error_code; break; case POWERPC_EXCP_EXTERNAL: /* External input */ break; case POWERPC_EXCP_ALIGN: /* Alignment exception */ /* Get rS/rD and rA from faulting opcode */ /* * Note: the opcode fields will not be set properly for a * direct store load/store, but nobody cares as nobody * actually uses direct store segments. */ env->spr[SPR_DSISR] |= (env->error_code & 0x03FF0000) >> 16; break; case POWERPC_EXCP_PROGRAM: /* Program exception */ switch (env->error_code & ~0xF) { case POWERPC_EXCP_FP: if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) { trace_ppc_excp_fp_ignore(); powerpc_reset_excp_state(cpu); return; } /* * NIP always points to the faulting instruction for FP exceptions, * so always use store_next and claim we are precise in the MSR. */ msr |= 0x00100000; break; case POWERPC_EXCP_INVAL: trace_ppc_excp_inval(env->nip); msr |= 0x00080000; break; case POWERPC_EXCP_PRIV: msr |= 0x00040000; break; case POWERPC_EXCP_TRAP: msr |= 0x00020000; break; default: /* Should never occur */ cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n", env->error_code); break; } break; case POWERPC_EXCP_SYSCALL: /* System call exception */ { int lev = env->error_code; if (lev == 1 && cpu->vhyp) { dump_hcall(env); } else { dump_syscall(env); } /* * We need to correct the NIP which in this case is supposed * to point to the next instruction */ env->nip += 4; /* * The Virtual Open Firmware (VOF) relies on the 'sc 1' * instruction to communicate with QEMU. The pegasos2 machine * uses VOF and the 7xx CPUs, so although the 7xx don't have * HV mode, we need to keep hypercall support. */ if (lev == 1 && cpu->vhyp) { cpu->vhyp_class->hypercall(cpu->vhyp, cpu); powerpc_reset_excp_state(cpu); return; } break; } case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ case POWERPC_EXCP_DECR: /* Decrementer exception */ break; case POWERPC_EXCP_RESET: /* System reset exception */ if (FIELD_EX64(env->msr, MSR, POW)) { cpu_abort(env_cpu(env), "Trying to deliver power-saving system reset exception " "%d with no HV support\n", excp); } break; case POWERPC_EXCP_TRACE: /* Trace exception */ break; case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ ppc_excp_debug_sw_tlb(env, excp); msr |= env->crf[0] << 28; msr |= env->error_code; /* key, D/I, S/L bits */ /* Set way using a LRU mechanism */ msr |= ((env->last_way + 1) & (env->nb_ways - 1)) << 17; break; case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ case POWERPC_EXCP_SMI: /* System management interrupt */ case POWERPC_EXCP_THERM: /* Thermal interrupt */ case POWERPC_EXCP_PERFM: /* Embedded performance monitor interrupt */ cpu_abort(env_cpu(env), "%s exception not implemented\n", powerpc_excp_name(excp)); break; default: cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n", excp); break; } if (ppc_interrupts_little_endian(cpu, !!(new_msr & MSR_HVB))) { new_msr |= (target_ulong)1 << MSR_LE; } env->spr[SPR_SRR0] = env->nip; env->spr[SPR_SRR1] = msr; powerpc_set_excp_state(cpu, vector, new_msr); } static void powerpc_excp_74xx(PowerPCCPU *cpu, int excp) { CPUPPCState *env = &cpu->env; target_ulong msr, new_msr, vector; /* new srr1 value excluding must-be-zero bits */ msr = env->msr & ~0x783f0000ULL; /* new interrupt handler msr preserves ME unless explicitly overridden */ new_msr = env->msr & ((target_ulong)1 << MSR_ME); /* HV emu assistance interrupt only exists on server arch 2.05 or later */ if (excp == POWERPC_EXCP_HV_EMU) { excp = POWERPC_EXCP_PROGRAM; } vector = env->excp_vectors[excp]; if (vector == (target_ulong)-1ULL) { cpu_abort(env_cpu(env), "Raised an exception without defined vector %d\n", excp); } vector |= env->excp_prefix; switch (excp) { case POWERPC_EXCP_MCHECK: /* Machine check exception */ powerpc_mcheck_checkstop(env); /* machine check exceptions don't have ME set */ new_msr &= ~((target_ulong)1 << MSR_ME); break; case POWERPC_EXCP_DSI: /* Data storage exception */ trace_ppc_excp_dsi(env->spr[SPR_DSISR], env->spr[SPR_DAR]); break; case POWERPC_EXCP_ISI: /* Instruction storage exception */ trace_ppc_excp_isi(msr, env->nip); msr |= env->error_code; break; case POWERPC_EXCP_EXTERNAL: /* External input */ break; case POWERPC_EXCP_ALIGN: /* Alignment exception */ /* Get rS/rD and rA from faulting opcode */ /* * Note: the opcode fields will not be set properly for a * direct store load/store, but nobody cares as nobody * actually uses direct store segments. */ env->spr[SPR_DSISR] |= (env->error_code & 0x03FF0000) >> 16; break; case POWERPC_EXCP_PROGRAM: /* Program exception */ switch (env->error_code & ~0xF) { case POWERPC_EXCP_FP: if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) { trace_ppc_excp_fp_ignore(); powerpc_reset_excp_state(cpu); return; } /* * NIP always points to the faulting instruction for FP exceptions, * so always use store_next and claim we are precise in the MSR. */ msr |= 0x00100000; break; case POWERPC_EXCP_INVAL: trace_ppc_excp_inval(env->nip); msr |= 0x00080000; break; case POWERPC_EXCP_PRIV: msr |= 0x00040000; break; case POWERPC_EXCP_TRAP: msr |= 0x00020000; break; default: /* Should never occur */ cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n", env->error_code); break; } break; case POWERPC_EXCP_SYSCALL: /* System call exception */ { int lev = env->error_code; if (lev == 1 && cpu->vhyp) { dump_hcall(env); } else { dump_syscall(env); } /* * We need to correct the NIP which in this case is supposed * to point to the next instruction */ env->nip += 4; /* * The Virtual Open Firmware (VOF) relies on the 'sc 1' * instruction to communicate with QEMU. The pegasos2 machine * uses VOF and the 74xx CPUs, so although the 74xx don't have * HV mode, we need to keep hypercall support. */ if (lev == 1 && cpu->vhyp) { cpu->vhyp_class->hypercall(cpu->vhyp, cpu); powerpc_reset_excp_state(cpu); return; } break; } case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ case POWERPC_EXCP_DECR: /* Decrementer exception */ break; case POWERPC_EXCP_RESET: /* System reset exception */ if (FIELD_EX64(env->msr, MSR, POW)) { cpu_abort(env_cpu(env), "Trying to deliver power-saving system reset " "exception %d with no HV support\n", excp); } break; case POWERPC_EXCP_TRACE: /* Trace exception */ break; case POWERPC_EXCP_VPU: /* Vector unavailable exception */ break; case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ case POWERPC_EXCP_SMI: /* System management interrupt */ case POWERPC_EXCP_THERM: /* Thermal interrupt */ case POWERPC_EXCP_PERFM: /* Embedded performance monitor interrupt */ case POWERPC_EXCP_VPUA: /* Vector assist exception */ cpu_abort(env_cpu(env), "%s exception not implemented\n", powerpc_excp_name(excp)); break; default: cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n", excp); break; } if (ppc_interrupts_little_endian(cpu, !!(new_msr & MSR_HVB))) { new_msr |= (target_ulong)1 << MSR_LE; } env->spr[SPR_SRR0] = env->nip; env->spr[SPR_SRR1] = msr; powerpc_set_excp_state(cpu, vector, new_msr); } static void powerpc_excp_booke(PowerPCCPU *cpu, int excp) { CPUPPCState *env = &cpu->env; target_ulong msr, new_msr, vector; int srr0 = SPR_SRR0, srr1 = SPR_SRR1; /* * Book E does not play games with certain bits of xSRR1 being MSR save * bits and others being error status. xSRR1 is the old MSR, period. */ msr = env->msr; /* new interrupt handler msr preserves ME unless explicitly overridden */ new_msr = env->msr & ((target_ulong)1 << MSR_ME); /* HV emu assistance interrupt only exists on server arch 2.05 or later */ if (excp == POWERPC_EXCP_HV_EMU) { excp = POWERPC_EXCP_PROGRAM; } #ifdef TARGET_PPC64 /* * SPEU and VPU share the same IVOR but they exist in different * processors. SPEU is e500v1/2 only and VPU is e6500 only. */ if (excp == POWERPC_EXCP_VPU) { excp = POWERPC_EXCP_SPEU; } #endif vector = env->excp_vectors[excp]; if (vector == (target_ulong)-1ULL) { cpu_abort(env_cpu(env), "Raised an exception without defined vector %d\n", excp); } vector |= env->excp_prefix; switch (excp) { case POWERPC_EXCP_CRITICAL: /* Critical input */ srr0 = SPR_BOOKE_CSRR0; srr1 = SPR_BOOKE_CSRR1; break; case POWERPC_EXCP_MCHECK: /* Machine check exception */ powerpc_mcheck_checkstop(env); /* machine check exceptions don't have ME set */ new_msr &= ~((target_ulong)1 << MSR_ME); /* FIXME: choose one or the other based on CPU type */ srr0 = SPR_BOOKE_MCSRR0; srr1 = SPR_BOOKE_MCSRR1; env->spr[SPR_BOOKE_CSRR0] = env->nip; env->spr[SPR_BOOKE_CSRR1] = msr; break; case POWERPC_EXCP_DSI: /* Data storage exception */ trace_ppc_excp_dsi(env->spr[SPR_BOOKE_ESR], env->spr[SPR_BOOKE_DEAR]); break; case POWERPC_EXCP_ISI: /* Instruction storage exception */ trace_ppc_excp_isi(msr, env->nip); break; case POWERPC_EXCP_EXTERNAL: /* External input */ if (env->mpic_proxy) { CPUState *cs = env_cpu(env); /* IACK the IRQ on delivery */ env->spr[SPR_BOOKE_EPR] = ldl_phys(cs->as, env->mpic_iack); } break; case POWERPC_EXCP_ALIGN: /* Alignment exception */ break; case POWERPC_EXCP_PROGRAM: /* Program exception */ switch (env->error_code & ~0xF) { case POWERPC_EXCP_FP: if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) { trace_ppc_excp_fp_ignore(); powerpc_reset_excp_state(cpu); return; } /* * NIP always points to the faulting instruction for FP exceptions, * so always use store_next and claim we are precise in the MSR. */ msr |= 0x00100000; env->spr[SPR_BOOKE_ESR] = ESR_FP; break; case POWERPC_EXCP_INVAL: trace_ppc_excp_inval(env->nip); msr |= 0x00080000; env->spr[SPR_BOOKE_ESR] = ESR_PIL; break; case POWERPC_EXCP_PRIV: msr |= 0x00040000; env->spr[SPR_BOOKE_ESR] = ESR_PPR; break; case POWERPC_EXCP_TRAP: msr |= 0x00020000; env->spr[SPR_BOOKE_ESR] = ESR_PTR; break; default: /* Should never occur */ cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n", env->error_code); break; } break; case POWERPC_EXCP_SYSCALL: /* System call exception */ dump_syscall(env); /* * We need to correct the NIP which in this case is supposed * to point to the next instruction */ env->nip += 4; break; case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ case POWERPC_EXCP_DECR: /* Decrementer exception */ break; case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ /* FIT on 4xx */ trace_ppc_excp_print("FIT"); break; case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ trace_ppc_excp_print("WDT"); srr0 = SPR_BOOKE_CSRR0; srr1 = SPR_BOOKE_CSRR1; break; case POWERPC_EXCP_DTLB: /* Data TLB error */ case POWERPC_EXCP_ITLB: /* Instruction TLB error */ break; case POWERPC_EXCP_DEBUG: /* Debug interrupt */ if (env->flags & POWERPC_FLAG_DE) { /* FIXME: choose one or the other based on CPU type */ srr0 = SPR_BOOKE_DSRR0; srr1 = SPR_BOOKE_DSRR1; env->spr[SPR_BOOKE_CSRR0] = env->nip; env->spr[SPR_BOOKE_CSRR1] = msr; /* DBSR already modified by caller */ } else { cpu_abort(env_cpu(env), "Debug exception triggered on unsupported model\n"); } break; case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavailable/VPU */ env->spr[SPR_BOOKE_ESR] = ESR_SPV; break; case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ break; case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ srr0 = SPR_BOOKE_CSRR0; srr1 = SPR_BOOKE_CSRR1; break; case POWERPC_EXCP_RESET: /* System reset exception */ if (FIELD_EX64(env->msr, MSR, POW)) { cpu_abort(env_cpu(env), "Trying to deliver power-saving system reset " "exception %d with no HV support\n", excp); } break; case POWERPC_EXCP_EFPDI: /* Embedded floating-point data interrupt */ case POWERPC_EXCP_EFPRI: /* Embedded floating-point round interrupt */ cpu_abort(env_cpu(env), "%s exception not implemented\n", powerpc_excp_name(excp)); break; default: cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n", excp); break; } #ifdef TARGET_PPC64 if (env->spr[SPR_BOOKE_EPCR] & EPCR_ICM) { /* Cat.64-bit: EPCR.ICM is copied to MSR.CM */ new_msr |= (target_ulong)1 << MSR_CM; } else { vector = (uint32_t)vector; } #endif env->spr[srr0] = env->nip; env->spr[srr1] = msr; powerpc_set_excp_state(cpu, vector, new_msr); } /* * When running a nested HV guest under vhyp, external interrupts are * delivered as HVIRT. */ static bool books_vhyp_promotes_external_to_hvirt(PowerPCCPU *cpu) { if (cpu->vhyp) { return vhyp_cpu_in_nested(cpu); } return false; } #ifdef TARGET_PPC64 /* * When running under vhyp, hcalls are always intercepted and sent to the * vhc->hypercall handler. */ static bool books_vhyp_handles_hcall(PowerPCCPU *cpu) { if (cpu->vhyp) { return !vhyp_cpu_in_nested(cpu); } return false; } /* * When running a nested KVM HV guest under vhyp, HV exceptions are not * delivered to the guest (because there is no concept of HV support), but * rather they are sent to the vhyp to exit from the L2 back to the L1 and * return from the H_ENTER_NESTED hypercall. */ static bool books_vhyp_handles_hv_excp(PowerPCCPU *cpu) { if (cpu->vhyp) { return vhyp_cpu_in_nested(cpu); } return false; } #ifdef CONFIG_TCG static bool is_prefix_insn(CPUPPCState *env, uint32_t insn) { if (!(env->insns_flags2 & PPC2_ISA310)) { return false; } return ((insn & 0xfc000000) == 0x04000000); } static bool is_prefix_insn_excp(PowerPCCPU *cpu, int excp) { CPUPPCState *env = &cpu->env; if (!(env->insns_flags2 & PPC2_ISA310)) { return false; } if (!tcg_enabled()) { /* * This does not load instructions and set the prefix bit correctly * for injected interrupts with KVM. That may have to be discovered * and set by the KVM layer before injecting. */ return false; } switch (excp) { case POWERPC_EXCP_MCHECK: if (!(env->error_code & PPC_BIT(42))) { /* * Fetch attempt caused a machine check, so attempting to fetch * again would cause a recursive machine check. */ return false; } break; case POWERPC_EXCP_HDSI: /* HDSI PRTABLE_FAULT has the originating access type in error_code */ if ((env->spr[SPR_HDSISR] & DSISR_PRTABLE_FAULT) && (env->error_code == MMU_INST_FETCH)) { /* * Fetch failed due to partition scope translation, so prefix * indication is not relevant (and attempting to load the * instruction at NIP would cause recursive faults with the same * translation). */ return false; } break; case POWERPC_EXCP_DSI: case POWERPC_EXCP_DSEG: case POWERPC_EXCP_ALIGN: case POWERPC_EXCP_PROGRAM: case POWERPC_EXCP_FPU: case POWERPC_EXCP_TRACE: case POWERPC_EXCP_HV_EMU: case POWERPC_EXCP_VPU: case POWERPC_EXCP_VSXU: case POWERPC_EXCP_FU: case POWERPC_EXCP_HV_FU: break; default: return false; } return is_prefix_insn(env, ppc_ldl_code(env, env->nip)); } #else static bool is_prefix_insn_excp(PowerPCCPU *cpu, int excp) { return false; } #endif static void powerpc_excp_books(PowerPCCPU *cpu, int excp) { CPUPPCState *env = &cpu->env; target_ulong msr, new_msr, vector; int srr0 = SPR_SRR0, srr1 = SPR_SRR1, lev = -1; /* new srr1 value excluding must-be-zero bits */ msr = env->msr & ~0x783f0000ULL; /* * new interrupt handler msr preserves HV and ME unless explicitly * overridden */ new_msr = env->msr & (((target_ulong)1 << MSR_ME) | MSR_HVB); /* * check for special resume at 0x100 from doze/nap/sleep/winkle on * P7/P8/P9 */ if (env->resume_as_sreset) { excp = powerpc_reset_wakeup(env, excp, &msr); } /* * We don't want to generate a Hypervisor Emulation Assistance * Interrupt if we don't have HVB in msr_mask (PAPR mode), * unless running a nested-hv guest, in which case the L1 * kernel wants the interrupt. */ if (excp == POWERPC_EXCP_HV_EMU && !(env->msr_mask & MSR_HVB) && !books_vhyp_handles_hv_excp(cpu)) { excp = POWERPC_EXCP_PROGRAM; } vector = env->excp_vectors[excp]; if (vector == (target_ulong)-1ULL) { cpu_abort(env_cpu(env), "Raised an exception without defined vector %d\n", excp); } vector |= env->excp_prefix; if (is_prefix_insn_excp(cpu, excp)) { msr |= PPC_BIT(34); } switch (excp) { case POWERPC_EXCP_MCHECK: /* Machine check exception */ powerpc_mcheck_checkstop(env); if (env->msr_mask & MSR_HVB) { /* * ISA specifies HV, but can be delivered to guest with HV * clear (e.g., see FWNMI in PAPR). */ new_msr |= (target_ulong)MSR_HVB; /* HV machine check exceptions don't have ME set */ new_msr &= ~((target_ulong)1 << MSR_ME); } msr |= env->error_code; break; case POWERPC_EXCP_DSI: /* Data storage exception */ trace_ppc_excp_dsi(env->spr[SPR_DSISR], env->spr[SPR_DAR]); break; case POWERPC_EXCP_ISI: /* Instruction storage exception */ trace_ppc_excp_isi(msr, env->nip); msr |= env->error_code; break; case POWERPC_EXCP_EXTERNAL: /* External input */ { bool lpes0; /* LPES0 is only taken into consideration if we support HV mode */ if (!env->has_hv_mode) { break; } lpes0 = !!(env->spr[SPR_LPCR] & LPCR_LPES0); if (!lpes0) { new_msr |= (target_ulong)MSR_HVB; new_msr |= env->msr & ((target_ulong)1 << MSR_RI); srr0 = SPR_HSRR0; srr1 = SPR_HSRR1; } break; } case POWERPC_EXCP_ALIGN: /* Alignment exception */ /* Optional DSISR update was removed from ISA v3.0 */ if (!(env->insns_flags2 & PPC2_ISA300)) { /* Get rS/rD and rA from faulting opcode */ /* * Note: the opcode fields will not be set properly for a * direct store load/store, but nobody cares as nobody * actually uses direct store segments. */ env->spr[SPR_DSISR] |= (env->error_code & 0x03FF0000) >> 16; } break; case POWERPC_EXCP_PROGRAM: /* Program exception */ switch (env->error_code & ~0xF) { case POWERPC_EXCP_FP: if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) { trace_ppc_excp_fp_ignore(); powerpc_reset_excp_state(cpu); return; } /* * NIP always points to the faulting instruction for FP exceptions, * so always use store_next and claim we are precise in the MSR. */ msr |= 0x00100000; break; case POWERPC_EXCP_INVAL: trace_ppc_excp_inval(env->nip); msr |= 0x00080000; break; case POWERPC_EXCP_PRIV: msr |= 0x00040000; break; case POWERPC_EXCP_TRAP: msr |= 0x00020000; break; default: /* Should never occur */ cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n", env->error_code); break; } break; case POWERPC_EXCP_SYSCALL: /* System call exception */ lev = env->error_code; if (lev == 1 && cpu->vhyp) { dump_hcall(env); } else { dump_syscall(env); } /* * We need to correct the NIP which in this case is supposed * to point to the next instruction */ env->nip += 4; /* "PAPR mode" built-in hypercall emulation */ if (lev == 1 && books_vhyp_handles_hcall(cpu)) { cpu->vhyp_class->hypercall(cpu->vhyp, cpu); powerpc_reset_excp_state(cpu); return; } if (env->insns_flags2 & PPC2_ISA310) { /* ISAv3.1 puts LEV into SRR1 */ msr |= lev << 20; } if (lev == 1) { new_msr |= (target_ulong)MSR_HVB; } break; case POWERPC_EXCP_SYSCALL_VECTORED: /* scv exception */ lev = env->error_code; dump_syscall(env); env->nip += 4; new_msr |= env->msr & ((target_ulong)1 << MSR_EE); new_msr |= env->msr & ((target_ulong)1 << MSR_RI); vector += lev * 0x20; env->lr = env->nip; env->ctr = msr; break; case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ case POWERPC_EXCP_DECR: /* Decrementer exception */ break; case POWERPC_EXCP_RESET: /* System reset exception */ /* A power-saving exception sets ME, otherwise it is unchanged */ if (FIELD_EX64(env->msr, MSR, POW)) { /* indicate that we resumed from power save mode */ msr |= 0x10000; new_msr |= ((target_ulong)1 << MSR_ME); } if (env->msr_mask & MSR_HVB) { /* * ISA specifies HV, but can be delivered to guest with HV * clear (e.g., see FWNMI in PAPR, NMI injection in QEMU). */ new_msr |= (target_ulong)MSR_HVB; } else { if (FIELD_EX64(env->msr, MSR, POW)) { cpu_abort(env_cpu(env), "Trying to deliver power-saving system reset " "exception %d with no HV support\n", excp); } } break; case POWERPC_EXCP_TRACE: /* Trace exception */ msr |= env->error_code; /* fall through */ case POWERPC_EXCP_DSEG: /* Data segment exception */ case POWERPC_EXCP_ISEG: /* Instruction segment exception */ case POWERPC_EXCP_SDOOR: /* Doorbell interrupt */ case POWERPC_EXCP_PERFM: /* Performance monitor interrupt */ break; case POWERPC_EXCP_HISI: /* Hypervisor instruction storage exception */ msr |= env->error_code; /* fall through */ case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ case POWERPC_EXCP_SDOOR_HV: /* Hypervisor Doorbell interrupt */ case POWERPC_EXCP_HVIRT: /* Hypervisor virtualization */ srr0 = SPR_HSRR0; srr1 = SPR_HSRR1; new_msr |= (target_ulong)MSR_HVB; new_msr |= env->msr & ((target_ulong)1 << MSR_RI); break; #ifdef CONFIG_TCG case POWERPC_EXCP_HV_EMU: { uint32_t insn = ppc_ldl_code(env, env->nip); env->spr[SPR_HEIR] = insn; if (is_prefix_insn(env, insn)) { uint32_t insn2 = ppc_ldl_code(env, env->nip + 4); env->spr[SPR_HEIR] <<= 32; env->spr[SPR_HEIR] |= insn2; } srr0 = SPR_HSRR0; srr1 = SPR_HSRR1; new_msr |= (target_ulong)MSR_HVB; new_msr |= env->msr & ((target_ulong)1 << MSR_RI); break; } #endif case POWERPC_EXCP_VPU: /* Vector unavailable exception */ case POWERPC_EXCP_VSXU: /* VSX unavailable exception */ case POWERPC_EXCP_FU: /* Facility unavailable exception */ env->spr[SPR_FSCR] |= ((target_ulong)env->error_code << 56); break; case POWERPC_EXCP_HV_FU: /* Hypervisor Facility Unavailable Exception */ env->spr[SPR_HFSCR] |= ((target_ulong)env->error_code << FSCR_IC_POS); srr0 = SPR_HSRR0; srr1 = SPR_HSRR1; new_msr |= (target_ulong)MSR_HVB; new_msr |= env->msr & ((target_ulong)1 << MSR_RI); break; case POWERPC_EXCP_PERFM_EBB: /* Performance Monitor EBB Exception */ case POWERPC_EXCP_EXTERNAL_EBB: /* External EBB Exception */ env->spr[SPR_BESCR] &= ~BESCR_GE; /* * Save NIP for rfebb insn in SPR_EBBRR. Next nip is * stored in the EBB Handler SPR_EBBHR. */ env->spr[SPR_EBBRR] = env->nip; powerpc_set_excp_state(cpu, env->spr[SPR_EBBHR], env->msr); /* * This exception is handled in userspace. No need to proceed. */ return; case POWERPC_EXCP_THERM: /* Thermal interrupt */ case POWERPC_EXCP_VPUA: /* Vector assist exception */ case POWERPC_EXCP_MAINT: /* Maintenance exception */ case POWERPC_EXCP_HV_MAINT: /* Hypervisor Maintenance exception */ cpu_abort(env_cpu(env), "%s exception not implemented\n", powerpc_excp_name(excp)); break; default: cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n", excp); break; } if (ppc_interrupts_little_endian(cpu, !!(new_msr & MSR_HVB))) { new_msr |= (target_ulong)1 << MSR_LE; } new_msr |= (target_ulong)1 << MSR_SF; if (excp != POWERPC_EXCP_SYSCALL_VECTORED) { env->spr[srr0] = env->nip; env->spr[srr1] = msr; } if ((new_msr & MSR_HVB) && books_vhyp_handles_hv_excp(cpu)) { /* Deliver interrupt to L1 by returning from the H_ENTER_NESTED call */ cpu->vhyp_class->deliver_hv_excp(cpu, excp); powerpc_reset_excp_state(cpu); } else { /* Sanity check */ if (!(env->msr_mask & MSR_HVB) && srr0 == SPR_HSRR0) { cpu_abort(env_cpu(env), "Trying to deliver HV exception (HSRR) %d " "with no HV support\n", excp); } /* This can update new_msr and vector if AIL applies */ ppc_excp_apply_ail(cpu, excp, msr, &new_msr, &vector); powerpc_set_excp_state(cpu, vector, new_msr); } } #else static inline void powerpc_excp_books(PowerPCCPU *cpu, int excp) { g_assert_not_reached(); } #endif /* TARGET_PPC64 */ static void powerpc_excp(PowerPCCPU *cpu, int excp) { CPUPPCState *env = &cpu->env; if (excp <= POWERPC_EXCP_NONE || excp >= POWERPC_EXCP_NB) { cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n", excp); } qemu_log_mask(CPU_LOG_INT, "Raise exception at " TARGET_FMT_lx " => %s (%d) error=%02x\n", env->nip, powerpc_excp_name(excp), excp, env->error_code); env->excp_stats[excp]++; switch (env->excp_model) { case POWERPC_EXCP_40x: powerpc_excp_40x(cpu, excp); break; case POWERPC_EXCP_6xx: powerpc_excp_6xx(cpu, excp); break; case POWERPC_EXCP_7xx: powerpc_excp_7xx(cpu, excp); break; case POWERPC_EXCP_74xx: powerpc_excp_74xx(cpu, excp); break; case POWERPC_EXCP_BOOKE: powerpc_excp_booke(cpu, excp); break; case POWERPC_EXCP_970: case POWERPC_EXCP_POWER7: case POWERPC_EXCP_POWER8: case POWERPC_EXCP_POWER9: case POWERPC_EXCP_POWER10: case POWERPC_EXCP_POWER11: powerpc_excp_books(cpu, excp); break; default: g_assert_not_reached(); } } void ppc_cpu_do_interrupt(CPUState *cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); powerpc_excp(cpu, cs->exception_index); } #ifdef TARGET_PPC64 #define P7_UNUSED_INTERRUPTS \ (PPC_INTERRUPT_RESET | PPC_INTERRUPT_HVIRT | PPC_INTERRUPT_CEXT | \ PPC_INTERRUPT_WDT | PPC_INTERRUPT_CDOORBELL | PPC_INTERRUPT_FIT | \ PPC_INTERRUPT_PIT | PPC_INTERRUPT_DOORBELL | PPC_INTERRUPT_HDOORBELL | \ PPC_INTERRUPT_THERM | PPC_INTERRUPT_EBB) static int p7_interrupt_powersave(uint32_t pending_interrupts, target_ulong lpcr) { if ((pending_interrupts & PPC_INTERRUPT_EXT) && (lpcr & LPCR_P7_PECE0)) { return PPC_INTERRUPT_EXT; } if ((pending_interrupts & PPC_INTERRUPT_DECR) && (lpcr & LPCR_P7_PECE1)) { return PPC_INTERRUPT_DECR; } if ((pending_interrupts & PPC_INTERRUPT_MCK) && (lpcr & LPCR_P7_PECE2)) { return PPC_INTERRUPT_MCK; } if ((pending_interrupts & PPC_INTERRUPT_HMI) && (lpcr & LPCR_P7_PECE2)) { return PPC_INTERRUPT_HMI; } if (pending_interrupts & PPC_INTERRUPT_RESET) { return PPC_INTERRUPT_RESET; } return 0; } static int p7_next_unmasked_interrupt(CPUPPCState *env, uint32_t pending_interrupts, target_ulong lpcr) { CPUState *cs = env_cpu(env); /* Ignore MSR[EE] when coming out of some power management states */ bool msr_ee = FIELD_EX64(env->msr, MSR, EE) || env->resume_as_sreset; assert((pending_interrupts & P7_UNUSED_INTERRUPTS) == 0); if (cs->halted) { /* LPCR[PECE] controls which interrupts can exit power-saving mode */ return p7_interrupt_powersave(pending_interrupts, lpcr); } /* Machine check exception */ if (pending_interrupts & PPC_INTERRUPT_MCK) { return PPC_INTERRUPT_MCK; } /* Hypervisor decrementer exception */ if (pending_interrupts & PPC_INTERRUPT_HDECR) { /* LPCR will be clear when not supported so this will work */ bool hdice = !!(env->spr[SPR_LPCR] & LPCR_HDICE); if ((msr_ee || !FIELD_EX64_HV(env->msr)) && hdice) { /* HDEC clears on delivery */ return PPC_INTERRUPT_HDECR; } } /* External interrupt can ignore MSR:EE under some circumstances */ if (pending_interrupts & PPC_INTERRUPT_EXT) { bool lpes0 = !!(lpcr & LPCR_LPES0); bool heic = !!(lpcr & LPCR_HEIC); /* HEIC blocks delivery to the hypervisor */ if ((msr_ee && !(heic && FIELD_EX64_HV(env->msr) && !FIELD_EX64(env->msr, MSR, PR))) || (env->has_hv_mode && !FIELD_EX64_HV(env->msr) && !lpes0)) { return PPC_INTERRUPT_EXT; } } if (msr_ee != 0) { /* Decrementer exception */ if (pending_interrupts & PPC_INTERRUPT_DECR) { return PPC_INTERRUPT_DECR; } if (pending_interrupts & PPC_INTERRUPT_PERFM) { return PPC_INTERRUPT_PERFM; } } return 0; } #define P8_UNUSED_INTERRUPTS \ (PPC_INTERRUPT_RESET | PPC_INTERRUPT_DEBUG | PPC_INTERRUPT_HVIRT | \ PPC_INTERRUPT_CEXT | PPC_INTERRUPT_WDT | PPC_INTERRUPT_CDOORBELL | \ PPC_INTERRUPT_FIT | PPC_INTERRUPT_PIT | PPC_INTERRUPT_THERM) static int p8_interrupt_powersave(uint32_t pending_interrupts, target_ulong lpcr) { if ((pending_interrupts & PPC_INTERRUPT_EXT) && (lpcr & LPCR_P8_PECE2)) { return PPC_INTERRUPT_EXT; } if ((pending_interrupts & PPC_INTERRUPT_DECR) && (lpcr & LPCR_P8_PECE3)) { return PPC_INTERRUPT_DECR; } if ((pending_interrupts & PPC_INTERRUPT_MCK) && (lpcr & LPCR_P8_PECE4)) { return PPC_INTERRUPT_MCK; } if ((pending_interrupts & PPC_INTERRUPT_HMI) && (lpcr & LPCR_P8_PECE4)) { return PPC_INTERRUPT_HMI; } if ((pending_interrupts & PPC_INTERRUPT_DOORBELL) && (lpcr & LPCR_P8_PECE0)) { return PPC_INTERRUPT_DOORBELL; } if ((pending_interrupts & PPC_INTERRUPT_HDOORBELL) && (lpcr & LPCR_P8_PECE1)) { return PPC_INTERRUPT_HDOORBELL; } if (pending_interrupts & PPC_INTERRUPT_RESET) { return PPC_INTERRUPT_RESET; } return 0; } static int p8_next_unmasked_interrupt(CPUPPCState *env, uint32_t pending_interrupts, target_ulong lpcr) { CPUState *cs = env_cpu(env); /* Ignore MSR[EE] when coming out of some power management states */ bool msr_ee = FIELD_EX64(env->msr, MSR, EE) || env->resume_as_sreset; assert((env->pending_interrupts & P8_UNUSED_INTERRUPTS) == 0); if (cs->halted) { /* LPCR[PECE] controls which interrupts can exit power-saving mode */ return p8_interrupt_powersave(pending_interrupts, lpcr); } /* Machine check exception */ if (pending_interrupts & PPC_INTERRUPT_MCK) { return PPC_INTERRUPT_MCK; } /* Hypervisor decrementer exception */ if (pending_interrupts & PPC_INTERRUPT_HDECR) { /* LPCR will be clear when not supported so this will work */ bool hdice = !!(lpcr & LPCR_HDICE); if ((msr_ee || !FIELD_EX64_HV(env->msr)) && hdice) { /* HDEC clears on delivery */ return PPC_INTERRUPT_HDECR; } } /* External interrupt can ignore MSR:EE under some circumstances */ if (pending_interrupts & PPC_INTERRUPT_EXT) { bool lpes0 = !!(lpcr & LPCR_LPES0); bool heic = !!(lpcr & LPCR_HEIC); /* HEIC blocks delivery to the hypervisor */ if ((msr_ee && !(heic && FIELD_EX64_HV(env->msr) && !FIELD_EX64(env->msr, MSR, PR))) || (env->has_hv_mode && !FIELD_EX64_HV(env->msr) && !lpes0)) { return PPC_INTERRUPT_EXT; } } if (msr_ee != 0) { /* Decrementer exception */ if (pending_interrupts & PPC_INTERRUPT_DECR) { return PPC_INTERRUPT_DECR; } if (pending_interrupts & PPC_INTERRUPT_DOORBELL) { return PPC_INTERRUPT_DOORBELL; } if (pending_interrupts & PPC_INTERRUPT_HDOORBELL) { return PPC_INTERRUPT_HDOORBELL; } if (pending_interrupts & PPC_INTERRUPT_PERFM) { return PPC_INTERRUPT_PERFM; } /* EBB exception */ if (pending_interrupts & PPC_INTERRUPT_EBB) { /* * EBB exception must be taken in problem state and * with BESCR_GE set. */ if (FIELD_EX64(env->msr, MSR, PR) && (env->spr[SPR_BESCR] & BESCR_GE)) { return PPC_INTERRUPT_EBB; } } } return 0; } #define P9_UNUSED_INTERRUPTS \ (PPC_INTERRUPT_RESET | PPC_INTERRUPT_DEBUG | PPC_INTERRUPT_CEXT | \ PPC_INTERRUPT_WDT | PPC_INTERRUPT_CDOORBELL | PPC_INTERRUPT_FIT | \ PPC_INTERRUPT_PIT | PPC_INTERRUPT_THERM) static int p9_interrupt_powersave(CPUPPCState *env, uint32_t pending_interrupts, target_ulong lpcr) { /* External Exception */ if ((pending_interrupts & PPC_INTERRUPT_EXT) && (lpcr & LPCR_EEE)) { bool heic = !!(lpcr & LPCR_HEIC); if (!heic || !FIELD_EX64_HV(env->msr) || FIELD_EX64(env->msr, MSR, PR)) { return PPC_INTERRUPT_EXT; } } /* Decrementer Exception */ if ((pending_interrupts & PPC_INTERRUPT_DECR) && (lpcr & LPCR_DEE)) { return PPC_INTERRUPT_DECR; } /* Machine Check or Hypervisor Maintenance Exception */ if (lpcr & LPCR_OEE) { if (pending_interrupts & PPC_INTERRUPT_MCK) { return PPC_INTERRUPT_MCK; } if (pending_interrupts & PPC_INTERRUPT_HMI) { return PPC_INTERRUPT_HMI; } } /* Privileged Doorbell Exception */ if ((pending_interrupts & PPC_INTERRUPT_DOORBELL) && (lpcr & LPCR_PDEE)) { return PPC_INTERRUPT_DOORBELL; } /* Hypervisor Doorbell Exception */ if ((pending_interrupts & PPC_INTERRUPT_HDOORBELL) && (lpcr & LPCR_HDEE)) { return PPC_INTERRUPT_HDOORBELL; } /* Hypervisor virtualization exception */ if ((pending_interrupts & PPC_INTERRUPT_HVIRT) && (lpcr & LPCR_HVEE)) { return PPC_INTERRUPT_HVIRT; } if (pending_interrupts & PPC_INTERRUPT_RESET) { return PPC_INTERRUPT_RESET; } return 0; } static int p9_next_unmasked_interrupt(CPUPPCState *env, uint32_t pending_interrupts, target_ulong lpcr) { CPUState *cs = env_cpu(env); /* Ignore MSR[EE] when coming out of some power management states */ bool msr_ee = FIELD_EX64(env->msr, MSR, EE) || env->resume_as_sreset; assert((pending_interrupts & P9_UNUSED_INTERRUPTS) == 0); if (cs->halted) { if (env->spr[SPR_PSSCR] & PSSCR_EC) { /* * When PSSCR[EC] is set, LPCR[PECE] controls which interrupts can * wakeup the processor */ return p9_interrupt_powersave(env, pending_interrupts, lpcr); } else { /* * When it's clear, any system-caused exception exits power-saving * mode, even the ones that gate on MSR[EE]. */ msr_ee = true; } } /* Machine check exception */ if (pending_interrupts & PPC_INTERRUPT_MCK) { return PPC_INTERRUPT_MCK; } /* Hypervisor decrementer exception */ if (pending_interrupts & PPC_INTERRUPT_HDECR) { /* LPCR will be clear when not supported so this will work */ bool hdice = !!(lpcr & LPCR_HDICE); if ((msr_ee || !FIELD_EX64_HV(env->msr)) && hdice) { /* HDEC clears on delivery */ return PPC_INTERRUPT_HDECR; } } /* Hypervisor virtualization interrupt */ if (pending_interrupts & PPC_INTERRUPT_HVIRT) { /* LPCR will be clear when not supported so this will work */ bool hvice = !!(lpcr & LPCR_HVICE); if ((msr_ee || !FIELD_EX64_HV(env->msr)) && hvice) { return PPC_INTERRUPT_HVIRT; } } /* External interrupt can ignore MSR:EE under some circumstances */ if (pending_interrupts & PPC_INTERRUPT_EXT) { bool lpes0 = !!(lpcr & LPCR_LPES0); bool heic = !!(lpcr & LPCR_HEIC); /* HEIC blocks delivery to the hypervisor */ if ((msr_ee && !(heic && FIELD_EX64_HV(env->msr) && !FIELD_EX64(env->msr, MSR, PR))) || (env->has_hv_mode && !FIELD_EX64_HV(env->msr) && !lpes0)) { return PPC_INTERRUPT_EXT; } } if (msr_ee != 0) { /* Decrementer exception */ if (pending_interrupts & PPC_INTERRUPT_DECR) { return PPC_INTERRUPT_DECR; } if (pending_interrupts & PPC_INTERRUPT_DOORBELL) { return PPC_INTERRUPT_DOORBELL; } if (pending_interrupts & PPC_INTERRUPT_HDOORBELL) { return PPC_INTERRUPT_HDOORBELL; } if (pending_interrupts & PPC_INTERRUPT_PERFM) { return PPC_INTERRUPT_PERFM; } /* EBB exception */ if (pending_interrupts & PPC_INTERRUPT_EBB) { /* * EBB exception must be taken in problem state and * with BESCR_GE set. */ if (FIELD_EX64(env->msr, MSR, PR) && (env->spr[SPR_BESCR] & BESCR_GE)) { return PPC_INTERRUPT_EBB; } } } return 0; } #endif /* TARGET_PPC64 */ static int ppc_next_unmasked_interrupt(CPUPPCState *env) { uint32_t pending_interrupts = env->pending_interrupts; target_ulong lpcr = env->spr[SPR_LPCR]; bool async_deliver; #ifdef TARGET_PPC64 switch (env->excp_model) { case POWERPC_EXCP_POWER7: return p7_next_unmasked_interrupt(env, pending_interrupts, lpcr); case POWERPC_EXCP_POWER8: return p8_next_unmasked_interrupt(env, pending_interrupts, lpcr); case POWERPC_EXCP_POWER9: case POWERPC_EXCP_POWER10: case POWERPC_EXCP_POWER11: return p9_next_unmasked_interrupt(env, pending_interrupts, lpcr); default: break; } #endif /* External reset */ if (pending_interrupts & PPC_INTERRUPT_RESET) { return PPC_INTERRUPT_RESET; } /* Machine check exception */ if (pending_interrupts & PPC_INTERRUPT_MCK) { return PPC_INTERRUPT_MCK; } #if 0 /* TODO */ /* External debug exception */ if (env->pending_interrupts & PPC_INTERRUPT_DEBUG) { return PPC_INTERRUPT_DEBUG; } #endif /* * For interrupts that gate on MSR:EE, we need to do something a * bit more subtle, as we need to let them through even when EE is * clear when coming out of some power management states (in order * for them to become a 0x100). */ async_deliver = FIELD_EX64(env->msr, MSR, EE) || env->resume_as_sreset; /* Hypervisor decrementer exception */ if (pending_interrupts & PPC_INTERRUPT_HDECR) { /* LPCR will be clear when not supported so this will work */ bool hdice = !!(lpcr & LPCR_HDICE); if ((async_deliver || !FIELD_EX64_HV(env->msr)) && hdice) { /* HDEC clears on delivery */ return PPC_INTERRUPT_HDECR; } } /* Hypervisor virtualization interrupt */ if (pending_interrupts & PPC_INTERRUPT_HVIRT) { /* LPCR will be clear when not supported so this will work */ bool hvice = !!(lpcr & LPCR_HVICE); if ((async_deliver || !FIELD_EX64_HV(env->msr)) && hvice) { return PPC_INTERRUPT_HVIRT; } } /* External interrupt can ignore MSR:EE under some circumstances */ if (pending_interrupts & PPC_INTERRUPT_EXT) { bool lpes0 = !!(lpcr & LPCR_LPES0); bool heic = !!(lpcr & LPCR_HEIC); /* HEIC blocks delivery to the hypervisor */ if ((async_deliver && !(heic && FIELD_EX64_HV(env->msr) && !FIELD_EX64(env->msr, MSR, PR))) || (env->has_hv_mode && !FIELD_EX64_HV(env->msr) && !lpes0)) { return PPC_INTERRUPT_EXT; } } if (FIELD_EX64(env->msr, MSR, CE)) { /* External critical interrupt */ if (pending_interrupts & PPC_INTERRUPT_CEXT) { return PPC_INTERRUPT_CEXT; } } if (async_deliver != 0) { /* Watchdog timer on embedded PowerPC */ if (pending_interrupts & PPC_INTERRUPT_WDT) { return PPC_INTERRUPT_WDT; } if (pending_interrupts & PPC_INTERRUPT_CDOORBELL) { return PPC_INTERRUPT_CDOORBELL; } /* Fixed interval timer on embedded PowerPC */ if (pending_interrupts & PPC_INTERRUPT_FIT) { return PPC_INTERRUPT_FIT; } /* Programmable interval timer on embedded PowerPC */ if (pending_interrupts & PPC_INTERRUPT_PIT) { return PPC_INTERRUPT_PIT; } /* Decrementer exception */ if (pending_interrupts & PPC_INTERRUPT_DECR) { return PPC_INTERRUPT_DECR; } if (pending_interrupts & PPC_INTERRUPT_DOORBELL) { return PPC_INTERRUPT_DOORBELL; } if (pending_interrupts & PPC_INTERRUPT_HDOORBELL) { return PPC_INTERRUPT_HDOORBELL; } if (pending_interrupts & PPC_INTERRUPT_PERFM) { return PPC_INTERRUPT_PERFM; } /* Thermal interrupt */ if (pending_interrupts & PPC_INTERRUPT_THERM) { return PPC_INTERRUPT_THERM; } /* EBB exception */ if (pending_interrupts & PPC_INTERRUPT_EBB) { /* * EBB exception must be taken in problem state and * with BESCR_GE set. */ if (FIELD_EX64(env->msr, MSR, PR) && (env->spr[SPR_BESCR] & BESCR_GE)) { return PPC_INTERRUPT_EBB; } } } return 0; } /* * Sets CPU_INTERRUPT_HARD if there is at least one unmasked interrupt to be * delivered and clears CPU_INTERRUPT_HARD otherwise. * * This method is called by ppc_set_interrupt when an interrupt is raised or * lowered, and should also be called whenever an interrupt masking condition * is changed, e.g.: * - When relevant bits of MSR are altered, like EE, HV, PR, etc.; * - When relevant bits of LPCR are altered, like PECE, HDICE, HVICE, etc.; * - When PSSCR[EC] or env->resume_as_sreset are changed; * - When cs->halted is changed and the CPU has a different interrupt masking * logic in power-saving mode (e.g., POWER7/8/9/10); */ void ppc_maybe_interrupt(CPUPPCState *env) { CPUState *cs = env_cpu(env); BQL_LOCK_GUARD(); if (ppc_next_unmasked_interrupt(env)) { cpu_interrupt(cs, CPU_INTERRUPT_HARD); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } #ifdef TARGET_PPC64 static void p7_deliver_interrupt(CPUPPCState *env, int interrupt) { PowerPCCPU *cpu = env_archcpu(env); switch (interrupt) { case PPC_INTERRUPT_MCK: /* Machine check exception */ env->pending_interrupts &= ~PPC_INTERRUPT_MCK; powerpc_excp(cpu, POWERPC_EXCP_MCHECK); break; case PPC_INTERRUPT_HDECR: /* Hypervisor decrementer exception */ /* HDEC clears on delivery */ env->pending_interrupts &= ~PPC_INTERRUPT_HDECR; powerpc_excp(cpu, POWERPC_EXCP_HDECR); break; case PPC_INTERRUPT_EXT: if (books_vhyp_promotes_external_to_hvirt(cpu)) { powerpc_excp(cpu, POWERPC_EXCP_HVIRT); } else { powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL); } break; case PPC_INTERRUPT_DECR: /* Decrementer exception */ powerpc_excp(cpu, POWERPC_EXCP_DECR); break; case PPC_INTERRUPT_PERFM: powerpc_excp(cpu, POWERPC_EXCP_PERFM); break; case 0: /* * This is a bug ! It means that has_work took us out of halt without * anything to deliver while in a PM state that requires getting * out via a 0x100 * * This means we will incorrectly execute past the power management * instruction instead of triggering a reset. * * It generally means a discrepancy between the wakeup conditions in the * processor has_work implementation and the logic in this function. */ assert(!env->resume_as_sreset); break; default: cpu_abort(env_cpu(env), "Invalid PowerPC interrupt %d. Aborting\n", interrupt); } } static void p8_deliver_interrupt(CPUPPCState *env, int interrupt) { PowerPCCPU *cpu = env_archcpu(env); switch (interrupt) { case PPC_INTERRUPT_MCK: /* Machine check exception */ env->pending_interrupts &= ~PPC_INTERRUPT_MCK; powerpc_excp(cpu, POWERPC_EXCP_MCHECK); break; case PPC_INTERRUPT_HDECR: /* Hypervisor decrementer exception */ /* HDEC clears on delivery */ env->pending_interrupts &= ~PPC_INTERRUPT_HDECR; powerpc_excp(cpu, POWERPC_EXCP_HDECR); break; case PPC_INTERRUPT_EXT: if (books_vhyp_promotes_external_to_hvirt(cpu)) { powerpc_excp(cpu, POWERPC_EXCP_HVIRT); } else { powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL); } break; case PPC_INTERRUPT_DECR: /* Decrementer exception */ powerpc_excp(cpu, POWERPC_EXCP_DECR); break; case PPC_INTERRUPT_DOORBELL: if (!env->resume_as_sreset) { env->pending_interrupts &= ~PPC_INTERRUPT_DOORBELL; } if (is_book3s_arch2x(env)) { powerpc_excp(cpu, POWERPC_EXCP_SDOOR); } else { powerpc_excp(cpu, POWERPC_EXCP_DOORI); } break; case PPC_INTERRUPT_HDOORBELL: if (!env->resume_as_sreset) { env->pending_interrupts &= ~PPC_INTERRUPT_HDOORBELL; } powerpc_excp(cpu, POWERPC_EXCP_SDOOR_HV); break; case PPC_INTERRUPT_PERFM: powerpc_excp(cpu, POWERPC_EXCP_PERFM); break; case PPC_INTERRUPT_EBB: /* EBB exception */ env->pending_interrupts &= ~PPC_INTERRUPT_EBB; if (env->spr[SPR_BESCR] & BESCR_PMEO) { powerpc_excp(cpu, POWERPC_EXCP_PERFM_EBB); } else if (env->spr[SPR_BESCR] & BESCR_EEO) { powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL_EBB); } break; case 0: /* * This is a bug ! It means that has_work took us out of halt without * anything to deliver while in a PM state that requires getting * out via a 0x100 * * This means we will incorrectly execute past the power management * instruction instead of triggering a reset. * * It generally means a discrepancy between the wakeup conditions in the * processor has_work implementation and the logic in this function. */ assert(!env->resume_as_sreset); break; default: cpu_abort(env_cpu(env), "Invalid PowerPC interrupt %d. Aborting\n", interrupt); } } static void p9_deliver_interrupt(CPUPPCState *env, int interrupt) { PowerPCCPU *cpu = env_archcpu(env); CPUState *cs = env_cpu(env); if (cs->halted && !(env->spr[SPR_PSSCR] & PSSCR_EC) && !FIELD_EX64(env->msr, MSR, EE)) { /* * A pending interrupt took us out of power-saving, but MSR[EE] says * that we should return to NIP+4 instead of delivering it. */ return; } switch (interrupt) { case PPC_INTERRUPT_MCK: /* Machine check exception */ env->pending_interrupts &= ~PPC_INTERRUPT_MCK; powerpc_excp(cpu, POWERPC_EXCP_MCHECK); break; case PPC_INTERRUPT_HDECR: /* Hypervisor decrementer exception */ /* HDEC clears on delivery */ /* XXX: should not see an HDEC if resume_as_sreset. assert? */ env->pending_interrupts &= ~PPC_INTERRUPT_HDECR; powerpc_excp(cpu, POWERPC_EXCP_HDECR); break; case PPC_INTERRUPT_HVIRT: /* Hypervisor virtualization interrupt */ powerpc_excp(cpu, POWERPC_EXCP_HVIRT); break; case PPC_INTERRUPT_EXT: if (books_vhyp_promotes_external_to_hvirt(cpu)) { powerpc_excp(cpu, POWERPC_EXCP_HVIRT); } else { powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL); } break; case PPC_INTERRUPT_DECR: /* Decrementer exception */ powerpc_excp(cpu, POWERPC_EXCP_DECR); break; case PPC_INTERRUPT_DOORBELL: if (!env->resume_as_sreset) { env->pending_interrupts &= ~PPC_INTERRUPT_DOORBELL; } powerpc_excp(cpu, POWERPC_EXCP_SDOOR); break; case PPC_INTERRUPT_HDOORBELL: if (!env->resume_as_sreset) { env->pending_interrupts &= ~PPC_INTERRUPT_HDOORBELL; } powerpc_excp(cpu, POWERPC_EXCP_SDOOR_HV); break; case PPC_INTERRUPT_PERFM: powerpc_excp(cpu, POWERPC_EXCP_PERFM); break; case PPC_INTERRUPT_EBB: /* EBB exception */ env->pending_interrupts &= ~PPC_INTERRUPT_EBB; if (env->spr[SPR_BESCR] & BESCR_PMEO) { powerpc_excp(cpu, POWERPC_EXCP_PERFM_EBB); } else if (env->spr[SPR_BESCR] & BESCR_EEO) { powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL_EBB); } break; case 0: /* * This is a bug ! It means that has_work took us out of halt without * anything to deliver while in a PM state that requires getting * out via a 0x100 * * This means we will incorrectly execute past the power management * instruction instead of triggering a reset. * * It generally means a discrepancy between the wakeup conditions in the * processor has_work implementation and the logic in this function. */ assert(!env->resume_as_sreset); break; default: cpu_abort(env_cpu(env), "Invalid PowerPC interrupt %d. Aborting\n", interrupt); } } #endif /* TARGET_PPC64 */ static void ppc_deliver_interrupt(CPUPPCState *env, int interrupt) { #ifdef TARGET_PPC64 switch (env->excp_model) { case POWERPC_EXCP_POWER7: return p7_deliver_interrupt(env, interrupt); case POWERPC_EXCP_POWER8: return p8_deliver_interrupt(env, interrupt); case POWERPC_EXCP_POWER9: case POWERPC_EXCP_POWER10: case POWERPC_EXCP_POWER11: return p9_deliver_interrupt(env, interrupt); default: break; } #endif PowerPCCPU *cpu = env_archcpu(env); switch (interrupt) { case PPC_INTERRUPT_RESET: /* External reset */ env->pending_interrupts &= ~PPC_INTERRUPT_RESET; powerpc_excp(cpu, POWERPC_EXCP_RESET); break; case PPC_INTERRUPT_MCK: /* Machine check exception */ env->pending_interrupts &= ~PPC_INTERRUPT_MCK; powerpc_excp(cpu, POWERPC_EXCP_MCHECK); break; case PPC_INTERRUPT_HDECR: /* Hypervisor decrementer exception */ /* HDEC clears on delivery */ env->pending_interrupts &= ~PPC_INTERRUPT_HDECR; powerpc_excp(cpu, POWERPC_EXCP_HDECR); break; case PPC_INTERRUPT_HVIRT: /* Hypervisor virtualization interrupt */ powerpc_excp(cpu, POWERPC_EXCP_HVIRT); break; case PPC_INTERRUPT_EXT: if (books_vhyp_promotes_external_to_hvirt(cpu)) { powerpc_excp(cpu, POWERPC_EXCP_HVIRT); } else { powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL); } break; case PPC_INTERRUPT_CEXT: /* External critical interrupt */ powerpc_excp(cpu, POWERPC_EXCP_CRITICAL); break; case PPC_INTERRUPT_WDT: /* Watchdog timer on embedded PowerPC */ env->pending_interrupts &= ~PPC_INTERRUPT_WDT; powerpc_excp(cpu, POWERPC_EXCP_WDT); break; case PPC_INTERRUPT_CDOORBELL: env->pending_interrupts &= ~PPC_INTERRUPT_CDOORBELL; powerpc_excp(cpu, POWERPC_EXCP_DOORCI); break; case PPC_INTERRUPT_FIT: /* Fixed interval timer on embedded PowerPC */ env->pending_interrupts &= ~PPC_INTERRUPT_FIT; powerpc_excp(cpu, POWERPC_EXCP_FIT); break; case PPC_INTERRUPT_PIT: /* Programmable interval timer on embedded ppc */ env->pending_interrupts &= ~PPC_INTERRUPT_PIT; powerpc_excp(cpu, POWERPC_EXCP_PIT); break; case PPC_INTERRUPT_DECR: /* Decrementer exception */ if (ppc_decr_clear_on_delivery(env)) { env->pending_interrupts &= ~PPC_INTERRUPT_DECR; } powerpc_excp(cpu, POWERPC_EXCP_DECR); break; case PPC_INTERRUPT_DOORBELL: env->pending_interrupts &= ~PPC_INTERRUPT_DOORBELL; if (is_book3s_arch2x(env)) { powerpc_excp(cpu, POWERPC_EXCP_SDOOR); } else { powerpc_excp(cpu, POWERPC_EXCP_DOORI); } break; case PPC_INTERRUPT_HDOORBELL: env->pending_interrupts &= ~PPC_INTERRUPT_HDOORBELL; powerpc_excp(cpu, POWERPC_EXCP_SDOOR_HV); break; case PPC_INTERRUPT_PERFM: powerpc_excp(cpu, POWERPC_EXCP_PERFM); break; case PPC_INTERRUPT_THERM: /* Thermal interrupt */ env->pending_interrupts &= ~PPC_INTERRUPT_THERM; powerpc_excp(cpu, POWERPC_EXCP_THERM); break; case PPC_INTERRUPT_EBB: /* EBB exception */ env->pending_interrupts &= ~PPC_INTERRUPT_EBB; if (env->spr[SPR_BESCR] & BESCR_PMEO) { powerpc_excp(cpu, POWERPC_EXCP_PERFM_EBB); } else if (env->spr[SPR_BESCR] & BESCR_EEO) { powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL_EBB); } break; case 0: /* * This is a bug ! It means that has_work took us out of halt without * anything to deliver while in a PM state that requires getting * out via a 0x100 * * This means we will incorrectly execute past the power management * instruction instead of triggering a reset. * * It generally means a discrepancy between the wakeup conditions in the * processor has_work implementation and the logic in this function. */ assert(!env->resume_as_sreset); break; default: cpu_abort(env_cpu(env), "Invalid PowerPC interrupt %d. Aborting\n", interrupt); } } /* * system reset is not delivered via normal irq method, so have to set * halted = 0 to resume CPU running if it was halted. Possibly we should * move it over to using PPC_INTERRUPT_RESET rather than async_run_on_cpu. */ void ppc_cpu_do_system_reset(CPUState *cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); cs->halted = 0; powerpc_excp(cpu, POWERPC_EXCP_RESET); } void ppc_cpu_do_fwnmi_machine_check(CPUState *cs, target_ulong vector) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; target_ulong msr = 0; /* * Set MSR and NIP for the handler, SRR0/1, DAR and DSISR have already * been set by KVM. */ msr = (1ULL << MSR_ME); msr |= env->msr & (1ULL << MSR_SF); if (ppc_interrupts_little_endian(cpu, false)) { msr |= (1ULL << MSR_LE); } /* Anything for nested required here? MSR[HV] bit? */ cs->halted = 0; powerpc_set_excp_state(cpu, vector, msr); } bool ppc_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { CPUPPCState *env = cpu_env(cs); int interrupt; if ((interrupt_request & CPU_INTERRUPT_HARD) == 0) { return false; } interrupt = ppc_next_unmasked_interrupt(env); if (interrupt == 0) { return false; } ppc_deliver_interrupt(env, interrupt); if (env->pending_interrupts == 0) { cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } return true; } #endif /* !CONFIG_USER_ONLY */ /*****************************************************************************/ /* Exceptions processing helpers */ void raise_exception_err_ra(CPUPPCState *env, uint32_t exception, uint32_t error_code, uintptr_t raddr) { CPUState *cs = env_cpu(env); cs->exception_index = exception; env->error_code = error_code; cpu_loop_exit_restore(cs, raddr); } void raise_exception_err(CPUPPCState *env, uint32_t exception, uint32_t error_code) { raise_exception_err_ra(env, exception, error_code, 0); } void raise_exception(CPUPPCState *env, uint32_t exception) { raise_exception_err_ra(env, exception, 0, 0); } void raise_exception_ra(CPUPPCState *env, uint32_t exception, uintptr_t raddr) { raise_exception_err_ra(env, exception, 0, raddr); } #ifdef CONFIG_TCG void helper_raise_exception_err(CPUPPCState *env, uint32_t exception, uint32_t error_code) { raise_exception_err_ra(env, exception, error_code, 0); } void helper_raise_exception(CPUPPCState *env, uint32_t exception) { raise_exception_err_ra(env, exception, 0, 0); } #ifndef CONFIG_USER_ONLY void helper_store_msr(CPUPPCState *env, target_ulong val) { uint32_t excp = hreg_store_msr(env, val, 0); if (excp != 0) { cpu_interrupt_exittb(env_cpu(env)); raise_exception(env, excp); } } void helper_ppc_maybe_interrupt(CPUPPCState *env) { ppc_maybe_interrupt(env); } #ifdef TARGET_PPC64 void helper_scv(CPUPPCState *env, uint32_t lev) { if (env->spr[SPR_FSCR] & (1ull << FSCR_SCV)) { raise_exception_err(env, POWERPC_EXCP_SYSCALL_VECTORED, lev); } else { raise_exception_err(env, POWERPC_EXCP_FU, FSCR_IC_SCV); } } void helper_pminsn(CPUPPCState *env, uint32_t insn) { CPUState *cs = env_cpu(env); cs->halted = 1; /* Condition for waking up at 0x100 */ env->resume_as_sreset = (insn != PPC_PM_STOP) || (env->spr[SPR_PSSCR] & PSSCR_EC); /* HDECR is not to wake from PM state, it may have already fired */ if (env->resume_as_sreset) { PowerPCCPU *cpu = env_archcpu(env); ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); } ppc_maybe_interrupt(env); } #endif /* TARGET_PPC64 */ static void do_rfi(CPUPPCState *env, target_ulong nip, target_ulong msr) { /* MSR:POW cannot be set by any form of rfi */ msr &= ~(1ULL << MSR_POW); /* MSR:TGPR cannot be set by any form of rfi */ if (env->flags & POWERPC_FLAG_TGPR) msr &= ~(1ULL << MSR_TGPR); #ifdef TARGET_PPC64 /* Switching to 32-bit ? Crop the nip */ if (!msr_is_64bit(env, msr)) { nip = (uint32_t)nip; } #else nip = (uint32_t)nip; #endif /* XXX: beware: this is false if VLE is supported */ env->nip = nip & ~((target_ulong)0x00000003); hreg_store_msr(env, msr, 1); trace_ppc_excp_rfi(env->nip, env->msr); /* * No need to raise an exception here, as rfi is always the last * insn of a TB */ cpu_interrupt_exittb(env_cpu(env)); /* Reset the reservation */ env->reserve_addr = -1; /* Context synchronizing: check if TCG TLB needs flush */ check_tlb_flush(env, false); } void helper_rfi(CPUPPCState *env) { do_rfi(env, env->spr[SPR_SRR0], env->spr[SPR_SRR1] & 0xfffffffful); } #ifdef TARGET_PPC64 void helper_rfid(CPUPPCState *env) { /* * The architecture defines a number of rules for which bits can * change but in practice, we handle this in hreg_store_msr() * which will be called by do_rfi(), so there is no need to filter * here */ do_rfi(env, env->spr[SPR_SRR0], env->spr[SPR_SRR1]); } void helper_rfscv(CPUPPCState *env) { do_rfi(env, env->lr, env->ctr); } void helper_hrfid(CPUPPCState *env) { do_rfi(env, env->spr[SPR_HSRR0], env->spr[SPR_HSRR1]); } void helper_rfebb(CPUPPCState *env, target_ulong s) { target_ulong msr = env->msr; /* * Handling of BESCR bits 32:33 according to PowerISA v3.1: * * "If BESCR 32:33 != 0b00 the instruction is treated as if * the instruction form were invalid." */ if (env->spr[SPR_BESCR] & BESCR_INVALID) { raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); } env->nip = env->spr[SPR_EBBRR]; /* Switching to 32-bit ? Crop the nip */ if (!msr_is_64bit(env, msr)) { env->nip = (uint32_t)env->spr[SPR_EBBRR]; } if (s) { env->spr[SPR_BESCR] |= BESCR_GE; } else { env->spr[SPR_BESCR] &= ~BESCR_GE; } } /* * Triggers or queues an 'ebb_excp' EBB exception. All checks * but FSCR, HFSCR and msr_pr must be done beforehand. * * PowerISA v3.1 isn't clear about whether an EBB should be * postponed or cancelled if the EBB facility is unavailable. * Our assumption here is that the EBB is cancelled if both * FSCR and HFSCR EBB facilities aren't available. */ static void do_ebb(CPUPPCState *env, int ebb_excp) { PowerPCCPU *cpu = env_archcpu(env); /* * FSCR_EBB and FSCR_IC_EBB are the same bits used with * HFSCR. */ helper_fscr_facility_check(env, FSCR_EBB, 0, FSCR_IC_EBB); helper_hfscr_facility_check(env, FSCR_EBB, "EBB", FSCR_IC_EBB); if (ebb_excp == POWERPC_EXCP_PERFM_EBB) { env->spr[SPR_BESCR] |= BESCR_PMEO; } else if (ebb_excp == POWERPC_EXCP_EXTERNAL_EBB) { env->spr[SPR_BESCR] |= BESCR_EEO; } if (FIELD_EX64(env->msr, MSR, PR)) { powerpc_excp(cpu, ebb_excp); } else { ppc_set_irq(cpu, PPC_INTERRUPT_EBB, 1); } } void raise_ebb_perfm_exception(CPUPPCState *env) { bool perfm_ebb_enabled = env->spr[SPR_POWER_MMCR0] & MMCR0_EBE && env->spr[SPR_BESCR] & BESCR_PME && env->spr[SPR_BESCR] & BESCR_GE; if (!perfm_ebb_enabled) { return; } do_ebb(env, POWERPC_EXCP_PERFM_EBB); } #endif /* TARGET_PPC64 */ /*****************************************************************************/ /* Embedded PowerPC specific helpers */ void helper_40x_rfci(CPUPPCState *env) { do_rfi(env, env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3]); } void helper_rfci(CPUPPCState *env) { do_rfi(env, env->spr[SPR_BOOKE_CSRR0], env->spr[SPR_BOOKE_CSRR1]); } void helper_rfdi(CPUPPCState *env) { /* FIXME: choose CSRR1 or DSRR1 based on cpu type */ do_rfi(env, env->spr[SPR_BOOKE_DSRR0], env->spr[SPR_BOOKE_DSRR1]); } void helper_rfmci(CPUPPCState *env) { /* FIXME: choose CSRR1 or MCSRR1 based on cpu type */ do_rfi(env, env->spr[SPR_BOOKE_MCSRR0], env->spr[SPR_BOOKE_MCSRR1]); } #endif /* !CONFIG_USER_ONLY */ void helper_TW(CPUPPCState *env, target_ulong arg1, target_ulong arg2, uint32_t flags) { if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) || ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) || ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) || ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) || ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP, GETPC()); } } #ifdef TARGET_PPC64 void helper_TD(CPUPPCState *env, target_ulong arg1, target_ulong arg2, uint32_t flags) { if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) || ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) || ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) || ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) || ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01))))) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP, GETPC()); } } #endif /* TARGET_PPC64 */ static uint32_t helper_SIMON_LIKE_32_64(uint32_t x, uint64_t key, uint32_t lane) { const uint16_t c = 0xfffc; const uint64_t z0 = 0xfa2561cdf44ac398ULL; uint16_t z = 0, temp; uint16_t k[32], eff_k[32], xleft[33], xright[33], fxleft[32]; for (int i = 3; i >= 0; i--) { k[i] = key & 0xffff; key >>= 16; } xleft[0] = x & 0xffff; xright[0] = (x >> 16) & 0xffff; for (int i = 0; i < 28; i++) { z = (z0 >> (63 - i)) & 1; temp = ror16(k[i + 3], 3) ^ k[i + 1]; k[i + 4] = c ^ z ^ k[i] ^ temp ^ ror16(temp, 1); } for (int i = 0; i < 8; i++) { eff_k[4 * i + 0] = k[4 * i + ((0 + lane) % 4)]; eff_k[4 * i + 1] = k[4 * i + ((1 + lane) % 4)]; eff_k[4 * i + 2] = k[4 * i + ((2 + lane) % 4)]; eff_k[4 * i + 3] = k[4 * i + ((3 + lane) % 4)]; } for (int i = 0; i < 32; i++) { fxleft[i] = (rol16(xleft[i], 1) & rol16(xleft[i], 8)) ^ rol16(xleft[i], 2); xleft[i + 1] = xright[i] ^ fxleft[i] ^ eff_k[i]; xright[i + 1] = xleft[i]; } return (((uint32_t)xright[32]) << 16) | xleft[32]; } static uint64_t hash_digest(uint64_t ra, uint64_t rb, uint64_t key) { uint64_t stage0_h = 0ULL, stage0_l = 0ULL; uint64_t stage1_h, stage1_l; for (int i = 0; i < 4; i++) { stage0_h |= ror64(rb & 0xff, 8 * (2 * i + 1)); stage0_h |= ((ra >> 32) & 0xff) << (8 * 2 * i); stage0_l |= ror64((rb >> 32) & 0xff, 8 * (2 * i + 1)); stage0_l |= (ra & 0xff) << (8 * 2 * i); rb >>= 8; ra >>= 8; } stage1_h = (uint64_t)helper_SIMON_LIKE_32_64(stage0_h >> 32, key, 0) << 32; stage1_h |= helper_SIMON_LIKE_32_64(stage0_h, key, 1); stage1_l = (uint64_t)helper_SIMON_LIKE_32_64(stage0_l >> 32, key, 2) << 32; stage1_l |= helper_SIMON_LIKE_32_64(stage0_l, key, 3); return stage1_h ^ stage1_l; } static void do_hash(CPUPPCState *env, target_ulong ea, target_ulong ra, target_ulong rb, uint64_t key, bool store) { uint64_t calculated_hash = hash_digest(ra, rb, key), loaded_hash; if (store) { cpu_stq_data_ra(env, ea, calculated_hash, GETPC()); } else { loaded_hash = cpu_ldq_data_ra(env, ea, GETPC()); if (loaded_hash != calculated_hash) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP, GETPC()); } } } #include "qemu/guest-random.h" #ifdef TARGET_PPC64 #define HELPER_HASH(op, key, store, dexcr_aspect) \ void helper_##op(CPUPPCState *env, target_ulong ea, target_ulong ra, \ target_ulong rb) \ { \ if (env->msr & R_MSR_PR_MASK) { \ if (!(env->spr[SPR_DEXCR] & R_DEXCR_PRO_##dexcr_aspect##_MASK || \ env->spr[SPR_HDEXCR] & R_HDEXCR_ENF_##dexcr_aspect##_MASK)) \ return; \ } else if (!(env->msr & R_MSR_HV_MASK)) { \ if (!(env->spr[SPR_DEXCR] & R_DEXCR_PNH_##dexcr_aspect##_MASK || \ env->spr[SPR_HDEXCR] & R_HDEXCR_ENF_##dexcr_aspect##_MASK)) \ return; \ } else if (!(env->msr & R_MSR_S_MASK)) { \ if (!(env->spr[SPR_HDEXCR] & R_HDEXCR_HNU_##dexcr_aspect##_MASK)) \ return; \ } \ \ do_hash(env, ea, ra, rb, key, store); \ } #else #define HELPER_HASH(op, key, store, dexcr_aspect) \ void helper_##op(CPUPPCState *env, target_ulong ea, target_ulong ra, \ target_ulong rb) \ { \ do_hash(env, ea, ra, rb, key, store); \ } #endif /* TARGET_PPC64 */ HELPER_HASH(HASHST, env->spr[SPR_HASHKEYR], true, NPHIE) HELPER_HASH(HASHCHK, env->spr[SPR_HASHKEYR], false, NPHIE) HELPER_HASH(HASHSTP, env->spr[SPR_HASHPKEYR], true, PHIE) HELPER_HASH(HASHCHKP, env->spr[SPR_HASHPKEYR], false, PHIE) #ifndef CONFIG_USER_ONLY /* Embedded.Processor Control */ static int dbell2irq(target_ulong rb) { int msg = rb & DBELL_TYPE_MASK; int irq = -1; switch (msg) { case DBELL_TYPE_DBELL: irq = PPC_INTERRUPT_DOORBELL; break; case DBELL_TYPE_DBELL_CRIT: irq = PPC_INTERRUPT_CDOORBELL; break; case DBELL_TYPE_G_DBELL: case DBELL_TYPE_G_DBELL_CRIT: case DBELL_TYPE_G_DBELL_MC: /* XXX implement */ default: break; } return irq; } void helper_msgclr(CPUPPCState *env, target_ulong rb) { int irq = dbell2irq(rb); if (irq < 0) { return; } ppc_set_irq(env_archcpu(env), irq, 0); } void helper_msgsnd(target_ulong rb) { int irq = dbell2irq(rb); int pir = rb & DBELL_PIRTAG_MASK; CPUState *cs; if (irq < 0) { return; } bql_lock(); CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *cenv = &cpu->env; if ((rb & DBELL_BRDCAST_MASK) || (cenv->spr[SPR_BOOKE_PIR] == pir)) { ppc_set_irq(cpu, irq, 1); } } bql_unlock(); } /* Server Processor Control */ static bool dbell_type_server(target_ulong rb) { /* * A Directed Hypervisor Doorbell message is sent only if the * message type is 5. All other types are reserved and the * instruction is a no-op */ return (rb & DBELL_TYPE_MASK) == DBELL_TYPE_DBELL_SERVER; } static inline bool dbell_bcast_core(target_ulong rb) { return (rb & DBELL_BRDCAST_MASK) == DBELL_BRDCAST_CORE; } static inline bool dbell_bcast_subproc(target_ulong rb) { return (rb & DBELL_BRDCAST_MASK) == DBELL_BRDCAST_SUBPROC; } /* * Send an interrupt to a thread in the same core as env). */ static void msgsnd_core_tir(CPUPPCState *env, uint32_t target_tir, int irq) { PowerPCCPU *cpu = env_archcpu(env); CPUState *cs = env_cpu(env); if (ppc_cpu_lpar_single_threaded(cs)) { if (target_tir == 0) { ppc_set_irq(cpu, irq, 1); } } else { CPUState *ccs; /* Does iothread need to be locked for walking CPU list? */ bql_lock(); THREAD_SIBLING_FOREACH(cs, ccs) { PowerPCCPU *ccpu = POWERPC_CPU(ccs); if (target_tir == ppc_cpu_tir(ccpu)) { ppc_set_irq(ccpu, irq, 1); break; } } bql_unlock(); } } void helper_book3s_msgclr(CPUPPCState *env, target_ulong rb) { if (!dbell_type_server(rb)) { return; } ppc_set_irq(env_archcpu(env), PPC_INTERRUPT_HDOORBELL, 0); } void helper_book3s_msgsnd(CPUPPCState *env, target_ulong rb) { int pir = rb & DBELL_PROCIDTAG_MASK; bool brdcast = false; CPUState *cs, *ccs; PowerPCCPU *cpu; if (!dbell_type_server(rb)) { return; } /* POWER8 msgsnd is like msgsndp (targets a thread within core) */ if (!(env->insns_flags2 & PPC2_ISA300)) { msgsnd_core_tir(env, rb & PPC_BITMASK(57, 63), PPC_INTERRUPT_HDOORBELL); return; } /* POWER9 and later msgsnd is a global (targets any thread) */ cpu = ppc_get_vcpu_by_pir(pir); if (!cpu) { return; } cs = CPU(cpu); if (dbell_bcast_core(rb) || (dbell_bcast_subproc(rb) && (env->flags & POWERPC_FLAG_SMT_1LPAR))) { brdcast = true; } if (ppc_cpu_core_single_threaded(cs) || !brdcast) { ppc_set_irq(cpu, PPC_INTERRUPT_HDOORBELL, 1); return; } /* * Why is bql needed for walking CPU list? Answer seems to be because ppc * irq handling needs it, but ppc_set_irq takes the lock itself if needed, * so could this be removed? */ bql_lock(); THREAD_SIBLING_FOREACH(cs, ccs) { ppc_set_irq(POWERPC_CPU(ccs), PPC_INTERRUPT_HDOORBELL, 1); } bql_unlock(); } #ifdef TARGET_PPC64 void helper_book3s_msgclrp(CPUPPCState *env, target_ulong rb) { helper_hfscr_facility_check(env, HFSCR_MSGP, "msgclrp", HFSCR_IC_MSGP); if (!dbell_type_server(rb)) { return; } ppc_set_irq(env_archcpu(env), PPC_INTERRUPT_DOORBELL, 0); } /* * sends a message to another thread on the same * multi-threaded processor */ void helper_book3s_msgsndp(CPUPPCState *env, target_ulong rb) { helper_hfscr_facility_check(env, HFSCR_MSGP, "msgsndp", HFSCR_IC_MSGP); if (!dbell_type_server(rb)) { return; } msgsnd_core_tir(env, rb & PPC_BITMASK(57, 63), PPC_INTERRUPT_DOORBELL); } #endif /* TARGET_PPC64 */ /* Single-step tracing */ void helper_book3s_trace(CPUPPCState *env, target_ulong prev_ip) { uint32_t error_code = 0; if (env->insns_flags2 & PPC2_ISA207S) { /* Load/store reporting, SRR1[35, 36] and SDAR, are not implemented. */ env->spr[SPR_POWER_SIAR] = prev_ip; error_code = PPC_BIT(33); } raise_exception_err(env, POWERPC_EXCP_TRACE, error_code); } void ppc_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { CPUPPCState *env = cpu_env(cs); uint32_t insn; /* Restore state and reload the insn we executed, for filling in DSISR. */ cpu_restore_state(cs, retaddr); insn = ppc_ldl_code(env, env->nip); switch (env->mmu_model) { case POWERPC_MMU_SOFT_4xx: env->spr[SPR_40x_DEAR] = vaddr; break; case POWERPC_MMU_BOOKE: case POWERPC_MMU_BOOKE206: env->spr[SPR_BOOKE_DEAR] = vaddr; break; default: env->spr[SPR_DAR] = vaddr; break; } cs->exception_index = POWERPC_EXCP_ALIGN; env->error_code = insn & 0x03FF0000; cpu_loop_exit(cs); } void ppc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr vaddr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr) { CPUPPCState *env = cpu_env(cs); switch (env->excp_model) { #if defined(TARGET_PPC64) case POWERPC_EXCP_POWER8: case POWERPC_EXCP_POWER9: case POWERPC_EXCP_POWER10: case POWERPC_EXCP_POWER11: /* * Machine check codes can be found in processor User Manual or * Linux or skiboot source. */ if (access_type == MMU_DATA_LOAD) { env->spr[SPR_DAR] = vaddr; env->spr[SPR_DSISR] = PPC_BIT(57); env->error_code = PPC_BIT(42); } else if (access_type == MMU_DATA_STORE) { /* * MCE for stores in POWER is asynchronous so hardware does * not set DAR, but QEMU can do better. */ env->spr[SPR_DAR] = vaddr; env->error_code = PPC_BIT(36) | PPC_BIT(43) | PPC_BIT(45); env->error_code |= PPC_BIT(42); } else { /* Fetch */ /* * is_prefix_insn_excp() tests !PPC_BIT(42) to avoid fetching * the instruction, so that must always be clear for fetches. */ env->error_code = PPC_BIT(36) | PPC_BIT(44) | PPC_BIT(45); } break; #endif default: /* * TODO: Check behaviour for other CPUs, for now do nothing. * Could add a basic MCE even if real hardware ignores. */ return; } cs->exception_index = POWERPC_EXCP_MCHECK; cpu_loop_exit_restore(cs, retaddr); } void ppc_cpu_debug_excp_handler(CPUState *cs) { #if defined(TARGET_PPC64) CPUPPCState *env = cpu_env(cs); if (env->insns_flags2 & PPC2_ISA207S) { if (cs->watchpoint_hit) { if (cs->watchpoint_hit->flags & BP_CPU) { env->spr[SPR_DAR] = cs->watchpoint_hit->hitaddr; env->spr[SPR_DSISR] = PPC_BIT(41); cs->watchpoint_hit = NULL; raise_exception(env, POWERPC_EXCP_DSI); } cs->watchpoint_hit = NULL; } else if (cpu_breakpoint_test(cs, env->nip, BP_CPU)) { raise_exception_err(env, POWERPC_EXCP_TRACE, PPC_BIT(33) | PPC_BIT(43)); } } #endif } bool ppc_cpu_debug_check_breakpoint(CPUState *cs) { #if defined(TARGET_PPC64) CPUPPCState *env = cpu_env(cs); if (env->insns_flags2 & PPC2_ISA207S) { target_ulong priv; priv = env->spr[SPR_CIABR] & PPC_BITMASK(62, 63); switch (priv) { case 0x1: /* problem */ return env->msr & ((target_ulong)1 << MSR_PR); case 0x2: /* supervisor */ return (!(env->msr & ((target_ulong)1 << MSR_PR)) && !(env->msr & ((target_ulong)1 << MSR_HV))); case 0x3: /* hypervisor */ return (!(env->msr & ((target_ulong)1 << MSR_PR)) && (env->msr & ((target_ulong)1 << MSR_HV))); default: g_assert_not_reached(); } } #endif return false; } bool ppc_cpu_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp) { #if defined(TARGET_PPC64) CPUPPCState *env = cpu_env(cs); if (env->insns_flags2 & PPC2_ISA207S) { if (wp == env->dawr0_watchpoint) { uint32_t dawrx = env->spr[SPR_DAWRX0]; bool wt = extract32(dawrx, PPC_BIT_NR(59), 1); bool wti = extract32(dawrx, PPC_BIT_NR(60), 1); bool hv = extract32(dawrx, PPC_BIT_NR(61), 1); bool sv = extract32(dawrx, PPC_BIT_NR(62), 1); bool pr = extract32(dawrx, PPC_BIT_NR(62), 1); if ((env->msr & ((target_ulong)1 << MSR_PR)) && !pr) { return false; } else if ((env->msr & ((target_ulong)1 << MSR_HV)) && !hv) { return false; } else if (!sv) { return false; } if (!wti) { if (env->msr & ((target_ulong)1 << MSR_DR)) { if (!wt) { return false; } } else { if (wt) { return false; } } } return true; } } #endif return false; } #endif /* !CONFIG_USER_ONLY */ #endif /* CONFIG_TCG */