/* * Helpers for emulation of CP0-related MIPS instructions. * * Copyright (C) 2004-2005 Jocelyn Mayer * Copyright (C) 2020 Wave Computing, Inc. * Copyright (C) 2020 Aleksandar Markovic <amarkovic@wavecomp.com> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. * */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/main-loop.h" #include "cpu.h" #include "internal.h" #include "qemu/host-utils.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" /* SMP helpers. */ static bool mips_vpe_is_wfi(MIPSCPU *c) { CPUState *cpu = CPU(c); CPUMIPSState *env = &c->env; /* * If the VPE is halted but otherwise active, it means it's waiting for * an interrupt.\ */ return cpu->halted && mips_vpe_active(env); } static bool mips_vp_is_wfi(MIPSCPU *c) { CPUState *cpu = CPU(c); CPUMIPSState *env = &c->env; return cpu->halted && mips_vp_active(env); } static inline void mips_vpe_wake(MIPSCPU *c) { /* * Don't set ->halted = 0 directly, let it be done via cpu_has_work * because there might be other conditions that state that c should * be sleeping. */ qemu_mutex_lock_iothread(); cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE); qemu_mutex_unlock_iothread(); } static inline void mips_vpe_sleep(MIPSCPU *cpu) { CPUState *cs = CPU(cpu); /* * The VPE was shut off, really go to bed. * Reset any old _WAKE requests. */ cs->halted = 1; cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE); } static inline void mips_tc_wake(MIPSCPU *cpu, int tc) { CPUMIPSState *c = &cpu->env; /* FIXME: TC reschedule. */ if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) { mips_vpe_wake(cpu); } } static inline void mips_tc_sleep(MIPSCPU *cpu, int tc) { CPUMIPSState *c = &cpu->env; /* FIXME: TC reschedule. */ if (!mips_vpe_active(c)) { mips_vpe_sleep(cpu); } } /** * mips_cpu_map_tc: * @env: CPU from which mapping is performed. * @tc: Should point to an int with the value of the global TC index. * * This function will transform @tc into a local index within the * returned #CPUMIPSState. */ /* * FIXME: This code assumes that all VPEs have the same number of TCs, * which depends on runtime setup. Can probably be fixed by * walking the list of CPUMIPSStates. */ static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc) { MIPSCPU *cpu; CPUState *cs; CPUState *other_cs; int vpe_idx; int tc_idx = *tc; if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) { /* Not allowed to address other CPUs. */ *tc = env->current_tc; return env; } cs = env_cpu(env); vpe_idx = tc_idx / cs->nr_threads; *tc = tc_idx % cs->nr_threads; other_cs = qemu_get_cpu(vpe_idx); if (other_cs == NULL) { return env; } cpu = MIPS_CPU(other_cs); return &cpu->env; } /* * The per VPE CP0_Status register shares some fields with the per TC * CP0_TCStatus registers. These fields are wired to the same registers, * so changes to either of them should be reflected on both registers. * * Also, EntryHi shares the bottom 8 bit ASID with TCStauts. * * These helper call synchronizes the regs for a given cpu. */ /* * Called for updates to CP0_Status. Defined in "cpu.h" for gdbstub.c. * static inline void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, * int tc); */ /* Called for updates to CP0_TCStatus. */ static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc, target_ulong v) { uint32_t status; uint32_t tcu, tmx, tasid, tksu; uint32_t mask = ((1U << CP0St_CU3) | (1 << CP0St_CU2) | (1 << CP0St_CU1) | (1 << CP0St_CU0) | (1 << CP0St_MX) | (3 << CP0St_KSU)); tcu = (v >> CP0TCSt_TCU0) & 0xf; tmx = (v >> CP0TCSt_TMX) & 0x1; tasid = v & cpu->CP0_EntryHi_ASID_mask; tksu = (v >> CP0TCSt_TKSU) & 0x3; status = tcu << CP0St_CU0; status |= tmx << CP0St_MX; status |= tksu << CP0St_KSU; cpu->CP0_Status &= ~mask; cpu->CP0_Status |= status; /* Sync the TASID with EntryHi. */ cpu->CP0_EntryHi &= ~cpu->CP0_EntryHi_ASID_mask; cpu->CP0_EntryHi |= tasid; compute_hflags(cpu); } /* Called for updates to CP0_EntryHi. */ static void sync_c0_entryhi(CPUMIPSState *cpu, int tc) { int32_t *tcst; uint32_t asid, v = cpu->CP0_EntryHi; asid = v & cpu->CP0_EntryHi_ASID_mask; if (tc == cpu->current_tc) { tcst = &cpu->active_tc.CP0_TCStatus; } else { tcst = &cpu->tcs[tc].CP0_TCStatus; } *tcst &= ~cpu->CP0_EntryHi_ASID_mask; *tcst |= asid; } /* XXX: do not use a global */ uint32_t cpu_mips_get_random(CPUMIPSState *env) { static uint32_t seed = 1; static uint32_t prev_idx; uint32_t idx; uint32_t nb_rand_tlb = env->tlb->nb_tlb - env->CP0_Wired; if (nb_rand_tlb == 1) { return env->tlb->nb_tlb - 1; } /* Don't return same value twice, so get another value */ do { /* * Use a simple algorithm of Linear Congruential Generator * from ISO/IEC 9899 standard. */ seed = 1103515245 * seed + 12345; idx = (seed >> 16) % nb_rand_tlb + env->CP0_Wired; } while (idx == prev_idx); prev_idx = idx; return idx; } /* CP0 helpers */ target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env) { return env->mvp->CP0_MVPControl; } target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env) { return env->mvp->CP0_MVPConf0; } target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env) { return env->mvp->CP0_MVPConf1; } target_ulong helper_mfc0_random(CPUMIPSState *env) { return (int32_t)cpu_mips_get_random(env); } target_ulong helper_mfc0_tcstatus(CPUMIPSState *env) { return env->active_tc.CP0_TCStatus; } target_ulong helper_mftc0_tcstatus(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.CP0_TCStatus; } else { return other->tcs[other_tc].CP0_TCStatus; } } target_ulong helper_mfc0_tcbind(CPUMIPSState *env) { return env->active_tc.CP0_TCBind; } target_ulong helper_mftc0_tcbind(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.CP0_TCBind; } else { return other->tcs[other_tc].CP0_TCBind; } } target_ulong helper_mfc0_tcrestart(CPUMIPSState *env) { return env->active_tc.PC; } target_ulong helper_mftc0_tcrestart(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.PC; } else { return other->tcs[other_tc].PC; } } target_ulong helper_mfc0_tchalt(CPUMIPSState *env) { return env->active_tc.CP0_TCHalt; } target_ulong helper_mftc0_tchalt(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.CP0_TCHalt; } else { return other->tcs[other_tc].CP0_TCHalt; } } target_ulong helper_mfc0_tccontext(CPUMIPSState *env) { return env->active_tc.CP0_TCContext; } target_ulong helper_mftc0_tccontext(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.CP0_TCContext; } else { return other->tcs[other_tc].CP0_TCContext; } } target_ulong helper_mfc0_tcschedule(CPUMIPSState *env) { return env->active_tc.CP0_TCSchedule; } target_ulong helper_mftc0_tcschedule(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.CP0_TCSchedule; } else { return other->tcs[other_tc].CP0_TCSchedule; } } target_ulong helper_mfc0_tcschefback(CPUMIPSState *env) { return env->active_tc.CP0_TCScheFBack; } target_ulong helper_mftc0_tcschefback(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.CP0_TCScheFBack; } else { return other->tcs[other_tc].CP0_TCScheFBack; } } target_ulong helper_mfc0_count(CPUMIPSState *env) { return (int32_t)cpu_mips_get_count(env); } target_ulong helper_mfc0_saar(CPUMIPSState *env) { if ((env->CP0_SAARI & 0x3f) < 2) { return (int32_t) env->CP0_SAAR[env->CP0_SAARI & 0x3f]; } return 0; } target_ulong helper_mfhc0_saar(CPUMIPSState *env) { if ((env->CP0_SAARI & 0x3f) < 2) { return env->CP0_SAAR[env->CP0_SAARI & 0x3f] >> 32; } return 0; } target_ulong helper_mftc0_entryhi(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); return other->CP0_EntryHi; } target_ulong helper_mftc0_cause(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); return other->CP0_Cause; } target_ulong helper_mftc0_status(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); return other->CP0_Status; } target_ulong helper_mfc0_lladdr(CPUMIPSState *env) { return (int32_t)(env->CP0_LLAddr >> env->CP0_LLAddr_shift); } target_ulong helper_mfc0_maar(CPUMIPSState *env) { return (int32_t) env->CP0_MAAR[env->CP0_MAARI]; } target_ulong helper_mfhc0_maar(CPUMIPSState *env) { return env->CP0_MAAR[env->CP0_MAARI] >> 32; } target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel) { return (int32_t)env->CP0_WatchLo[sel]; } target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel) { return (int32_t) env->CP0_WatchHi[sel]; } target_ulong helper_mfhc0_watchhi(CPUMIPSState *env, uint32_t sel) { return env->CP0_WatchHi[sel] >> 32; } target_ulong helper_mfc0_debug(CPUMIPSState *env) { target_ulong t0 = env->CP0_Debug; if (env->hflags & MIPS_HFLAG_DM) { t0 |= 1 << CP0DB_DM; } return t0; } target_ulong helper_mftc0_debug(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); int32_t tcstatus; CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { tcstatus = other->active_tc.CP0_Debug_tcstatus; } else { tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus; } /* XXX: Might be wrong, check with EJTAG spec. */ return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); } #if defined(TARGET_MIPS64) target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env) { return env->active_tc.PC; } target_ulong helper_dmfc0_tchalt(CPUMIPSState *env) { return env->active_tc.CP0_TCHalt; } target_ulong helper_dmfc0_tccontext(CPUMIPSState *env) { return env->active_tc.CP0_TCContext; } target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env) { return env->active_tc.CP0_TCSchedule; } target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env) { return env->active_tc.CP0_TCScheFBack; } target_ulong helper_dmfc0_lladdr(CPUMIPSState *env) { return env->CP0_LLAddr >> env->CP0_LLAddr_shift; } target_ulong helper_dmfc0_maar(CPUMIPSState *env) { return env->CP0_MAAR[env->CP0_MAARI]; } target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel) { return env->CP0_WatchLo[sel]; } target_ulong helper_dmfc0_watchhi(CPUMIPSState *env, uint32_t sel) { return env->CP0_WatchHi[sel]; } target_ulong helper_dmfc0_saar(CPUMIPSState *env) { if ((env->CP0_SAARI & 0x3f) < 2) { return env->CP0_SAAR[env->CP0_SAARI & 0x3f]; } return 0; } #endif /* TARGET_MIPS64 */ void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1) { uint32_t index_p = env->CP0_Index & 0x80000000; uint32_t tlb_index = arg1 & 0x7fffffff; if (tlb_index < env->tlb->nb_tlb) { if (env->insn_flags & ISA_MIPS_R6) { index_p |= arg1 & 0x80000000; } env->CP0_Index = index_p | tlb_index; } } void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1) { uint32_t mask = 0; uint32_t newval; if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) { mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) | (1 << CP0MVPCo_EVP); } if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) { mask |= (1 << CP0MVPCo_STLB); } newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask); /* TODO: Enable/disable shared TLB, enable/disable VPEs. */ env->mvp->CP0_MVPControl = newval; } void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1) { uint32_t mask; uint32_t newval; mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask); /* * Yield scheduler intercept not implemented. * Gating storage scheduler intercept not implemented. */ /* TODO: Enable/disable TCs. */ env->CP0_VPEControl = newval; } void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); uint32_t mask; uint32_t newval; mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask); /* TODO: Enable/disable TCs. */ other->CP0_VPEControl = newval; } target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); /* FIXME: Mask away return zero on read bits. */ return other->CP0_VPEControl; } target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); return other->CP0_VPEConf0; } void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1) { uint32_t mask = 0; uint32_t newval; if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) { if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA)) { mask |= (0xff << CP0VPEC0_XTC); } mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); } newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask); /* TODO: TC exclusive handling due to ERL/EXL. */ env->CP0_VPEConf0 = newval; } void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); uint32_t mask = 0; uint32_t newval; mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask); /* TODO: TC exclusive handling due to ERL/EXL. */ other->CP0_VPEConf0 = newval; } void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1) { uint32_t mask = 0; uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) | (0xff << CP0VPEC1_NCP1); newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask); /* UDI not implemented. */ /* CP2 not implemented. */ /* TODO: Handle FPU (CP1) binding. */ env->CP0_VPEConf1 = newval; } void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1) { /* Yield qualifier inputs not implemented. */ env->CP0_YQMask = 0x00000000; } void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1) { env->CP0_VPEOpt = arg1 & 0x0000ffff; } #define MTC0_ENTRYLO_MASK(env) ((env->PAMask >> 6) & 0x3FFFFFFF) void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1) { /* 1k pages not implemented */ target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE)); env->CP0_EntryLo0 = (arg1 & MTC0_ENTRYLO_MASK(env)) | (rxi << (CP0EnLo_XI - 30)); } #if defined(TARGET_MIPS64) #define DMTC0_ENTRYLO_MASK(env) (env->PAMask >> 6) void helper_dmtc0_entrylo0(CPUMIPSState *env, uint64_t arg1) { uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32); env->CP0_EntryLo0 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi; } #endif void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1) { uint32_t mask = env->CP0_TCStatus_rw_bitmask; uint32_t newval; newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask); env->active_tc.CP0_TCStatus = newval; sync_c0_tcstatus(env, env->current_tc, newval); } void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { other->active_tc.CP0_TCStatus = arg1; } else { other->tcs[other_tc].CP0_TCStatus = arg1; } sync_c0_tcstatus(other, other_tc, arg1); } void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1) { uint32_t mask = (1 << CP0TCBd_TBE); uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) { mask |= (1 << CP0TCBd_CurVPE); } newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask); env->active_tc.CP0_TCBind = newval; } void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t mask = (1 << CP0TCBd_TBE); uint32_t newval; CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) { mask |= (1 << CP0TCBd_CurVPE); } if (other_tc == other->current_tc) { newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask); other->active_tc.CP0_TCBind = newval; } else { newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask); other->tcs[other_tc].CP0_TCBind = newval; } } void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1) { env->active_tc.PC = arg1; env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); env->CP0_LLAddr = 0; env->lladdr = 0; /* MIPS16 not implemented. */ } void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { other->active_tc.PC = arg1; other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); other->CP0_LLAddr = 0; other->lladdr = 0; /* MIPS16 not implemented. */ } else { other->tcs[other_tc].PC = arg1; other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS); other->CP0_LLAddr = 0; other->lladdr = 0; /* MIPS16 not implemented. */ } } void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1) { MIPSCPU *cpu = env_archcpu(env); env->active_tc.CP0_TCHalt = arg1 & 0x1; /* TODO: Halt TC / Restart (if allocated+active) TC. */ if (env->active_tc.CP0_TCHalt & 1) { mips_tc_sleep(cpu, env->current_tc); } else { mips_tc_wake(cpu, env->current_tc); } } void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); MIPSCPU *other_cpu = env_archcpu(other); /* TODO: Halt TC / Restart (if allocated+active) TC. */ if (other_tc == other->current_tc) { other->active_tc.CP0_TCHalt = arg1; } else { other->tcs[other_tc].CP0_TCHalt = arg1; } if (arg1 & 1) { mips_tc_sleep(other_cpu, other_tc); } else { mips_tc_wake(other_cpu, other_tc); } } void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1) { env->active_tc.CP0_TCContext = arg1; } void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { other->active_tc.CP0_TCContext = arg1; } else { other->tcs[other_tc].CP0_TCContext = arg1; } } void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1) { env->active_tc.CP0_TCSchedule = arg1; } void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { other->active_tc.CP0_TCSchedule = arg1; } else { other->tcs[other_tc].CP0_TCSchedule = arg1; } } void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1) { env->active_tc.CP0_TCScheFBack = arg1; } void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { other->active_tc.CP0_TCScheFBack = arg1; } else { other->tcs[other_tc].CP0_TCScheFBack = arg1; } } void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1) { /* 1k pages not implemented */ target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE)); env->CP0_EntryLo1 = (arg1 & MTC0_ENTRYLO_MASK(env)) | (rxi << (CP0EnLo_XI - 30)); } #if defined(TARGET_MIPS64) void helper_dmtc0_entrylo1(CPUMIPSState *env, uint64_t arg1) { uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32); env->CP0_EntryLo1 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi; } #endif void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1) { env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF); } void helper_mtc0_memorymapid(CPUMIPSState *env, target_ulong arg1) { int32_t old; old = env->CP0_MemoryMapID; env->CP0_MemoryMapID = (int32_t) arg1; /* If the MemoryMapID changes, flush qemu's TLB. */ if (old != env->CP0_MemoryMapID) { cpu_mips_tlb_flush(env); } } void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask) { uint32_t mask; int maskbits; /* Don't care MASKX as we don't support 1KB page */ mask = extract32((uint32_t)arg1, CP0PM_MASK, 16); maskbits = cto32(mask); /* Ensure no more set bit after first zero */ if ((mask >> maskbits) != 0) { goto invalid; } /* We don't support VTLB entry smaller than target page */ if ((maskbits + TARGET_PAGE_BITS_MIN) < TARGET_PAGE_BITS) { goto invalid; } env->CP0_PageMask = mask << CP0PM_MASK; return; invalid: /* When invalid, set to default target page size. */ mask = (~TARGET_PAGE_MASK >> TARGET_PAGE_BITS_MIN); env->CP0_PageMask = mask << CP0PM_MASK; } void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1) { update_pagemask(env, arg1, &env->CP0_PageMask); } void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1) { /* SmartMIPS not implemented */ /* 1k pages not implemented */ env->CP0_PageGrain = (arg1 & env->CP0_PageGrain_rw_bitmask) | (env->CP0_PageGrain & ~env->CP0_PageGrain_rw_bitmask); compute_hflags(env); restore_pamask(env); } void helper_mtc0_segctl0(CPUMIPSState *env, target_ulong arg1) { CPUState *cs = env_cpu(env); env->CP0_SegCtl0 = arg1 & CP0SC0_MASK; tlb_flush(cs); } void helper_mtc0_segctl1(CPUMIPSState *env, target_ulong arg1) { CPUState *cs = env_cpu(env); env->CP0_SegCtl1 = arg1 & CP0SC1_MASK; tlb_flush(cs); } void helper_mtc0_segctl2(CPUMIPSState *env, target_ulong arg1) { CPUState *cs = env_cpu(env); env->CP0_SegCtl2 = arg1 & CP0SC2_MASK; tlb_flush(cs); } void helper_mtc0_pwfield(CPUMIPSState *env, target_ulong arg1) { #if defined(TARGET_MIPS64) uint64_t mask = 0x3F3FFFFFFFULL; uint32_t old_ptei = (env->CP0_PWField >> CP0PF_PTEI) & 0x3FULL; uint32_t new_ptei = (arg1 >> CP0PF_PTEI) & 0x3FULL; if ((env->insn_flags & ISA_MIPS_R6)) { if (((arg1 >> CP0PF_BDI) & 0x3FULL) < 12) { mask &= ~(0x3FULL << CP0PF_BDI); } if (((arg1 >> CP0PF_GDI) & 0x3FULL) < 12) { mask &= ~(0x3FULL << CP0PF_GDI); } if (((arg1 >> CP0PF_UDI) & 0x3FULL) < 12) { mask &= ~(0x3FULL << CP0PF_UDI); } if (((arg1 >> CP0PF_MDI) & 0x3FULL) < 12) { mask &= ~(0x3FULL << CP0PF_MDI); } if (((arg1 >> CP0PF_PTI) & 0x3FULL) < 12) { mask &= ~(0x3FULL << CP0PF_PTI); } } env->CP0_PWField = arg1 & mask; if ((new_ptei >= 32) || ((env->insn_flags & ISA_MIPS_R6) && (new_ptei == 0 || new_ptei == 1))) { env->CP0_PWField = (env->CP0_PWField & ~0x3FULL) | (old_ptei << CP0PF_PTEI); } #else uint32_t mask = 0x3FFFFFFF; uint32_t old_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F; uint32_t new_ptew = (arg1 >> CP0PF_PTEW) & 0x3F; if ((env->insn_flags & ISA_MIPS_R6)) { if (((arg1 >> CP0PF_GDW) & 0x3F) < 12) { mask &= ~(0x3F << CP0PF_GDW); } if (((arg1 >> CP0PF_UDW) & 0x3F) < 12) { mask &= ~(0x3F << CP0PF_UDW); } if (((arg1 >> CP0PF_MDW) & 0x3F) < 12) { mask &= ~(0x3F << CP0PF_MDW); } if (((arg1 >> CP0PF_PTW) & 0x3F) < 12) { mask &= ~(0x3F << CP0PF_PTW); } } env->CP0_PWField = arg1 & mask; if ((new_ptew >= 32) || ((env->insn_flags & ISA_MIPS_R6) && (new_ptew == 0 || new_ptew == 1))) { env->CP0_PWField = (env->CP0_PWField & ~0x3F) | (old_ptew << CP0PF_PTEW); } #endif } void helper_mtc0_pwsize(CPUMIPSState *env, target_ulong arg1) { #if defined(TARGET_MIPS64) env->CP0_PWSize = arg1 & 0x3F7FFFFFFFULL; #else env->CP0_PWSize = arg1 & 0x3FFFFFFF; #endif } void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1) { if (env->insn_flags & ISA_MIPS_R6) { if (arg1 < env->tlb->nb_tlb) { env->CP0_Wired = arg1; } } else { env->CP0_Wired = arg1 % env->tlb->nb_tlb; } } void helper_mtc0_pwctl(CPUMIPSState *env, target_ulong arg1) { #if defined(TARGET_MIPS64) /* PWEn = 0. Hardware page table walking is not implemented. */ env->CP0_PWCtl = (env->CP0_PWCtl & 0x000000C0) | (arg1 & 0x5C00003F); #else env->CP0_PWCtl = (arg1 & 0x800000FF); #endif } void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1) { env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask; } void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1) { env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask; } void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1) { env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask; } void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1) { env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask; } void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1) { env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask; } void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1) { uint32_t mask = 0x0000000F; if ((env->CP0_Config1 & (1 << CP0C1_PC)) && (env->insn_flags & ISA_MIPS_R6)) { mask |= (1 << 4); } if (env->insn_flags & ISA_MIPS_R6) { mask |= (1 << 5); } if (env->CP0_Config3 & (1 << CP0C3_ULRI)) { mask |= (1 << 29); if (arg1 & (1 << 29)) { env->hflags |= MIPS_HFLAG_HWRENA_ULR; } else { env->hflags &= ~MIPS_HFLAG_HWRENA_ULR; } } env->CP0_HWREna = arg1 & mask; } void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1) { cpu_mips_store_count(env, arg1); } void helper_mtc0_saari(CPUMIPSState *env, target_ulong arg1) { uint32_t target = arg1 & 0x3f; if (target <= 1) { env->CP0_SAARI = target; } } void helper_mtc0_saar(CPUMIPSState *env, target_ulong arg1) { uint32_t target = env->CP0_SAARI & 0x3f; if (target < 2) { env->CP0_SAAR[target] = arg1 & 0x00000ffffffff03fULL; switch (target) { case 0: if (env->itu) { itc_reconfigure(env->itu); } break; } } } void helper_mthc0_saar(CPUMIPSState *env, target_ulong arg1) { uint32_t target = env->CP0_SAARI & 0x3f; if (target < 2) { env->CP0_SAAR[target] = (((uint64_t) arg1 << 32) & 0x00000fff00000000ULL) | (env->CP0_SAAR[target] & 0x00000000ffffffffULL); switch (target) { case 0: if (env->itu) { itc_reconfigure(env->itu); } break; } } } void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1) { target_ulong old, val, mask; mask = (TARGET_PAGE_MASK << 1) | env->CP0_EntryHi_ASID_mask; if (((env->CP0_Config4 >> CP0C4_IE) & 0x3) >= 2) { mask |= 1 << CP0EnHi_EHINV; } /* 1k pages not implemented */ #if defined(TARGET_MIPS64) if (env->insn_flags & ISA_MIPS_R6) { int entryhi_r = extract64(arg1, 62, 2); int config0_at = extract32(env->CP0_Config0, 13, 2); bool no_supervisor = (env->CP0_Status_rw_bitmask & 0x8) == 0; if ((entryhi_r == 2) || (entryhi_r == 1 && (no_supervisor || config0_at == 1))) { /* skip EntryHi.R field if new value is reserved */ mask &= ~(0x3ull << 62); } } mask &= env->SEGMask; #endif old = env->CP0_EntryHi; val = (arg1 & mask) | (old & ~mask); env->CP0_EntryHi = val; if (ase_mt_available(env)) { sync_c0_entryhi(env, env->current_tc); } /* If the ASID changes, flush qemu's TLB. */ if ((old & env->CP0_EntryHi_ASID_mask) != (val & env->CP0_EntryHi_ASID_mask)) { tlb_flush(env_cpu(env)); } } void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); other->CP0_EntryHi = arg1; sync_c0_entryhi(other, other_tc); } void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1) { cpu_mips_store_compare(env, arg1); } void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1) { uint32_t val, old; old = env->CP0_Status; cpu_mips_store_status(env, arg1); val = env->CP0_Status; if (qemu_loglevel_mask(CPU_LOG_EXEC)) { qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x", old, old & env->CP0_Cause & CP0Ca_IP_mask, val, val & env->CP0_Cause & CP0Ca_IP_mask, env->CP0_Cause); switch (cpu_mmu_index(env, false)) { case 3: qemu_log(", ERL\n"); break; case MIPS_HFLAG_UM: qemu_log(", UM\n"); break; case MIPS_HFLAG_SM: qemu_log(", SM\n"); break; case MIPS_HFLAG_KM: qemu_log("\n"); break; default: cpu_abort(env_cpu(env), "Invalid MMU mode!\n"); break; } } } void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t mask = env->CP0_Status_rw_bitmask & ~0xf1000018; CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); other->CP0_Status = (other->CP0_Status & ~mask) | (arg1 & mask); sync_c0_status(env, other, other_tc); } void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1) { env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0); } void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1) { uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS); env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask); } void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1) { cpu_mips_store_cause(env, arg1); } void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); cpu_mips_store_cause(other, arg1); } target_ulong helper_mftc0_epc(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); return other->CP0_EPC; } target_ulong helper_mftc0_ebase(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); return other->CP0_EBase; } void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1) { target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask; if (arg1 & env->CP0_EBaseWG_rw_bitmask) { mask |= ~0x3FFFFFFF; } env->CP0_EBase = (env->CP0_EBase & ~mask) | (arg1 & mask); } void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask; if (arg1 & env->CP0_EBaseWG_rw_bitmask) { mask |= ~0x3FFFFFFF; } other->CP0_EBase = (other->CP0_EBase & ~mask) | (arg1 & mask); } target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); switch (idx) { case 0: return other->CP0_Config0; case 1: return other->CP0_Config1; case 2: return other->CP0_Config2; case 3: return other->CP0_Config3; /* 4 and 5 are reserved. */ case 6: return other->CP0_Config6; case 7: return other->CP0_Config7; default: break; } return 0; } void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1) { env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007); } void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1) { /* tertiary/secondary caches not implemented */ env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF); } void helper_mtc0_config3(CPUMIPSState *env, target_ulong arg1) { if (env->insn_flags & ASE_MICROMIPS) { env->CP0_Config3 = (env->CP0_Config3 & ~(1 << CP0C3_ISA_ON_EXC)) | (arg1 & (1 << CP0C3_ISA_ON_EXC)); } } void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1) { env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) | (arg1 & env->CP0_Config4_rw_bitmask); } void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1) { env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) | (arg1 & env->CP0_Config5_rw_bitmask); env->CP0_EntryHi_ASID_mask = (env->CP0_Config5 & (1 << CP0C5_MI)) ? 0x0 : (env->CP0_Config4 & (1 << CP0C4_AE)) ? 0x3ff : 0xff; compute_hflags(env); } void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1) { target_long mask = env->CP0_LLAddr_rw_bitmask; arg1 = arg1 << env->CP0_LLAddr_shift; env->CP0_LLAddr = (env->CP0_LLAddr & ~mask) | (arg1 & mask); } #define MTC0_MAAR_MASK(env) \ ((0x1ULL << 63) | ((env->PAMask >> 4) & ~0xFFFull) | 0x3) void helper_mtc0_maar(CPUMIPSState *env, target_ulong arg1) { env->CP0_MAAR[env->CP0_MAARI] = arg1 & MTC0_MAAR_MASK(env); } void helper_mthc0_maar(CPUMIPSState *env, target_ulong arg1) { env->CP0_MAAR[env->CP0_MAARI] = (((uint64_t) arg1 << 32) & MTC0_MAAR_MASK(env)) | (env->CP0_MAAR[env->CP0_MAARI] & 0x00000000ffffffffULL); } void helper_mtc0_maari(CPUMIPSState *env, target_ulong arg1) { int index = arg1 & 0x3f; if (index == 0x3f) { /* * Software may write all ones to INDEX to determine the * maximum value supported. */ env->CP0_MAARI = MIPS_MAAR_MAX - 1; } else if (index < MIPS_MAAR_MAX) { env->CP0_MAARI = index; } /* * Other than the all ones, if the value written is not supported, * then INDEX is unchanged from its previous value. */ } void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel) { /* * Watch exceptions for instructions, data loads, data stores * not implemented. */ env->CP0_WatchLo[sel] = (arg1 & ~0x7); } void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel) { uint64_t mask = 0x40000FF8 | (env->CP0_EntryHi_ASID_mask << CP0WH_ASID); if ((env->CP0_Config5 >> CP0C5_MI) & 1) { mask |= 0xFFFFFFFF00000000ULL; /* MMID */ } env->CP0_WatchHi[sel] = arg1 & mask; env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7); } void helper_mthc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel) { env->CP0_WatchHi[sel] = ((uint64_t) (arg1) << 32) | (env->CP0_WatchHi[sel] & 0x00000000ffffffffULL); } void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1) { target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1; env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask); } void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1) { env->CP0_Framemask = arg1; /* XXX */ } void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1) { env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120); if (arg1 & (1 << CP0DB_DM)) { env->hflags |= MIPS_HFLAG_DM; } else { env->hflags &= ~MIPS_HFLAG_DM; } } void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); /* XXX: Might be wrong, check with EJTAG spec. */ if (other_tc == other->current_tc) { other->active_tc.CP0_Debug_tcstatus = val; } else { other->tcs[other_tc].CP0_Debug_tcstatus = val; } other->CP0_Debug = (other->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); } void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1) { env->CP0_Performance0 = arg1 & 0x000007ff; } void helper_mtc0_errctl(CPUMIPSState *env, target_ulong arg1) { int32_t wst = arg1 & (1 << CP0EC_WST); int32_t spr = arg1 & (1 << CP0EC_SPR); int32_t itc = env->itc_tag ? (arg1 & (1 << CP0EC_ITC)) : 0; env->CP0_ErrCtl = wst | spr | itc; if (itc && !wst && !spr) { env->hflags |= MIPS_HFLAG_ITC_CACHE; } else { env->hflags &= ~MIPS_HFLAG_ITC_CACHE; } } void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1) { if (env->hflags & MIPS_HFLAG_ITC_CACHE) { /* * If CACHE instruction is configured for ITC tags then make all * CP0.TagLo bits writable. The actual write to ITC Configuration * Tag will take care of the read-only bits. */ env->CP0_TagLo = arg1; } else { env->CP0_TagLo = arg1 & 0xFFFFFCF6; } } void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1) { env->CP0_DataLo = arg1; /* XXX */ } void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1) { env->CP0_TagHi = arg1; /* XXX */ } void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1) { env->CP0_DataHi = arg1; /* XXX */ } /* MIPS MT functions */ target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.gpr[sel]; } else { return other->tcs[other_tc].gpr[sel]; } } target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.LO[sel]; } else { return other->tcs[other_tc].LO[sel]; } } target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.HI[sel]; } else { return other->tcs[other_tc].HI[sel]; } } target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.ACX[sel]; } else { return other->tcs[other_tc].ACX[sel]; } } target_ulong helper_mftdsp(CPUMIPSState *env) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { return other->active_tc.DSPControl; } else { return other->tcs[other_tc].DSPControl; } } void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { other->active_tc.gpr[sel] = arg1; } else { other->tcs[other_tc].gpr[sel] = arg1; } } void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { other->active_tc.LO[sel] = arg1; } else { other->tcs[other_tc].LO[sel] = arg1; } } void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { other->active_tc.HI[sel] = arg1; } else { other->tcs[other_tc].HI[sel] = arg1; } } void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { other->active_tc.ACX[sel] = arg1; } else { other->tcs[other_tc].ACX[sel] = arg1; } } void helper_mttdsp(CPUMIPSState *env, target_ulong arg1) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc); if (other_tc == other->current_tc) { other->active_tc.DSPControl = arg1; } else { other->tcs[other_tc].DSPControl = arg1; } } /* MIPS MT functions */ target_ulong helper_dmt(void) { /* TODO */ return 0; } target_ulong helper_emt(void) { /* TODO */ return 0; } target_ulong helper_dvpe(CPUMIPSState *env) { CPUState *other_cs = first_cpu; target_ulong prev = env->mvp->CP0_MVPControl; CPU_FOREACH(other_cs) { MIPSCPU *other_cpu = MIPS_CPU(other_cs); /* Turn off all VPEs except the one executing the dvpe. */ if (&other_cpu->env != env) { other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP); mips_vpe_sleep(other_cpu); } } return prev; } target_ulong helper_evpe(CPUMIPSState *env) { CPUState *other_cs = first_cpu; target_ulong prev = env->mvp->CP0_MVPControl; CPU_FOREACH(other_cs) { MIPSCPU *other_cpu = MIPS_CPU(other_cs); if (&other_cpu->env != env /* If the VPE is WFI, don't disturb its sleep. */ && !mips_vpe_is_wfi(other_cpu)) { /* Enable the VPE. */ other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP); mips_vpe_wake(other_cpu); /* And wake it up. */ } } return prev; } /* R6 Multi-threading */ target_ulong helper_dvp(CPUMIPSState *env) { CPUState *other_cs = first_cpu; target_ulong prev = env->CP0_VPControl; if (!((env->CP0_VPControl >> CP0VPCtl_DIS) & 1)) { CPU_FOREACH(other_cs) { MIPSCPU *other_cpu = MIPS_CPU(other_cs); /* Turn off all VPs except the one executing the dvp. */ if (&other_cpu->env != env) { mips_vpe_sleep(other_cpu); } } env->CP0_VPControl |= (1 << CP0VPCtl_DIS); } return prev; } target_ulong helper_evp(CPUMIPSState *env) { CPUState *other_cs = first_cpu; target_ulong prev = env->CP0_VPControl; if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) { CPU_FOREACH(other_cs) { MIPSCPU *other_cpu = MIPS_CPU(other_cs); if ((&other_cpu->env != env) && !mips_vp_is_wfi(other_cpu)) { /* * If the VP is WFI, don't disturb its sleep. * Otherwise, wake it up. */ mips_vpe_wake(other_cpu); } } env->CP0_VPControl &= ~(1 << CP0VPCtl_DIS); } return prev; }