/* * MIPS TLB (Translation lookaside buffer) helpers. * * Copyright (c) 2004-2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/bitops.h" #include "cpu.h" #include "internal.h" #include "exec/exec-all.h" #include "exec/page-protection.h" #include "exec/cpu_ldst.h" #include "exec/log.h" #include "exec/helper-proto.h" /* TLB management */ static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first) { /* Discard entries from env->tlb[first] onwards. */ while (env->tlb->tlb_in_use > first) { r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0); } } static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo) { #if defined(TARGET_MIPS64) return extract64(entrylo, 6, 54); #else return extract64(entrylo, 6, 24) | /* PFN */ (extract64(entrylo, 32, 32) << 24); /* PFNX */ #endif } static void r4k_fill_tlb(CPUMIPSState *env, int idx) { r4k_tlb_t *tlb; uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1); /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */ tlb = &env->tlb->mmu.r4k.tlb[idx]; if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) { tlb->EHINV = 1; return; } tlb->EHINV = 0; tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); #if defined(TARGET_MIPS64) tlb->VPN &= env->SEGMask; #endif tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; tlb->MMID = env->CP0_MemoryMapID; tlb->PageMask = env->CP0_PageMask; tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1; tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1; tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12; tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1; tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1; tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12; } static void r4k_helper_tlbinv(CPUMIPSState *env) { bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; uint32_t MMID = env->CP0_MemoryMapID; uint32_t tlb_mmid; r4k_tlb_t *tlb; int idx; MMID = mi ? MMID : (uint32_t) ASID; for (idx = 0; idx < env->tlb->nb_tlb; idx++) { tlb = &env->tlb->mmu.r4k.tlb[idx]; tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; if (!tlb->G && tlb_mmid == MMID) { tlb->EHINV = 1; } } cpu_mips_tlb_flush(env); } static void r4k_helper_tlbinvf(CPUMIPSState *env) { int idx; for (idx = 0; idx < env->tlb->nb_tlb; idx++) { env->tlb->mmu.r4k.tlb[idx].EHINV = 1; } cpu_mips_tlb_flush(env); } static void r4k_helper_tlbwi(CPUMIPSState *env) { bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); target_ulong VPN; uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; uint32_t MMID = env->CP0_MemoryMapID; uint32_t tlb_mmid; bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1; r4k_tlb_t *tlb; int idx; MMID = mi ? MMID : (uint32_t) ASID; idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; tlb = &env->tlb->mmu.r4k.tlb[idx]; VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); #if defined(TARGET_MIPS64) VPN &= env->SEGMask; #endif EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0; G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; V0 = (env->CP0_EntryLo0 & 2) != 0; D0 = (env->CP0_EntryLo0 & 4) != 0; XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1; RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1; V1 = (env->CP0_EntryLo1 & 2) != 0; D1 = (env->CP0_EntryLo1 & 4) != 0; XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1; RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1; tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; /* * Discard cached TLB entries, unless tlbwi is just upgrading access * permissions on the current entry. */ if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G || (!tlb->EHINV && EHINV) || (tlb->V0 && !V0) || (tlb->D0 && !D0) || (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) || (tlb->V1 && !V1) || (tlb->D1 && !D1) || (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) { r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); } r4k_invalidate_tlb(env, idx, 0); r4k_fill_tlb(env, idx); } static void r4k_helper_tlbwr(CPUMIPSState *env) { int r = cpu_mips_get_random(env); r4k_invalidate_tlb(env, r, 1); r4k_fill_tlb(env, r); } static void r4k_helper_tlbp(CPUMIPSState *env) { bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); r4k_tlb_t *tlb; target_ulong mask; target_ulong tag; target_ulong VPN; uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; uint32_t MMID = env->CP0_MemoryMapID; uint32_t tlb_mmid; int i; MMID = mi ? MMID : (uint32_t) ASID; for (i = 0; i < env->tlb->nb_tlb; i++) { tlb = &env->tlb->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); tag = env->CP0_EntryHi & ~mask; VPN = tlb->VPN & ~mask; #if defined(TARGET_MIPS64) tag &= env->SEGMask; #endif tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; /* Check ASID/MMID, virtual page number & size */ if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) { /* TLB match */ env->CP0_Index = i; break; } } if (i == env->tlb->nb_tlb) { /* No match. Discard any shadow entries, if any of them match. */ for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) { tlb = &env->tlb->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); tag = env->CP0_EntryHi & ~mask; VPN = tlb->VPN & ~mask; #if defined(TARGET_MIPS64) tag &= env->SEGMask; #endif tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; /* Check ASID/MMID, virtual page number & size */ if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) { r4k_mips_tlb_flush_extra(env, i); break; } } env->CP0_Index |= 0x80000000; } } static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn) { #if defined(TARGET_MIPS64) return tlb_pfn << 6; #else return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */ (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */ #endif } static void r4k_helper_tlbr(CPUMIPSState *env) { bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; uint32_t MMID = env->CP0_MemoryMapID; uint32_t tlb_mmid; r4k_tlb_t *tlb; int idx; MMID = mi ? MMID : (uint32_t) ASID; idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; tlb = &env->tlb->mmu.r4k.tlb[idx]; tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; /* If this will change the current ASID/MMID, flush qemu's TLB. */ if (MMID != tlb_mmid) { cpu_mips_tlb_flush(env); } r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); if (tlb->EHINV) { env->CP0_EntryHi = 1 << CP0EnHi_EHINV; env->CP0_PageMask = 0; env->CP0_EntryLo0 = 0; env->CP0_EntryLo1 = 0; } else { env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID; env->CP0_MemoryMapID = tlb->MMID; env->CP0_PageMask = tlb->PageMask; env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | ((uint64_t)tlb->RI0 << CP0EnLo_RI) | ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) | get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12); env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | ((uint64_t)tlb->RI1 << CP0EnLo_RI) | ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) | get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12); } } void helper_tlbwi(CPUMIPSState *env) { env->tlb->helper_tlbwi(env); } void helper_tlbwr(CPUMIPSState *env) { env->tlb->helper_tlbwr(env); } void helper_tlbp(CPUMIPSState *env) { env->tlb->helper_tlbp(env); } void helper_tlbr(CPUMIPSState *env) { env->tlb->helper_tlbr(env); } void helper_tlbinv(CPUMIPSState *env) { env->tlb->helper_tlbinv(env); } void helper_tlbinvf(CPUMIPSState *env) { env->tlb->helper_tlbinvf(env); } static void global_invalidate_tlb(CPUMIPSState *env, uint32_t invMsgVPN2, uint8_t invMsgR, uint32_t invMsgMMid, bool invAll, bool invVAMMid, bool invMMid, bool invVA) { int idx; r4k_tlb_t *tlb; bool VAMatch; bool MMidMatch; for (idx = 0; idx < env->tlb->nb_tlb; idx++) { tlb = &env->tlb->mmu.r4k.tlb[idx]; VAMatch = (((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask)) #ifdef TARGET_MIPS64 && (extract64(env->CP0_EntryHi, 62, 2) == invMsgR) #endif ); MMidMatch = tlb->MMID == invMsgMMid; if ((invAll && (idx > env->CP0_Wired)) || (VAMatch && invVAMMid && (tlb->G || MMidMatch)) || (VAMatch && invVA) || (MMidMatch && !(tlb->G) && invMMid)) { tlb->EHINV = 1; } } cpu_mips_tlb_flush(env); } void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type) { bool invAll = type == 0; bool invVA = type == 1; bool invMMid = type == 2; bool invVAMMid = type == 3; uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1); uint8_t invMsgR = 0; uint32_t invMsgMMid = env->CP0_MemoryMapID; CPUState *other_cs = first_cpu; #ifdef TARGET_MIPS64 invMsgR = extract64(arg, 62, 2); #endif CPU_FOREACH(other_cs) { MIPSCPU *other_cpu = MIPS_CPU(other_cs); global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid, invAll, invVAMMid, invMMid, invVA); } } /* no MMU emulation */ static int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong address, MMUAccessType access_type) { *physical = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return TLBRET_MATCH; } /* fixed mapping MMU emulation */ static int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong address, MMUAccessType access_type) { if (address <= (int32_t)0x7FFFFFFFUL) { if (!(env->CP0_Status & (1 << CP0St_ERL))) { *physical = address + 0x40000000UL; } else { *physical = address; } } else if (address <= (int32_t)0xBFFFFFFFUL) { *physical = address & 0x1FFFFFFF; } else { *physical = address; } *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return TLBRET_MATCH; } /* MIPS32/MIPS64 R4000-style MMU emulation */ static int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong address, MMUAccessType access_type) { uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; uint32_t MMID = env->CP0_MemoryMapID; bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); uint32_t tlb_mmid; int i; MMID = mi ? MMID : (uint32_t) ASID; for (i = 0; i < env->tlb->tlb_in_use; i++) { r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); target_ulong tag = address & ~mask; target_ulong VPN = tlb->VPN & ~mask; #if defined(TARGET_MIPS64) tag &= env->SEGMask; #endif /* Check ASID/MMID, virtual page number & size */ tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) { /* TLB match */ int n = !!(address & mask & ~(mask >> 1)); /* Check access rights */ if (!(n ? tlb->V1 : tlb->V0)) { return TLBRET_INVALID; } if (access_type == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) { return TLBRET_XI; } if (access_type == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) { return TLBRET_RI; } if (access_type != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) { *physical = tlb->PFN[n] | (address & (mask >> 1)); *prot = PAGE_READ; if (n ? tlb->D1 : tlb->D0) { *prot |= PAGE_WRITE; } if (!(n ? tlb->XI1 : tlb->XI0)) { *prot |= PAGE_EXEC; } return TLBRET_MATCH; } return TLBRET_DIRTY; } } return TLBRET_NOMATCH; } static void no_mmu_init(CPUMIPSState *env, const mips_def_t *def) { env->tlb->nb_tlb = 1; env->tlb->map_address = &no_mmu_map_address; } static void fixed_mmu_init(CPUMIPSState *env, const mips_def_t *def) { env->tlb->nb_tlb = 1; env->tlb->map_address = &fixed_mmu_map_address; } static void r4k_mmu_init(CPUMIPSState *env, const mips_def_t *def) { env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63); env->tlb->map_address = &r4k_map_address; env->tlb->helper_tlbwi = r4k_helper_tlbwi; env->tlb->helper_tlbwr = r4k_helper_tlbwr; env->tlb->helper_tlbp = r4k_helper_tlbp; env->tlb->helper_tlbr = r4k_helper_tlbr; env->tlb->helper_tlbinv = r4k_helper_tlbinv; env->tlb->helper_tlbinvf = r4k_helper_tlbinvf; } void mmu_init(CPUMIPSState *env, const mips_def_t *def) { env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext)); switch (def->mmu_type) { case MMU_TYPE_NONE: no_mmu_init(env, def); break; case MMU_TYPE_R4000: r4k_mmu_init(env, def); break; case MMU_TYPE_FMT: fixed_mmu_init(env, def); break; case MMU_TYPE_R3000: case MMU_TYPE_R6000: case MMU_TYPE_R8000: default: cpu_abort(env_cpu(env), "MMU type not supported\n"); } } void cpu_mips_tlb_flush(CPUMIPSState *env) { /* Flush qemu's TLB and discard all shadowed entries. */ tlb_flush(env_cpu(env)); env->tlb->tlb_in_use = env->tlb->nb_tlb; } static void raise_mmu_exception(CPUMIPSState *env, target_ulong address, MMUAccessType access_type, int tlb_error) { CPUState *cs = env_cpu(env); int exception = 0, error_code = 0; if (access_type == MMU_INST_FETCH) { error_code |= EXCP_INST_NOTAVAIL; } switch (tlb_error) { default: case TLBRET_BADADDR: /* Reference to kernel address from user mode or supervisor mode */ /* Reference to supervisor address from user mode */ if (access_type == MMU_DATA_STORE) { exception = EXCP_AdES; } else { exception = EXCP_AdEL; } break; case TLBRET_NOMATCH: /* No TLB match for a mapped address */ if (access_type == MMU_DATA_STORE) { exception = EXCP_TLBS; } else { exception = EXCP_TLBL; } error_code |= EXCP_TLB_NOMATCH; break; case TLBRET_INVALID: /* TLB match with no valid bit */ if (access_type == MMU_DATA_STORE) { exception = EXCP_TLBS; } else { exception = EXCP_TLBL; } break; case TLBRET_DIRTY: /* TLB match but 'D' bit is cleared */ exception = EXCP_LTLBL; break; case TLBRET_XI: /* Execute-Inhibit Exception */ if (env->CP0_PageGrain & (1 << CP0PG_IEC)) { exception = EXCP_TLBXI; } else { exception = EXCP_TLBL; } break; case TLBRET_RI: /* Read-Inhibit Exception */ if (env->CP0_PageGrain & (1 << CP0PG_IEC)) { exception = EXCP_TLBRI; } else { exception = EXCP_TLBL; } break; } /* Raise exception */ if (!(env->hflags & MIPS_HFLAG_DM)) { env->CP0_BadVAddr = address; } env->CP0_Context = (env->CP0_Context & ~0x007fffff) | ((address >> 9) & 0x007ffff0); env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) | (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) | (address & (TARGET_PAGE_MASK << 1)); #if defined(TARGET_MIPS64) env->CP0_EntryHi &= env->SEGMask; env->CP0_XContext = (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */ (extract64(address, 62, 2) << (env->SEGBITS - 9)) | /* R */ (extract64(address, 13, env->SEGBITS - 13) << 4); /* BadVPN2 */ #endif cs->exception_index = exception; env->error_code = error_code; } #if !defined(TARGET_MIPS64) /* * Perform hardware page table walk * * Memory accesses are performed using the KERNEL privilege level. * Synchronous exceptions detected on memory accesses cause a silent exit * from page table walking, resulting in a TLB or XTLB Refill exception. * * Implementations are not required to support page table walk memory * accesses from mapped memory regions. When an unsupported access is * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill * exception. * * Note that if an exception is caused by AddressTranslation or LoadMemory * functions, the exception is not taken, a silent exit is taken, * resulting in a TLB or XTLB Refill exception. */ static bool get_pte(CPUMIPSState *env, uint64_t vaddr, MemOp op, uint64_t *pte, unsigned ptw_mmu_idx) { MemOpIdx oi; if ((vaddr & (memop_size(op) - 1)) != 0) { return false; } oi = make_memop_idx(op | MO_TE, ptw_mmu_idx); if (op == MO_64) { *pte = cpu_ldq_mmu(env, vaddr, oi, 0); } else { *pte = cpu_ldl_mmu(env, vaddr, oi, 0); } return true; } static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry, MemOp op, int ptei) { unsigned entry_size = memop_size(op) << 3; uint64_t result = entry; uint64_t rixi; if (ptei > entry_size) { ptei -= 32; } result >>= (ptei - 2); rixi = result & 3; result >>= 2; result |= rixi << CP0EnLo_XI; return result; } static int walk_directory(CPUMIPSState *env, uint64_t *vaddr, int directory_index, bool *huge_page, bool *hgpg_directory_hit, uint64_t *pw_entrylo0, uint64_t *pw_entrylo1, MemOp directory_mop, MemOp leaf_mop, int ptw_mmu_idx) { int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1; int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F; int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1; int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F; uint64_t entry; uint64_t paddr; int prot; uint64_t lsb = 0; uint64_t w = 0; if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD, ptw_mmu_idx) != TLBRET_MATCH) { /* wrong base address */ return 0; } if (!get_pte(env, *vaddr, directory_mop, &entry, ptw_mmu_idx)) { return 0; } if ((entry & (1 << psn)) && hugepg) { *huge_page = true; *hgpg_directory_hit = true; entry = get_tlb_entry_layout(env, entry, leaf_mop, pf_ptew); w = directory_index - 1; if (directory_index & 0x1) { /* Generate adjacent page from same PTE for odd TLB page */ lsb = BIT_ULL(w) >> 6; *pw_entrylo0 = entry & ~lsb; /* even page */ *pw_entrylo1 = entry | lsb; /* odd page */ } else if (dph) { int oddpagebit = 1 << leaf_mop; uint64_t vaddr2 = *vaddr ^ oddpagebit; if (*vaddr & oddpagebit) { *pw_entrylo1 = entry; } else { *pw_entrylo0 = entry; } if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD, ptw_mmu_idx) != TLBRET_MATCH) { return 0; } if (!get_pte(env, vaddr2, leaf_mop, &entry, ptw_mmu_idx)) { return 0; } entry = get_tlb_entry_layout(env, entry, leaf_mop, pf_ptew); if (*vaddr & oddpagebit) { *pw_entrylo0 = entry; } else { *pw_entrylo1 = entry; } } else { return 0; } return 1; } else { *vaddr = entry; return 2; } } static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int ptw_mmu_idx) { int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F; int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F; int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F; int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F; int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F; /* Initial values */ bool huge_page = false; bool hgpg_bdhit = false; bool hgpg_gdhit = false; bool hgpg_udhit = false; bool hgpg_mdhit = false; int32_t pw_pagemask = 0; target_ulong pw_entryhi = 0; uint64_t pw_entrylo0 = 0; uint64_t pw_entrylo1 = 0; /* Native pointer size */ /*For the 32-bit architectures, this bit is fixed to 0.*/ MemOp native_op = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? MO_32 : MO_64; /* Indices from PWField */ int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F; int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F; int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F; int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F; int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F; /* Indices computed from faulting address */ int gindex = (address >> pf_gdw) & ((1 << gdw) - 1); int uindex = (address >> pf_udw) & ((1 << udw) - 1); int mindex = (address >> pf_mdw) & ((1 << mdw) - 1); int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1); /* Other HTW configs */ int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1; MemOp directory_mop, leaf_mop; /* Offsets into tables */ unsigned goffset, uoffset, moffset, ptoffset0, ptoffset1; /* Starting address - Page Table Base */ uint64_t vaddr = env->CP0_PWBase; uint64_t dir_entry; uint64_t paddr; int prot; int m; if (!(env->CP0_Config3 & (1 << CP0C3_PW))) { /* walker is unimplemented */ return false; } if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) { /* walker is disabled */ return false; } if (!(gdw > 0 || udw > 0 || mdw > 0)) { /* no structure to walk */ return false; } if (ptew > 1) { return false; } /* HTW Shift values (depend on entry size) */ directory_mop = (hugepg && (ptew == 1)) ? native_op + 1 : native_op; leaf_mop = (ptew == 1) ? native_op + 1 : native_op; goffset = gindex << directory_mop; uoffset = uindex << directory_mop; moffset = mindex << directory_mop; ptoffset0 = (ptindex >> 1) << (leaf_mop + 1); ptoffset1 = ptoffset0 | (1 << (leaf_mop)); /* Global Directory */ if (gdw > 0) { vaddr |= goffset; switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit, &pw_entrylo0, &pw_entrylo1, directory_mop, leaf_mop, ptw_mmu_idx)) { case 0: return false; case 1: goto refill; case 2: default: break; } } /* Upper directory */ if (udw > 0) { vaddr |= uoffset; switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit, &pw_entrylo0, &pw_entrylo1, directory_mop, leaf_mop, ptw_mmu_idx)) { case 0: return false; case 1: goto refill; case 2: default: break; } } /* Middle directory */ if (mdw > 0) { vaddr |= moffset; switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit, &pw_entrylo0, &pw_entrylo1, directory_mop, leaf_mop, ptw_mmu_idx)) { case 0: return false; case 1: goto refill; case 2: default: break; } } /* Leaf Level Page Table - First half of PTE pair */ vaddr |= ptoffset0; if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD, ptw_mmu_idx) != TLBRET_MATCH) { return false; } if (!get_pte(env, vaddr, leaf_mop, &dir_entry, ptw_mmu_idx)) { return false; } dir_entry = get_tlb_entry_layout(env, dir_entry, leaf_mop, pf_ptew); pw_entrylo0 = dir_entry; /* Leaf Level Page Table - Second half of PTE pair */ vaddr |= ptoffset1; if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD, ptw_mmu_idx) != TLBRET_MATCH) { return false; } if (!get_pte(env, vaddr, leaf_mop, &dir_entry, ptw_mmu_idx)) { return false; } dir_entry = get_tlb_entry_layout(env, dir_entry, leaf_mop, pf_ptew); pw_entrylo1 = dir_entry; refill: m = (1 << pf_ptw) - 1; if (huge_page) { switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 | hgpg_mdhit) { case 4: m = (1 << pf_gdw) - 1; if (pf_gdw & 1) { m >>= 1; } break; case 2: m = (1 << pf_udw) - 1; if (pf_udw & 1) { m >>= 1; } break; case 1: m = (1 << pf_mdw) - 1; if (pf_mdw & 1) { m >>= 1; } break; } } pw_pagemask = m >> TARGET_PAGE_BITS_MIN; update_pagemask(env, pw_pagemask << CP0PM_MASK, &pw_pagemask); pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF); { target_ulong tmp_entryhi = env->CP0_EntryHi; int32_t tmp_pagemask = env->CP0_PageMask; uint64_t tmp_entrylo0 = env->CP0_EntryLo0; uint64_t tmp_entrylo1 = env->CP0_EntryLo1; env->CP0_EntryHi = pw_entryhi; env->CP0_PageMask = pw_pagemask; env->CP0_EntryLo0 = pw_entrylo0; env->CP0_EntryLo1 = pw_entrylo1; /* * The hardware page walker inserts a page into the TLB in a manner * identical to a TLBWR instruction as executed by the software refill * handler. */ r4k_helper_tlbwr(env); env->CP0_EntryHi = tmp_entryhi; env->CP0_PageMask = tmp_pagemask; env->CP0_EntryLo0 = tmp_entrylo0; env->CP0_EntryLo1 = tmp_entrylo1; } return true; } #endif bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr) { CPUMIPSState *env = cpu_env(cs); hwaddr physical; int prot; int ret = TLBRET_BADADDR; /* data access */ /* XXX: put correct access by using cpu_restore_state() correctly */ ret = get_physical_address(env, &physical, &prot, address, access_type, mmu_idx); switch (ret) { case TLBRET_MATCH: qemu_log_mask(CPU_LOG_MMU, "%s address=%" VADDR_PRIx " physical " HWADDR_FMT_plx " prot %d\n", __func__, address, physical, prot); break; default: qemu_log_mask(CPU_LOG_MMU, "%s address=%" VADDR_PRIx " ret %d\n", __func__, address, ret); break; } if (ret == TLBRET_MATCH) { tlb_set_page(cs, address & TARGET_PAGE_MASK, physical & TARGET_PAGE_MASK, prot, mmu_idx, TARGET_PAGE_SIZE); return true; } #if !defined(TARGET_MIPS64) if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) { /* * Memory reads during hardware page table walking are performed * as if they were kernel-mode load instructions. */ int ptw_mmu_idx = (env->hflags & MIPS_HFLAG_ERL ? MMU_ERL_IDX : MMU_KERNEL_IDX); if (page_table_walk_refill(env, address, ptw_mmu_idx)) { ret = get_physical_address(env, &physical, &prot, address, access_type, mmu_idx); if (ret == TLBRET_MATCH) { tlb_set_page(cs, address & TARGET_PAGE_MASK, physical & TARGET_PAGE_MASK, prot, mmu_idx, TARGET_PAGE_SIZE); return true; } } } #endif if (probe) { return false; } raise_mmu_exception(env, address, access_type, ret); do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr); } hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address, MMUAccessType access_type, uintptr_t retaddr) { hwaddr physical; int prot; int ret = 0; CPUState *cs = env_cpu(env); /* data access */ ret = get_physical_address(env, &physical, &prot, address, access_type, mips_env_mmu_index(env)); if (ret == TLBRET_MATCH) { return physical; } raise_mmu_exception(env, address, access_type, ret); cpu_loop_exit_restore(cs, retaddr); } static void set_hflags_for_handler(CPUMIPSState *env) { /* Exception handlers are entered in 32-bit mode. */ env->hflags &= ~(MIPS_HFLAG_M16); /* ...except that microMIPS lets you choose. */ if (env->insn_flags & ASE_MICROMIPS) { env->hflags |= (!!(env->CP0_Config3 & (1 << CP0C3_ISA_ON_EXC)) << MIPS_HFLAG_M16_SHIFT); } } static inline void set_badinstr_registers(CPUMIPSState *env) { if (env->insn_flags & ISA_NANOMIPS32) { if (env->CP0_Config3 & (1 << CP0C3_BI)) { uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16; if ((instr & 0x10000000) == 0) { instr |= cpu_lduw_code(env, env->active_tc.PC + 2); } env->CP0_BadInstr = instr; if ((instr & 0xFC000000) == 0x60000000) { instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16; env->CP0_BadInstrX = instr; } } return; } if (env->hflags & MIPS_HFLAG_M16) { /* TODO: add BadInstr support for microMIPS */ return; } if (env->CP0_Config3 & (1 << CP0C3_BI)) { env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC); } if ((env->CP0_Config3 & (1 << CP0C3_BP)) && (env->hflags & MIPS_HFLAG_BMASK)) { env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4); } } void mips_cpu_do_interrupt(CPUState *cs) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; bool update_badinstr = 0; target_ulong offset; int cause = -1; if (qemu_loglevel_mask(CPU_LOG_INT) && cs->exception_index != EXCP_EXT_INTERRUPT) { qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " %s exception\n", __func__, env->active_tc.PC, env->CP0_EPC, mips_exception_name(cs->exception_index)); } if (cs->exception_index == EXCP_EXT_INTERRUPT && (env->hflags & MIPS_HFLAG_DM)) { cs->exception_index = EXCP_DINT; } offset = 0x180; switch (cs->exception_index) { case EXCP_SEMIHOST: cs->exception_index = EXCP_NONE; mips_semihosting(env); env->active_tc.PC += env->error_code; return; case EXCP_DSS: env->CP0_Debug |= 1 << CP0DB_DSS; /* * Debug single step cannot be raised inside a delay slot and * resume will always occur on the next instruction * (but we assume the pc has always been updated during * code translation). */ env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16); goto enter_debug_mode; case EXCP_DINT: env->CP0_Debug |= 1 << CP0DB_DINT; goto set_DEPC; case EXCP_DIB: env->CP0_Debug |= 1 << CP0DB_DIB; goto set_DEPC; case EXCP_DBp: env->CP0_Debug |= 1 << CP0DB_DBp; /* Setup DExcCode - SDBBP instruction */ env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) | (9 << CP0DB_DEC); goto set_DEPC; case EXCP_DDBS: env->CP0_Debug |= 1 << CP0DB_DDBS; goto set_DEPC; case EXCP_DDBL: env->CP0_Debug |= 1 << CP0DB_DDBL; set_DEPC: env->CP0_DEPC = exception_resume_pc(env); env->hflags &= ~MIPS_HFLAG_BMASK; enter_debug_mode: if (env->insn_flags & ISA_MIPS3) { env->hflags |= MIPS_HFLAG_64; if (!(env->insn_flags & ISA_MIPS_R6) || env->CP0_Status & (1 << CP0St_KX)) { env->hflags &= ~MIPS_HFLAG_AWRAP; } } env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0; env->hflags &= ~(MIPS_HFLAG_KSU); /* EJTAG probe trap enable is not implemented... */ if (!(env->CP0_Status & (1 << CP0St_EXL))) { env->CP0_Cause &= ~(1U << CP0Ca_BD); } env->active_tc.PC = env->exception_base + 0x480; set_hflags_for_handler(env); break; case EXCP_RESET: cpu_reset(CPU(cpu)); break; case EXCP_SRESET: env->CP0_Status |= (1 << CP0St_SR); memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo)); goto set_error_EPC; case EXCP_NMI: env->CP0_Status |= (1 << CP0St_NMI); set_error_EPC: env->CP0_ErrorEPC = exception_resume_pc(env); env->hflags &= ~MIPS_HFLAG_BMASK; env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV); if (env->insn_flags & ISA_MIPS3) { env->hflags |= MIPS_HFLAG_64; if (!(env->insn_flags & ISA_MIPS_R6) || env->CP0_Status & (1 << CP0St_KX)) { env->hflags &= ~MIPS_HFLAG_AWRAP; } } env->hflags |= MIPS_HFLAG_CP0; env->hflags &= ~(MIPS_HFLAG_KSU); if (!(env->CP0_Status & (1 << CP0St_EXL))) { env->CP0_Cause &= ~(1U << CP0Ca_BD); } env->active_tc.PC = env->exception_base; set_hflags_for_handler(env); break; case EXCP_EXT_INTERRUPT: cause = 0; if (env->CP0_Cause & (1 << CP0Ca_IV)) { uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f; if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) { offset = 0x200; } else { uint32_t vector = 0; uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP; if (env->CP0_Config3 & (1 << CP0C3_VEIC)) { /* * For VEIC mode, the external interrupt controller feeds * the vector through the CP0Cause IP lines. */ vector = pending; } else { /* * Vectored Interrupts * Mask with Status.IM7-IM0 to get enabled interrupts. */ pending &= (env->CP0_Status >> CP0St_IM) & 0xff; /* Find the highest-priority interrupt. */ while (pending >>= 1) { vector++; } } offset = 0x200 + (vector * (spacing << 5)); } } goto set_EPC; case EXCP_LTLBL: cause = 1; update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL); goto set_EPC; case EXCP_TLBL: cause = 2; update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL); if ((env->error_code & EXCP_TLB_NOMATCH) && !(env->CP0_Status & (1 << CP0St_EXL))) { #if defined(TARGET_MIPS64) int R = env->CP0_BadVAddr >> 62; int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0; int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0; if ((R != 0 || UX) && (R != 3 || KX) && (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) { offset = 0x080; } else { #endif offset = 0x000; #if defined(TARGET_MIPS64) } #endif } goto set_EPC; case EXCP_TLBS: cause = 3; update_badinstr = 1; if ((env->error_code & EXCP_TLB_NOMATCH) && !(env->CP0_Status & (1 << CP0St_EXL))) { #if defined(TARGET_MIPS64) int R = env->CP0_BadVAddr >> 62; int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0; int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0; if ((R != 0 || UX) && (R != 3 || KX) && (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) { offset = 0x080; } else { #endif offset = 0x000; #if defined(TARGET_MIPS64) } #endif } goto set_EPC; case EXCP_AdEL: cause = 4; update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL); goto set_EPC; case EXCP_AdES: cause = 5; update_badinstr = 1; goto set_EPC; case EXCP_IBE: cause = 6; goto set_EPC; case EXCP_DBE: cause = 7; goto set_EPC; case EXCP_SYSCALL: cause = 8; update_badinstr = 1; goto set_EPC; case EXCP_BREAK: cause = 9; update_badinstr = 1; goto set_EPC; case EXCP_RI: cause = 10; update_badinstr = 1; goto set_EPC; case EXCP_CpU: cause = 11; update_badinstr = 1; env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) | (env->error_code << CP0Ca_CE); goto set_EPC; case EXCP_OVERFLOW: cause = 12; update_badinstr = 1; goto set_EPC; case EXCP_TRAP: cause = 13; update_badinstr = 1; goto set_EPC; case EXCP_MSAFPE: cause = 14; update_badinstr = 1; goto set_EPC; case EXCP_FPE: cause = 15; update_badinstr = 1; goto set_EPC; case EXCP_C2E: cause = 18; goto set_EPC; case EXCP_TLBRI: cause = 19; update_badinstr = 1; goto set_EPC; case EXCP_TLBXI: cause = 20; goto set_EPC; case EXCP_MSADIS: cause = 21; update_badinstr = 1; goto set_EPC; case EXCP_MDMX: cause = 22; goto set_EPC; case EXCP_DWATCH: cause = 23; /* XXX: TODO: manage deferred watch exceptions */ goto set_EPC; case EXCP_MCHECK: cause = 24; goto set_EPC; case EXCP_THREAD: cause = 25; goto set_EPC; case EXCP_DSPDIS: cause = 26; goto set_EPC; case EXCP_CACHE: cause = 30; offset = 0x100; set_EPC: if (!(env->CP0_Status & (1 << CP0St_EXL))) { env->CP0_EPC = exception_resume_pc(env); if (update_badinstr) { set_badinstr_registers(env); } if (env->hflags & MIPS_HFLAG_BMASK) { env->CP0_Cause |= (1U << CP0Ca_BD); } else { env->CP0_Cause &= ~(1U << CP0Ca_BD); } env->CP0_Status |= (1 << CP0St_EXL); if (env->insn_flags & ISA_MIPS3) { env->hflags |= MIPS_HFLAG_64; if (!(env->insn_flags & ISA_MIPS_R6) || env->CP0_Status & (1 << CP0St_KX)) { env->hflags &= ~MIPS_HFLAG_AWRAP; } } env->hflags |= MIPS_HFLAG_CP0; env->hflags &= ~(MIPS_HFLAG_KSU); } env->hflags &= ~MIPS_HFLAG_BMASK; if (env->CP0_Status & (1 << CP0St_BEV)) { env->active_tc.PC = env->exception_base + 0x200; } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) && env->CP0_Config5 & (1 << CP0C5_CV))) { /* Force KSeg1 for cache errors */ env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000); } else { env->active_tc.PC = env->CP0_EBase & ~0xfff; } env->active_tc.PC += offset; set_hflags_for_handler(env); env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) | (cause << CP0Ca_EC); break; default: abort(); } if (qemu_loglevel_mask(CPU_LOG_INT) && cs->exception_index != EXCP_EXT_INTERRUPT) { qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n" " S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n", __func__, env->active_tc.PC, env->CP0_EPC, cause, env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr, env->CP0_DEPC); } cs->exception_index = EXCP_NONE; } bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { if (interrupt_request & CPU_INTERRUPT_HARD) { CPUMIPSState *env = cpu_env(cs); if (cpu_mips_hw_interrupts_enabled(env) && cpu_mips_hw_interrupts_pending(env)) { /* Raise it */ cs->exception_index = EXCP_EXT_INTERRUPT; env->error_code = 0; mips_cpu_do_interrupt(cs); return true; } } return false; } void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra) { CPUState *cs = env_cpu(env); r4k_tlb_t *tlb; target_ulong addr; target_ulong end; uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; uint32_t MMID = env->CP0_MemoryMapID; bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); uint32_t tlb_mmid; target_ulong mask; MMID = mi ? MMID : (uint32_t) ASID; tlb = &env->tlb->mmu.r4k.tlb[idx]; /* * The qemu TLB is flushed when the ASID/MMID changes, so no need to * flush these entries again. */ tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; if (tlb->G == 0 && tlb_mmid != MMID) { return; } if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) { /* * For tlbwr, we can shadow the discarded entry into * a new (fake) TLB entry, as long as the guest can not * tell that it's there. */ env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb; env->tlb->tlb_in_use++; return; } /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); if (tlb->V0) { addr = tlb->VPN & ~mask; #if defined(TARGET_MIPS64) if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) { addr |= 0x3FFFFF0000000000ULL; } #endif end = addr | (mask >> 1); while (addr < end) { tlb_flush_page(cs, addr); addr += TARGET_PAGE_SIZE; } } if (tlb->V1) { addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1); #if defined(TARGET_MIPS64) if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) { addr |= 0x3FFFFF0000000000ULL; } #endif end = addr | mask; while (addr - 1 < end) { tlb_flush_page(cs, addr); addr += TARGET_PAGE_SIZE; } } }