/* * Xilinx MicroBlaze emulation for qemu: main translation routines. * * Copyright (c) 2009 Edgar E. Iglesias. * Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "disas/disas.h" #include "exec/exec-all.h" #include "tcg/tcg-op.h" #include "exec/helper-proto.h" #include "exec/helper-gen.h" #include "exec/translator.h" #include "qemu/qemu-print.h" #include "exec/log.h" #define HELPER_H "helper.h" #include "exec/helper-info.c.inc" #undef HELPER_H #define EXTRACT_FIELD(src, start, end) \ (((src) >> start) & ((1 << (end - start + 1)) - 1)) /* is_jmp field values */ #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ #define DISAS_EXIT DISAS_TARGET_1 /* all cpu state modified dynamically */ /* cpu state besides pc was modified dynamically; update pc to next */ #define DISAS_EXIT_NEXT DISAS_TARGET_2 /* cpu state besides pc was modified dynamically; update pc to btarget */ #define DISAS_EXIT_JUMP DISAS_TARGET_3 static TCGv_i32 cpu_R[32]; static TCGv_i32 cpu_pc; static TCGv_i32 cpu_msr; static TCGv_i32 cpu_msr_c; static TCGv_i32 cpu_imm; static TCGv_i32 cpu_bvalue; static TCGv_i32 cpu_btarget; static TCGv_i32 cpu_iflags; static TCGv cpu_res_addr; static TCGv_i32 cpu_res_val; /* This is the state at translation time. */ typedef struct DisasContext { DisasContextBase base; const MicroBlazeCPUConfig *cfg; /* TCG op of the current insn_start. */ TCGOp *insn_start; TCGv_i32 r0; bool r0_set; /* Decoder. */ uint32_t ext_imm; unsigned int tb_flags; unsigned int tb_flags_to_set; int mem_index; /* Condition under which to jump, including NEVER and ALWAYS. */ TCGCond jmp_cond; /* Immediate branch-taken destination, or -1 for indirect. */ uint32_t jmp_dest; } DisasContext; static int typeb_imm(DisasContext *dc, int x) { if (dc->tb_flags & IMM_FLAG) { return deposit32(dc->ext_imm, 0, 16, x); } return x; } /* Include the auto-generated decoder. */ #include "decode-insns.c.inc" static void t_sync_flags(DisasContext *dc) { /* Synch the tb dependent flags between translator and runtime. */ if ((dc->tb_flags ^ dc->base.tb->flags) & IFLAGS_TB_MASK) { tcg_gen_movi_i32(cpu_iflags, dc->tb_flags & IFLAGS_TB_MASK); } } static void gen_raise_exception(DisasContext *dc, uint32_t index) { gen_helper_raise_exception(cpu_env, tcg_constant_i32(index)); dc->base.is_jmp = DISAS_NORETURN; } static void gen_raise_exception_sync(DisasContext *dc, uint32_t index) { t_sync_flags(dc); tcg_gen_movi_i32(cpu_pc, dc->base.pc_next); gen_raise_exception(dc, index); } static void gen_raise_hw_excp(DisasContext *dc, uint32_t esr_ec) { TCGv_i32 tmp = tcg_constant_i32(esr_ec); tcg_gen_st_i32(tmp, cpu_env, offsetof(CPUMBState, esr)); gen_raise_exception_sync(dc, EXCP_HW_EXCP); } static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest) { if (translator_use_goto_tb(&dc->base, dest)) { tcg_gen_goto_tb(n); tcg_gen_movi_i32(cpu_pc, dest); tcg_gen_exit_tb(dc->base.tb, n); } else { tcg_gen_movi_i32(cpu_pc, dest); tcg_gen_lookup_and_goto_ptr(); } dc->base.is_jmp = DISAS_NORETURN; } /* * Returns true if the insn an illegal operation. * If exceptions are enabled, an exception is raised. */ static bool trap_illegal(DisasContext *dc, bool cond) { if (cond && (dc->tb_flags & MSR_EE) && dc->cfg->illegal_opcode_exception) { gen_raise_hw_excp(dc, ESR_EC_ILLEGAL_OP); } return cond; } /* * Returns true if the insn is illegal in userspace. * If exceptions are enabled, an exception is raised. */ static bool trap_userspace(DisasContext *dc, bool cond) { bool cond_user = cond && dc->mem_index == MMU_USER_IDX; if (cond_user && (dc->tb_flags & MSR_EE)) { gen_raise_hw_excp(dc, ESR_EC_PRIVINSN); } return cond_user; } /* * Return true, and log an error, if the current insn is * within a delay slot. */ static bool invalid_delay_slot(DisasContext *dc, const char *insn_type) { if (dc->tb_flags & D_FLAG) { qemu_log_mask(LOG_GUEST_ERROR, "Invalid insn in delay slot: %s at %08x\n", insn_type, (uint32_t)dc->base.pc_next); return true; } return false; } static TCGv_i32 reg_for_read(DisasContext *dc, int reg) { if (likely(reg != 0)) { return cpu_R[reg]; } if (!dc->r0_set) { if (dc->r0 == NULL) { dc->r0 = tcg_temp_new_i32(); } tcg_gen_movi_i32(dc->r0, 0); dc->r0_set = true; } return dc->r0; } static TCGv_i32 reg_for_write(DisasContext *dc, int reg) { if (likely(reg != 0)) { return cpu_R[reg]; } if (dc->r0 == NULL) { dc->r0 = tcg_temp_new_i32(); } return dc->r0; } static bool do_typea(DisasContext *dc, arg_typea *arg, bool side_effects, void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32)) { TCGv_i32 rd, ra, rb; if (arg->rd == 0 && !side_effects) { return true; } rd = reg_for_write(dc, arg->rd); ra = reg_for_read(dc, arg->ra); rb = reg_for_read(dc, arg->rb); fn(rd, ra, rb); return true; } static bool do_typea0(DisasContext *dc, arg_typea0 *arg, bool side_effects, void (*fn)(TCGv_i32, TCGv_i32)) { TCGv_i32 rd, ra; if (arg->rd == 0 && !side_effects) { return true; } rd = reg_for_write(dc, arg->rd); ra = reg_for_read(dc, arg->ra); fn(rd, ra); return true; } static bool do_typeb_imm(DisasContext *dc, arg_typeb *arg, bool side_effects, void (*fni)(TCGv_i32, TCGv_i32, int32_t)) { TCGv_i32 rd, ra; if (arg->rd == 0 && !side_effects) { return true; } rd = reg_for_write(dc, arg->rd); ra = reg_for_read(dc, arg->ra); fni(rd, ra, arg->imm); return true; } static bool do_typeb_val(DisasContext *dc, arg_typeb *arg, bool side_effects, void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32)) { TCGv_i32 rd, ra, imm; if (arg->rd == 0 && !side_effects) { return true; } rd = reg_for_write(dc, arg->rd); ra = reg_for_read(dc, arg->ra); imm = tcg_constant_i32(arg->imm); fn(rd, ra, imm); return true; } #define DO_TYPEA(NAME, SE, FN) \ static bool trans_##NAME(DisasContext *dc, arg_typea *a) \ { return do_typea(dc, a, SE, FN); } #define DO_TYPEA_CFG(NAME, CFG, SE, FN) \ static bool trans_##NAME(DisasContext *dc, arg_typea *a) \ { return dc->cfg->CFG && do_typea(dc, a, SE, FN); } #define DO_TYPEA0(NAME, SE, FN) \ static bool trans_##NAME(DisasContext *dc, arg_typea0 *a) \ { return do_typea0(dc, a, SE, FN); } #define DO_TYPEA0_CFG(NAME, CFG, SE, FN) \ static bool trans_##NAME(DisasContext *dc, arg_typea0 *a) \ { return dc->cfg->CFG && do_typea0(dc, a, SE, FN); } #define DO_TYPEBI(NAME, SE, FNI) \ static bool trans_##NAME(DisasContext *dc, arg_typeb *a) \ { return do_typeb_imm(dc, a, SE, FNI); } #define DO_TYPEBI_CFG(NAME, CFG, SE, FNI) \ static bool trans_##NAME(DisasContext *dc, arg_typeb *a) \ { return dc->cfg->CFG && do_typeb_imm(dc, a, SE, FNI); } #define DO_TYPEBV(NAME, SE, FN) \ static bool trans_##NAME(DisasContext *dc, arg_typeb *a) \ { return do_typeb_val(dc, a, SE, FN); } #define ENV_WRAPPER2(NAME, HELPER) \ static void NAME(TCGv_i32 out, TCGv_i32 ina) \ { HELPER(out, cpu_env, ina); } #define ENV_WRAPPER3(NAME, HELPER) \ static void NAME(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) \ { HELPER(out, cpu_env, ina, inb); } /* No input carry, but output carry. */ static void gen_add(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 zero = tcg_constant_i32(0); tcg_gen_add2_i32(out, cpu_msr_c, ina, zero, inb, zero); } /* Input and output carry. */ static void gen_addc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 zero = tcg_constant_i32(0); TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_add2_i32(tmp, cpu_msr_c, ina, zero, cpu_msr_c, zero); tcg_gen_add2_i32(out, cpu_msr_c, tmp, cpu_msr_c, inb, zero); } /* Input carry, but no output carry. */ static void gen_addkc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { tcg_gen_add_i32(out, ina, inb); tcg_gen_add_i32(out, out, cpu_msr_c); } DO_TYPEA(add, true, gen_add) DO_TYPEA(addc, true, gen_addc) DO_TYPEA(addk, false, tcg_gen_add_i32) DO_TYPEA(addkc, true, gen_addkc) DO_TYPEBV(addi, true, gen_add) DO_TYPEBV(addic, true, gen_addc) DO_TYPEBI(addik, false, tcg_gen_addi_i32) DO_TYPEBV(addikc, true, gen_addkc) static void gen_andni(TCGv_i32 out, TCGv_i32 ina, int32_t imm) { tcg_gen_andi_i32(out, ina, ~imm); } DO_TYPEA(and, false, tcg_gen_and_i32) DO_TYPEBI(andi, false, tcg_gen_andi_i32) DO_TYPEA(andn, false, tcg_gen_andc_i32) DO_TYPEBI(andni, false, gen_andni) static void gen_bsra(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_andi_i32(tmp, inb, 31); tcg_gen_sar_i32(out, ina, tmp); } static void gen_bsrl(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_andi_i32(tmp, inb, 31); tcg_gen_shr_i32(out, ina, tmp); } static void gen_bsll(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_andi_i32(tmp, inb, 31); tcg_gen_shl_i32(out, ina, tmp); } static void gen_bsefi(TCGv_i32 out, TCGv_i32 ina, int32_t imm) { /* Note that decodetree has extracted and reassembled imm_w/imm_s. */ int imm_w = extract32(imm, 5, 5); int imm_s = extract32(imm, 0, 5); if (imm_w + imm_s > 32 || imm_w == 0) { /* These inputs have an undefined behavior. */ qemu_log_mask(LOG_GUEST_ERROR, "bsefi: Bad input w=%d s=%d\n", imm_w, imm_s); } else { tcg_gen_extract_i32(out, ina, imm_s, imm_w); } } static void gen_bsifi(TCGv_i32 out, TCGv_i32 ina, int32_t imm) { /* Note that decodetree has extracted and reassembled imm_w/imm_s. */ int imm_w = extract32(imm, 5, 5); int imm_s = extract32(imm, 0, 5); int width = imm_w - imm_s + 1; if (imm_w < imm_s) { /* These inputs have an undefined behavior. */ qemu_log_mask(LOG_GUEST_ERROR, "bsifi: Bad input w=%d s=%d\n", imm_w, imm_s); } else { tcg_gen_deposit_i32(out, out, ina, imm_s, width); } } DO_TYPEA_CFG(bsra, use_barrel, false, gen_bsra) DO_TYPEA_CFG(bsrl, use_barrel, false, gen_bsrl) DO_TYPEA_CFG(bsll, use_barrel, false, gen_bsll) DO_TYPEBI_CFG(bsrai, use_barrel, false, tcg_gen_sari_i32) DO_TYPEBI_CFG(bsrli, use_barrel, false, tcg_gen_shri_i32) DO_TYPEBI_CFG(bslli, use_barrel, false, tcg_gen_shli_i32) DO_TYPEBI_CFG(bsefi, use_barrel, false, gen_bsefi) DO_TYPEBI_CFG(bsifi, use_barrel, false, gen_bsifi) static void gen_clz(TCGv_i32 out, TCGv_i32 ina) { tcg_gen_clzi_i32(out, ina, 32); } DO_TYPEA0_CFG(clz, use_pcmp_instr, false, gen_clz) static void gen_cmp(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 lt = tcg_temp_new_i32(); tcg_gen_setcond_i32(TCG_COND_LT, lt, inb, ina); tcg_gen_sub_i32(out, inb, ina); tcg_gen_deposit_i32(out, out, lt, 31, 1); } static void gen_cmpu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 lt = tcg_temp_new_i32(); tcg_gen_setcond_i32(TCG_COND_LTU, lt, inb, ina); tcg_gen_sub_i32(out, inb, ina); tcg_gen_deposit_i32(out, out, lt, 31, 1); } DO_TYPEA(cmp, false, gen_cmp) DO_TYPEA(cmpu, false, gen_cmpu) ENV_WRAPPER3(gen_fadd, gen_helper_fadd) ENV_WRAPPER3(gen_frsub, gen_helper_frsub) ENV_WRAPPER3(gen_fmul, gen_helper_fmul) ENV_WRAPPER3(gen_fdiv, gen_helper_fdiv) ENV_WRAPPER3(gen_fcmp_un, gen_helper_fcmp_un) ENV_WRAPPER3(gen_fcmp_lt, gen_helper_fcmp_lt) ENV_WRAPPER3(gen_fcmp_eq, gen_helper_fcmp_eq) ENV_WRAPPER3(gen_fcmp_le, gen_helper_fcmp_le) ENV_WRAPPER3(gen_fcmp_gt, gen_helper_fcmp_gt) ENV_WRAPPER3(gen_fcmp_ne, gen_helper_fcmp_ne) ENV_WRAPPER3(gen_fcmp_ge, gen_helper_fcmp_ge) DO_TYPEA_CFG(fadd, use_fpu, true, gen_fadd) DO_TYPEA_CFG(frsub, use_fpu, true, gen_frsub) DO_TYPEA_CFG(fmul, use_fpu, true, gen_fmul) DO_TYPEA_CFG(fdiv, use_fpu, true, gen_fdiv) DO_TYPEA_CFG(fcmp_un, use_fpu, true, gen_fcmp_un) DO_TYPEA_CFG(fcmp_lt, use_fpu, true, gen_fcmp_lt) DO_TYPEA_CFG(fcmp_eq, use_fpu, true, gen_fcmp_eq) DO_TYPEA_CFG(fcmp_le, use_fpu, true, gen_fcmp_le) DO_TYPEA_CFG(fcmp_gt, use_fpu, true, gen_fcmp_gt) DO_TYPEA_CFG(fcmp_ne, use_fpu, true, gen_fcmp_ne) DO_TYPEA_CFG(fcmp_ge, use_fpu, true, gen_fcmp_ge) ENV_WRAPPER2(gen_flt, gen_helper_flt) ENV_WRAPPER2(gen_fint, gen_helper_fint) ENV_WRAPPER2(gen_fsqrt, gen_helper_fsqrt) DO_TYPEA0_CFG(flt, use_fpu >= 2, true, gen_flt) DO_TYPEA0_CFG(fint, use_fpu >= 2, true, gen_fint) DO_TYPEA0_CFG(fsqrt, use_fpu >= 2, true, gen_fsqrt) /* Does not use ENV_WRAPPER3, because arguments are swapped as well. */ static void gen_idiv(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { gen_helper_divs(out, cpu_env, inb, ina); } static void gen_idivu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { gen_helper_divu(out, cpu_env, inb, ina); } DO_TYPEA_CFG(idiv, use_div, true, gen_idiv) DO_TYPEA_CFG(idivu, use_div, true, gen_idivu) static bool trans_imm(DisasContext *dc, arg_imm *arg) { if (invalid_delay_slot(dc, "imm")) { return true; } dc->ext_imm = arg->imm << 16; tcg_gen_movi_i32(cpu_imm, dc->ext_imm); dc->tb_flags_to_set = IMM_FLAG; return true; } static void gen_mulh(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_muls2_i32(tmp, out, ina, inb); } static void gen_mulhu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_mulu2_i32(tmp, out, ina, inb); } static void gen_mulhsu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_mulsu2_i32(tmp, out, ina, inb); } DO_TYPEA_CFG(mul, use_hw_mul, false, tcg_gen_mul_i32) DO_TYPEA_CFG(mulh, use_hw_mul >= 2, false, gen_mulh) DO_TYPEA_CFG(mulhu, use_hw_mul >= 2, false, gen_mulhu) DO_TYPEA_CFG(mulhsu, use_hw_mul >= 2, false, gen_mulhsu) DO_TYPEBI_CFG(muli, use_hw_mul, false, tcg_gen_muli_i32) DO_TYPEA(or, false, tcg_gen_or_i32) DO_TYPEBI(ori, false, tcg_gen_ori_i32) static void gen_pcmpeq(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { tcg_gen_setcond_i32(TCG_COND_EQ, out, ina, inb); } static void gen_pcmpne(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { tcg_gen_setcond_i32(TCG_COND_NE, out, ina, inb); } DO_TYPEA_CFG(pcmpbf, use_pcmp_instr, false, gen_helper_pcmpbf) DO_TYPEA_CFG(pcmpeq, use_pcmp_instr, false, gen_pcmpeq) DO_TYPEA_CFG(pcmpne, use_pcmp_instr, false, gen_pcmpne) /* No input carry, but output carry. */ static void gen_rsub(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { tcg_gen_setcond_i32(TCG_COND_GEU, cpu_msr_c, inb, ina); tcg_gen_sub_i32(out, inb, ina); } /* Input and output carry. */ static void gen_rsubc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 zero = tcg_constant_i32(0); TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_not_i32(tmp, ina); tcg_gen_add2_i32(tmp, cpu_msr_c, tmp, zero, cpu_msr_c, zero); tcg_gen_add2_i32(out, cpu_msr_c, tmp, cpu_msr_c, inb, zero); } /* No input or output carry. */ static void gen_rsubk(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { tcg_gen_sub_i32(out, inb, ina); } /* Input carry, no output carry. */ static void gen_rsubkc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) { TCGv_i32 nota = tcg_temp_new_i32(); tcg_gen_not_i32(nota, ina); tcg_gen_add_i32(out, inb, nota); tcg_gen_add_i32(out, out, cpu_msr_c); } DO_TYPEA(rsub, true, gen_rsub) DO_TYPEA(rsubc, true, gen_rsubc) DO_TYPEA(rsubk, false, gen_rsubk) DO_TYPEA(rsubkc, true, gen_rsubkc) DO_TYPEBV(rsubi, true, gen_rsub) DO_TYPEBV(rsubic, true, gen_rsubc) DO_TYPEBV(rsubik, false, gen_rsubk) DO_TYPEBV(rsubikc, true, gen_rsubkc) DO_TYPEA0(sext8, false, tcg_gen_ext8s_i32) DO_TYPEA0(sext16, false, tcg_gen_ext16s_i32) static void gen_sra(TCGv_i32 out, TCGv_i32 ina) { tcg_gen_andi_i32(cpu_msr_c, ina, 1); tcg_gen_sari_i32(out, ina, 1); } static void gen_src(TCGv_i32 out, TCGv_i32 ina) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_mov_i32(tmp, cpu_msr_c); tcg_gen_andi_i32(cpu_msr_c, ina, 1); tcg_gen_extract2_i32(out, ina, tmp, 1); } static void gen_srl(TCGv_i32 out, TCGv_i32 ina) { tcg_gen_andi_i32(cpu_msr_c, ina, 1); tcg_gen_shri_i32(out, ina, 1); } DO_TYPEA0(sra, false, gen_sra) DO_TYPEA0(src, false, gen_src) DO_TYPEA0(srl, false, gen_srl) static void gen_swaph(TCGv_i32 out, TCGv_i32 ina) { tcg_gen_rotri_i32(out, ina, 16); } DO_TYPEA0(swapb, false, tcg_gen_bswap32_i32) DO_TYPEA0(swaph, false, gen_swaph) static bool trans_wdic(DisasContext *dc, arg_wdic *a) { /* Cache operations are nops: only check for supervisor mode. */ trap_userspace(dc, true); return true; } DO_TYPEA(xor, false, tcg_gen_xor_i32) DO_TYPEBI(xori, false, tcg_gen_xori_i32) static TCGv compute_ldst_addr_typea(DisasContext *dc, int ra, int rb) { TCGv ret = tcg_temp_new(); /* If any of the regs is r0, set t to the value of the other reg. */ if (ra && rb) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_add_i32(tmp, cpu_R[ra], cpu_R[rb]); tcg_gen_extu_i32_tl(ret, tmp); } else if (ra) { tcg_gen_extu_i32_tl(ret, cpu_R[ra]); } else if (rb) { tcg_gen_extu_i32_tl(ret, cpu_R[rb]); } else { tcg_gen_movi_tl(ret, 0); } if ((ra == 1 || rb == 1) && dc->cfg->stackprot) { gen_helper_stackprot(cpu_env, ret); } return ret; } static TCGv compute_ldst_addr_typeb(DisasContext *dc, int ra, int imm) { TCGv ret = tcg_temp_new(); /* If any of the regs is r0, set t to the value of the other reg. */ if (ra) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_addi_i32(tmp, cpu_R[ra], imm); tcg_gen_extu_i32_tl(ret, tmp); } else { tcg_gen_movi_tl(ret, (uint32_t)imm); } if (ra == 1 && dc->cfg->stackprot) { gen_helper_stackprot(cpu_env, ret); } return ret; } #ifndef CONFIG_USER_ONLY static TCGv compute_ldst_addr_ea(DisasContext *dc, int ra, int rb) { int addr_size = dc->cfg->addr_size; TCGv ret = tcg_temp_new(); if (addr_size == 32 || ra == 0) { if (rb) { tcg_gen_extu_i32_tl(ret, cpu_R[rb]); } else { tcg_gen_movi_tl(ret, 0); } } else { if (rb) { tcg_gen_concat_i32_i64(ret, cpu_R[rb], cpu_R[ra]); } else { tcg_gen_extu_i32_tl(ret, cpu_R[ra]); tcg_gen_shli_tl(ret, ret, 32); } if (addr_size < 64) { /* Mask off out of range bits. */ tcg_gen_andi_i64(ret, ret, MAKE_64BIT_MASK(0, addr_size)); } } return ret; } #endif #ifndef CONFIG_USER_ONLY static void record_unaligned_ess(DisasContext *dc, int rd, MemOp size, bool store) { uint32_t iflags = tcg_get_insn_start_param(dc->insn_start, 1); iflags |= ESR_ESS_FLAG; iflags |= rd << 5; iflags |= store * ESR_S; iflags |= (size == MO_32) * ESR_W; tcg_set_insn_start_param(dc->insn_start, 1, iflags); } #endif static bool do_load(DisasContext *dc, int rd, TCGv addr, MemOp mop, int mem_index, bool rev) { MemOp size = mop & MO_SIZE; /* * When doing reverse accesses we need to do two things. * * 1. Reverse the address wrt endianness. * 2. Byteswap the data lanes on the way back into the CPU core. */ if (rev) { if (size > MO_8) { mop ^= MO_BSWAP; } if (size < MO_32) { tcg_gen_xori_tl(addr, addr, 3 - size); } } /* * For system mode, enforce alignment if the cpu configuration * requires it. For user-mode, the Linux kernel will have fixed up * any unaligned access, so emulate that by *not* setting MO_ALIGN. */ #ifndef CONFIG_USER_ONLY if (size > MO_8 && (dc->tb_flags & MSR_EE) && dc->cfg->unaligned_exceptions) { record_unaligned_ess(dc, rd, size, false); mop |= MO_ALIGN; } #endif tcg_gen_qemu_ld_i32(reg_for_write(dc, rd), addr, mem_index, mop); return true; } static bool trans_lbu(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_load(dc, arg->rd, addr, MO_UB, dc->mem_index, false); } static bool trans_lbur(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_load(dc, arg->rd, addr, MO_UB, dc->mem_index, true); } static bool trans_lbuea(DisasContext *dc, arg_typea *arg) { if (trap_userspace(dc, true)) { return true; } #ifdef CONFIG_USER_ONLY return true; #else TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb); return do_load(dc, arg->rd, addr, MO_UB, MMU_NOMMU_IDX, false); #endif } static bool trans_lbui(DisasContext *dc, arg_typeb *arg) { TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm); return do_load(dc, arg->rd, addr, MO_UB, dc->mem_index, false); } static bool trans_lhu(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_load(dc, arg->rd, addr, MO_TEUW, dc->mem_index, false); } static bool trans_lhur(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_load(dc, arg->rd, addr, MO_TEUW, dc->mem_index, true); } static bool trans_lhuea(DisasContext *dc, arg_typea *arg) { if (trap_userspace(dc, true)) { return true; } #ifdef CONFIG_USER_ONLY return true; #else TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb); return do_load(dc, arg->rd, addr, MO_TEUW, MMU_NOMMU_IDX, false); #endif } static bool trans_lhui(DisasContext *dc, arg_typeb *arg) { TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm); return do_load(dc, arg->rd, addr, MO_TEUW, dc->mem_index, false); } static bool trans_lw(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_load(dc, arg->rd, addr, MO_TEUL, dc->mem_index, false); } static bool trans_lwr(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_load(dc, arg->rd, addr, MO_TEUL, dc->mem_index, true); } static bool trans_lwea(DisasContext *dc, arg_typea *arg) { if (trap_userspace(dc, true)) { return true; } #ifdef CONFIG_USER_ONLY return true; #else TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb); return do_load(dc, arg->rd, addr, MO_TEUL, MMU_NOMMU_IDX, false); #endif } static bool trans_lwi(DisasContext *dc, arg_typeb *arg) { TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm); return do_load(dc, arg->rd, addr, MO_TEUL, dc->mem_index, false); } static bool trans_lwx(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); /* lwx does not throw unaligned access errors, so force alignment */ tcg_gen_andi_tl(addr, addr, ~3); tcg_gen_qemu_ld_i32(cpu_res_val, addr, dc->mem_index, MO_TEUL); tcg_gen_mov_tl(cpu_res_addr, addr); if (arg->rd) { tcg_gen_mov_i32(cpu_R[arg->rd], cpu_res_val); } /* No support for AXI exclusive so always clear C */ tcg_gen_movi_i32(cpu_msr_c, 0); return true; } static bool do_store(DisasContext *dc, int rd, TCGv addr, MemOp mop, int mem_index, bool rev) { MemOp size = mop & MO_SIZE; /* * When doing reverse accesses we need to do two things. * * 1. Reverse the address wrt endianness. * 2. Byteswap the data lanes on the way back into the CPU core. */ if (rev) { if (size > MO_8) { mop ^= MO_BSWAP; } if (size < MO_32) { tcg_gen_xori_tl(addr, addr, 3 - size); } } /* * For system mode, enforce alignment if the cpu configuration * requires it. For user-mode, the Linux kernel will have fixed up * any unaligned access, so emulate that by *not* setting MO_ALIGN. */ #ifndef CONFIG_USER_ONLY if (size > MO_8 && (dc->tb_flags & MSR_EE) && dc->cfg->unaligned_exceptions) { record_unaligned_ess(dc, rd, size, true); mop |= MO_ALIGN; } #endif tcg_gen_qemu_st_i32(reg_for_read(dc, rd), addr, mem_index, mop); return true; } static bool trans_sb(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_store(dc, arg->rd, addr, MO_UB, dc->mem_index, false); } static bool trans_sbr(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_store(dc, arg->rd, addr, MO_UB, dc->mem_index, true); } static bool trans_sbea(DisasContext *dc, arg_typea *arg) { if (trap_userspace(dc, true)) { return true; } #ifdef CONFIG_USER_ONLY return true; #else TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb); return do_store(dc, arg->rd, addr, MO_UB, MMU_NOMMU_IDX, false); #endif } static bool trans_sbi(DisasContext *dc, arg_typeb *arg) { TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm); return do_store(dc, arg->rd, addr, MO_UB, dc->mem_index, false); } static bool trans_sh(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_store(dc, arg->rd, addr, MO_TEUW, dc->mem_index, false); } static bool trans_shr(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_store(dc, arg->rd, addr, MO_TEUW, dc->mem_index, true); } static bool trans_shea(DisasContext *dc, arg_typea *arg) { if (trap_userspace(dc, true)) { return true; } #ifdef CONFIG_USER_ONLY return true; #else TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb); return do_store(dc, arg->rd, addr, MO_TEUW, MMU_NOMMU_IDX, false); #endif } static bool trans_shi(DisasContext *dc, arg_typeb *arg) { TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm); return do_store(dc, arg->rd, addr, MO_TEUW, dc->mem_index, false); } static bool trans_sw(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_store(dc, arg->rd, addr, MO_TEUL, dc->mem_index, false); } static bool trans_swr(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); return do_store(dc, arg->rd, addr, MO_TEUL, dc->mem_index, true); } static bool trans_swea(DisasContext *dc, arg_typea *arg) { if (trap_userspace(dc, true)) { return true; } #ifdef CONFIG_USER_ONLY return true; #else TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb); return do_store(dc, arg->rd, addr, MO_TEUL, MMU_NOMMU_IDX, false); #endif } static bool trans_swi(DisasContext *dc, arg_typeb *arg) { TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm); return do_store(dc, arg->rd, addr, MO_TEUL, dc->mem_index, false); } static bool trans_swx(DisasContext *dc, arg_typea *arg) { TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb); TCGLabel *swx_done = gen_new_label(); TCGLabel *swx_fail = gen_new_label(); TCGv_i32 tval; /* swx does not throw unaligned access errors, so force alignment */ tcg_gen_andi_tl(addr, addr, ~3); /* * Compare the address vs the one we used during lwx. * On mismatch, the operation fails. On match, addr dies at the * branch, but we know we can use the equal version in the global. * In either case, addr is no longer needed. */ tcg_gen_brcond_tl(TCG_COND_NE, cpu_res_addr, addr, swx_fail); /* * Compare the value loaded during lwx with current contents of * the reserved location. */ tval = tcg_temp_new_i32(); tcg_gen_atomic_cmpxchg_i32(tval, cpu_res_addr, cpu_res_val, reg_for_write(dc, arg->rd), dc->mem_index, MO_TEUL); tcg_gen_brcond_i32(TCG_COND_NE, cpu_res_val, tval, swx_fail); /* Success */ tcg_gen_movi_i32(cpu_msr_c, 0); tcg_gen_br(swx_done); /* Failure */ gen_set_label(swx_fail); tcg_gen_movi_i32(cpu_msr_c, 1); gen_set_label(swx_done); /* * Prevent the saved address from working again without another ldx. * Akin to the pseudocode setting reservation = 0. */ tcg_gen_movi_tl(cpu_res_addr, -1); return true; } static void setup_dslot(DisasContext *dc, bool type_b) { dc->tb_flags_to_set |= D_FLAG; if (type_b && (dc->tb_flags & IMM_FLAG)) { dc->tb_flags_to_set |= BIMM_FLAG; } } static bool do_branch(DisasContext *dc, int dest_rb, int dest_imm, bool delay, bool abs, int link) { uint32_t add_pc; if (invalid_delay_slot(dc, "branch")) { return true; } if (delay) { setup_dslot(dc, dest_rb < 0); } if (link) { tcg_gen_movi_i32(cpu_R[link], dc->base.pc_next); } /* Store the branch taken destination into btarget. */ add_pc = abs ? 0 : dc->base.pc_next; if (dest_rb > 0) { dc->jmp_dest = -1; tcg_gen_addi_i32(cpu_btarget, cpu_R[dest_rb], add_pc); } else { dc->jmp_dest = add_pc + dest_imm; tcg_gen_movi_i32(cpu_btarget, dc->jmp_dest); } dc->jmp_cond = TCG_COND_ALWAYS; return true; } #define DO_BR(NAME, NAMEI, DELAY, ABS, LINK) \ static bool trans_##NAME(DisasContext *dc, arg_typea_br *arg) \ { return do_branch(dc, arg->rb, 0, DELAY, ABS, LINK ? arg->rd : 0); } \ static bool trans_##NAMEI(DisasContext *dc, arg_typeb_br *arg) \ { return do_branch(dc, -1, arg->imm, DELAY, ABS, LINK ? arg->rd : 0); } DO_BR(br, bri, false, false, false) DO_BR(bra, brai, false, true, false) DO_BR(brd, brid, true, false, false) DO_BR(brad, braid, true, true, false) DO_BR(brld, brlid, true, false, true) DO_BR(brald, bralid, true, true, true) static bool do_bcc(DisasContext *dc, int dest_rb, int dest_imm, TCGCond cond, int ra, bool delay) { TCGv_i32 zero, next; if (invalid_delay_slot(dc, "bcc")) { return true; } if (delay) { setup_dslot(dc, dest_rb < 0); } dc->jmp_cond = cond; /* Cache the condition register in cpu_bvalue across any delay slot. */ tcg_gen_mov_i32(cpu_bvalue, reg_for_read(dc, ra)); /* Store the branch taken destination into btarget. */ if (dest_rb > 0) { dc->jmp_dest = -1; tcg_gen_addi_i32(cpu_btarget, cpu_R[dest_rb], dc->base.pc_next); } else { dc->jmp_dest = dc->base.pc_next + dest_imm; tcg_gen_movi_i32(cpu_btarget, dc->jmp_dest); } /* Compute the final destination into btarget. */ zero = tcg_constant_i32(0); next = tcg_constant_i32(dc->base.pc_next + (delay + 1) * 4); tcg_gen_movcond_i32(dc->jmp_cond, cpu_btarget, reg_for_read(dc, ra), zero, cpu_btarget, next); return true; } #define DO_BCC(NAME, COND) \ static bool trans_##NAME(DisasContext *dc, arg_typea_bc *arg) \ { return do_bcc(dc, arg->rb, 0, COND, arg->ra, false); } \ static bool trans_##NAME##d(DisasContext *dc, arg_typea_bc *arg) \ { return do_bcc(dc, arg->rb, 0, COND, arg->ra, true); } \ static bool trans_##NAME##i(DisasContext *dc, arg_typeb_bc *arg) \ { return do_bcc(dc, -1, arg->imm, COND, arg->ra, false); } \ static bool trans_##NAME##id(DisasContext *dc, arg_typeb_bc *arg) \ { return do_bcc(dc, -1, arg->imm, COND, arg->ra, true); } DO_BCC(beq, TCG_COND_EQ) DO_BCC(bge, TCG_COND_GE) DO_BCC(bgt, TCG_COND_GT) DO_BCC(ble, TCG_COND_LE) DO_BCC(blt, TCG_COND_LT) DO_BCC(bne, TCG_COND_NE) static bool trans_brk(DisasContext *dc, arg_typea_br *arg) { if (trap_userspace(dc, true)) { return true; } if (invalid_delay_slot(dc, "brk")) { return true; } tcg_gen_mov_i32(cpu_pc, reg_for_read(dc, arg->rb)); if (arg->rd) { tcg_gen_movi_i32(cpu_R[arg->rd], dc->base.pc_next); } tcg_gen_ori_i32(cpu_msr, cpu_msr, MSR_BIP); tcg_gen_movi_tl(cpu_res_addr, -1); dc->base.is_jmp = DISAS_EXIT; return true; } static bool trans_brki(DisasContext *dc, arg_typeb_br *arg) { uint32_t imm = arg->imm; if (trap_userspace(dc, imm != 0x8 && imm != 0x18)) { return true; } if (invalid_delay_slot(dc, "brki")) { return true; } tcg_gen_movi_i32(cpu_pc, imm); if (arg->rd) { tcg_gen_movi_i32(cpu_R[arg->rd], dc->base.pc_next); } tcg_gen_movi_tl(cpu_res_addr, -1); #ifdef CONFIG_USER_ONLY switch (imm) { case 0x8: /* syscall trap */ gen_raise_exception_sync(dc, EXCP_SYSCALL); break; case 0x18: /* debug trap */ gen_raise_exception_sync(dc, EXCP_DEBUG); break; default: /* eliminated with trap_userspace check */ g_assert_not_reached(); } #else uint32_t msr_to_set = 0; if (imm != 0x18) { msr_to_set |= MSR_BIP; } if (imm == 0x8 || imm == 0x18) { /* MSR_UM and MSR_VM are in tb_flags, so we know their value. */ msr_to_set |= (dc->tb_flags & (MSR_UM | MSR_VM)) << 1; tcg_gen_andi_i32(cpu_msr, cpu_msr, ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM)); } tcg_gen_ori_i32(cpu_msr, cpu_msr, msr_to_set); dc->base.is_jmp = DISAS_EXIT; #endif return true; } static bool trans_mbar(DisasContext *dc, arg_mbar *arg) { int mbar_imm = arg->imm; /* Note that mbar is a specialized branch instruction. */ if (invalid_delay_slot(dc, "mbar")) { return true; } /* Data access memory barrier. */ if ((mbar_imm & 2) == 0) { tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL); } /* Sleep. */ if (mbar_imm & 16) { if (trap_userspace(dc, true)) { /* Sleep is a privileged instruction. */ return true; } t_sync_flags(dc); tcg_gen_st_i32(tcg_constant_i32(1), cpu_env, -offsetof(MicroBlazeCPU, env) +offsetof(CPUState, halted)); tcg_gen_movi_i32(cpu_pc, dc->base.pc_next + 4); gen_raise_exception(dc, EXCP_HLT); } /* * If !(mbar_imm & 1), this is an instruction access memory barrier * and we need to end the TB so that we recognize self-modified * code immediately. * * However, there are some data mbars that need the TB break * (and return to main loop) to recognize interrupts right away. * E.g. recognizing a change to an interrupt controller register. * * Therefore, choose to end the TB always. */ dc->base.is_jmp = DISAS_EXIT_NEXT; return true; } static bool do_rts(DisasContext *dc, arg_typeb_bc *arg, int to_set) { if (trap_userspace(dc, to_set)) { return true; } if (invalid_delay_slot(dc, "rts")) { return true; } dc->tb_flags_to_set |= to_set; setup_dslot(dc, true); dc->jmp_cond = TCG_COND_ALWAYS; dc->jmp_dest = -1; tcg_gen_addi_i32(cpu_btarget, reg_for_read(dc, arg->ra), arg->imm); return true; } #define DO_RTS(NAME, IFLAG) \ static bool trans_##NAME(DisasContext *dc, arg_typeb_bc *arg) \ { return do_rts(dc, arg, IFLAG); } DO_RTS(rtbd, DRTB_FLAG) DO_RTS(rtid, DRTI_FLAG) DO_RTS(rted, DRTE_FLAG) DO_RTS(rtsd, 0) static bool trans_zero(DisasContext *dc, arg_zero *arg) { /* If opcode_0_illegal, trap. */ if (dc->cfg->opcode_0_illegal) { trap_illegal(dc, true); return true; } /* * Otherwise, this is "add r0, r0, r0". * Continue to trans_add so that MSR[C] gets cleared. */ return false; } static void msr_read(DisasContext *dc, TCGv_i32 d) { TCGv_i32 t; /* Replicate the cpu_msr_c boolean into the proper bit and the copy. */ t = tcg_temp_new_i32(); tcg_gen_muli_i32(t, cpu_msr_c, MSR_C | MSR_CC); tcg_gen_or_i32(d, cpu_msr, t); } static bool do_msrclrset(DisasContext *dc, arg_type_msr *arg, bool set) { uint32_t imm = arg->imm; if (trap_userspace(dc, imm != MSR_C)) { return true; } if (arg->rd) { msr_read(dc, cpu_R[arg->rd]); } /* * Handle the carry bit separately. * This is the only bit that userspace can modify. */ if (imm & MSR_C) { tcg_gen_movi_i32(cpu_msr_c, set); } /* * MSR_C and MSR_CC set above. * MSR_PVR is not writable, and is always clear. */ imm &= ~(MSR_C | MSR_CC | MSR_PVR); if (imm != 0) { if (set) { tcg_gen_ori_i32(cpu_msr, cpu_msr, imm); } else { tcg_gen_andi_i32(cpu_msr, cpu_msr, ~imm); } dc->base.is_jmp = DISAS_EXIT_NEXT; } return true; } static bool trans_msrclr(DisasContext *dc, arg_type_msr *arg) { return do_msrclrset(dc, arg, false); } static bool trans_msrset(DisasContext *dc, arg_type_msr *arg) { return do_msrclrset(dc, arg, true); } static bool trans_mts(DisasContext *dc, arg_mts *arg) { if (trap_userspace(dc, true)) { return true; } #ifdef CONFIG_USER_ONLY g_assert_not_reached(); #else if (arg->e && arg->rs != 0x1003) { qemu_log_mask(LOG_GUEST_ERROR, "Invalid extended mts reg 0x%x\n", arg->rs); return true; } TCGv_i32 src = reg_for_read(dc, arg->ra); switch (arg->rs) { case SR_MSR: /* Install MSR_C. */ tcg_gen_extract_i32(cpu_msr_c, src, 2, 1); /* * Clear MSR_C and MSR_CC; * MSR_PVR is not writable, and is always clear. */ tcg_gen_andi_i32(cpu_msr, src, ~(MSR_C | MSR_CC | MSR_PVR)); break; case SR_FSR: tcg_gen_st_i32(src, cpu_env, offsetof(CPUMBState, fsr)); break; case 0x800: tcg_gen_st_i32(src, cpu_env, offsetof(CPUMBState, slr)); break; case 0x802: tcg_gen_st_i32(src, cpu_env, offsetof(CPUMBState, shr)); break; case 0x1000: /* PID */ case 0x1001: /* ZPR */ case 0x1002: /* TLBX */ case 0x1003: /* TLBLO */ case 0x1004: /* TLBHI */ case 0x1005: /* TLBSX */ { TCGv_i32 tmp_ext = tcg_constant_i32(arg->e); TCGv_i32 tmp_reg = tcg_constant_i32(arg->rs & 7); gen_helper_mmu_write(cpu_env, tmp_ext, tmp_reg, src); } break; default: qemu_log_mask(LOG_GUEST_ERROR, "Invalid mts reg 0x%x\n", arg->rs); return true; } dc->base.is_jmp = DISAS_EXIT_NEXT; return true; #endif } static bool trans_mfs(DisasContext *dc, arg_mfs *arg) { TCGv_i32 dest = reg_for_write(dc, arg->rd); if (arg->e) { switch (arg->rs) { case SR_EAR: { TCGv_i64 t64 = tcg_temp_new_i64(); tcg_gen_ld_i64(t64, cpu_env, offsetof(CPUMBState, ear)); tcg_gen_extrh_i64_i32(dest, t64); } return true; #ifndef CONFIG_USER_ONLY case 0x1003: /* TLBLO */ /* Handled below. */ break; #endif case 0x2006 ... 0x2009: /* High bits of PVR6-9 not implemented. */ tcg_gen_movi_i32(dest, 0); return true; default: qemu_log_mask(LOG_GUEST_ERROR, "Invalid extended mfs reg 0x%x\n", arg->rs); return true; } } switch (arg->rs) { case SR_PC: tcg_gen_movi_i32(dest, dc->base.pc_next); break; case SR_MSR: msr_read(dc, dest); break; case SR_EAR: { TCGv_i64 t64 = tcg_temp_new_i64(); tcg_gen_ld_i64(t64, cpu_env, offsetof(CPUMBState, ear)); tcg_gen_extrl_i64_i32(dest, t64); } break; case SR_ESR: tcg_gen_ld_i32(dest, cpu_env, offsetof(CPUMBState, esr)); break; case SR_FSR: tcg_gen_ld_i32(dest, cpu_env, offsetof(CPUMBState, fsr)); break; case SR_BTR: tcg_gen_ld_i32(dest, cpu_env, offsetof(CPUMBState, btr)); break; case SR_EDR: tcg_gen_ld_i32(dest, cpu_env, offsetof(CPUMBState, edr)); break; case 0x800: tcg_gen_ld_i32(dest, cpu_env, offsetof(CPUMBState, slr)); break; case 0x802: tcg_gen_ld_i32(dest, cpu_env, offsetof(CPUMBState, shr)); break; #ifndef CONFIG_USER_ONLY case 0x1000: /* PID */ case 0x1001: /* ZPR */ case 0x1002: /* TLBX */ case 0x1003: /* TLBLO */ case 0x1004: /* TLBHI */ case 0x1005: /* TLBSX */ { TCGv_i32 tmp_ext = tcg_constant_i32(arg->e); TCGv_i32 tmp_reg = tcg_constant_i32(arg->rs & 7); gen_helper_mmu_read(dest, cpu_env, tmp_ext, tmp_reg); } break; #endif case 0x2000 ... 0x200c: tcg_gen_ld_i32(dest, cpu_env, offsetof(MicroBlazeCPU, cfg.pvr_regs[arg->rs - 0x2000]) - offsetof(MicroBlazeCPU, env)); break; default: qemu_log_mask(LOG_GUEST_ERROR, "Invalid mfs reg 0x%x\n", arg->rs); break; } return true; } static void do_rti(DisasContext *dc) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_shri_i32(tmp, cpu_msr, 1); tcg_gen_ori_i32(cpu_msr, cpu_msr, MSR_IE); tcg_gen_andi_i32(tmp, tmp, MSR_VM | MSR_UM); tcg_gen_andi_i32(cpu_msr, cpu_msr, ~(MSR_VM | MSR_UM)); tcg_gen_or_i32(cpu_msr, cpu_msr, tmp); } static void do_rtb(DisasContext *dc) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_shri_i32(tmp, cpu_msr, 1); tcg_gen_andi_i32(cpu_msr, cpu_msr, ~(MSR_VM | MSR_UM | MSR_BIP)); tcg_gen_andi_i32(tmp, tmp, (MSR_VM | MSR_UM)); tcg_gen_or_i32(cpu_msr, cpu_msr, tmp); } static void do_rte(DisasContext *dc) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_shri_i32(tmp, cpu_msr, 1); tcg_gen_ori_i32(cpu_msr, cpu_msr, MSR_EE); tcg_gen_andi_i32(tmp, tmp, (MSR_VM | MSR_UM)); tcg_gen_andi_i32(cpu_msr, cpu_msr, ~(MSR_VM | MSR_UM | MSR_EIP)); tcg_gen_or_i32(cpu_msr, cpu_msr, tmp); } /* Insns connected to FSL or AXI stream attached devices. */ static bool do_get(DisasContext *dc, int rd, int rb, int imm, int ctrl) { TCGv_i32 t_id, t_ctrl; if (trap_userspace(dc, true)) { return true; } t_id = tcg_temp_new_i32(); if (rb) { tcg_gen_andi_i32(t_id, cpu_R[rb], 0xf); } else { tcg_gen_movi_i32(t_id, imm); } t_ctrl = tcg_constant_i32(ctrl); gen_helper_get(reg_for_write(dc, rd), t_id, t_ctrl); return true; } static bool trans_get(DisasContext *dc, arg_get *arg) { return do_get(dc, arg->rd, 0, arg->imm, arg->ctrl); } static bool trans_getd(DisasContext *dc, arg_getd *arg) { return do_get(dc, arg->rd, arg->rb, 0, arg->ctrl); } static bool do_put(DisasContext *dc, int ra, int rb, int imm, int ctrl) { TCGv_i32 t_id, t_ctrl; if (trap_userspace(dc, true)) { return true; } t_id = tcg_temp_new_i32(); if (rb) { tcg_gen_andi_i32(t_id, cpu_R[rb], 0xf); } else { tcg_gen_movi_i32(t_id, imm); } t_ctrl = tcg_constant_i32(ctrl); gen_helper_put(t_id, t_ctrl, reg_for_read(dc, ra)); return true; } static bool trans_put(DisasContext *dc, arg_put *arg) { return do_put(dc, arg->ra, 0, arg->imm, arg->ctrl); } static bool trans_putd(DisasContext *dc, arg_putd *arg) { return do_put(dc, arg->ra, arg->rb, 0, arg->ctrl); } static void mb_tr_init_disas_context(DisasContextBase *dcb, CPUState *cs) { DisasContext *dc = container_of(dcb, DisasContext, base); MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); int bound; dc->cfg = &cpu->cfg; dc->tb_flags = dc->base.tb->flags; dc->ext_imm = dc->base.tb->cs_base; dc->r0 = NULL; dc->r0_set = false; dc->mem_index = cpu_mmu_index(&cpu->env, false); dc->jmp_cond = dc->tb_flags & D_FLAG ? TCG_COND_ALWAYS : TCG_COND_NEVER; dc->jmp_dest = -1; bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; dc->base.max_insns = MIN(dc->base.max_insns, bound); } static void mb_tr_tb_start(DisasContextBase *dcb, CPUState *cs) { } static void mb_tr_insn_start(DisasContextBase *dcb, CPUState *cs) { DisasContext *dc = container_of(dcb, DisasContext, base); tcg_gen_insn_start(dc->base.pc_next, dc->tb_flags & ~MSR_TB_MASK); dc->insn_start = tcg_last_op(); } static void mb_tr_translate_insn(DisasContextBase *dcb, CPUState *cs) { DisasContext *dc = container_of(dcb, DisasContext, base); CPUMBState *env = cs->env_ptr; uint32_t ir; /* TODO: This should raise an exception, not terminate qemu. */ if (dc->base.pc_next & 3) { cpu_abort(cs, "Microblaze: unaligned PC=%x\n", (uint32_t)dc->base.pc_next); } dc->tb_flags_to_set = 0; ir = cpu_ldl_code(env, dc->base.pc_next); if (!decode(dc, ir)) { trap_illegal(dc, true); } if (dc->r0) { dc->r0 = NULL; dc->r0_set = false; } /* Discard the imm global when its contents cannot be used. */ if ((dc->tb_flags & ~dc->tb_flags_to_set) & IMM_FLAG) { tcg_gen_discard_i32(cpu_imm); } dc->tb_flags &= ~(IMM_FLAG | BIMM_FLAG | D_FLAG); dc->tb_flags |= dc->tb_flags_to_set; dc->base.pc_next += 4; if (dc->jmp_cond != TCG_COND_NEVER && !(dc->tb_flags & D_FLAG)) { /* * Finish any return-from branch. */ uint32_t rt_ibe = dc->tb_flags & (DRTI_FLAG | DRTB_FLAG | DRTE_FLAG); if (unlikely(rt_ibe != 0)) { dc->tb_flags &= ~(DRTI_FLAG | DRTB_FLAG | DRTE_FLAG); if (rt_ibe & DRTI_FLAG) { do_rti(dc); } else if (rt_ibe & DRTB_FLAG) { do_rtb(dc); } else { do_rte(dc); } } /* Complete the branch, ending the TB. */ switch (dc->base.is_jmp) { case DISAS_NORETURN: /* * E.g. illegal insn in a delay slot. We've already exited * and will handle D_FLAG in mb_cpu_do_interrupt. */ break; case DISAS_NEXT: /* * Normal insn a delay slot. * However, the return-from-exception type insns should * return to the main loop, as they have adjusted MSR. */ dc->base.is_jmp = (rt_ibe ? DISAS_EXIT_JUMP : DISAS_JUMP); break; case DISAS_EXIT_NEXT: /* * E.g. mts insn in a delay slot. Continue with btarget, * but still return to the main loop. */ dc->base.is_jmp = DISAS_EXIT_JUMP; break; default: g_assert_not_reached(); } } } static void mb_tr_tb_stop(DisasContextBase *dcb, CPUState *cs) { DisasContext *dc = container_of(dcb, DisasContext, base); if (dc->base.is_jmp == DISAS_NORETURN) { /* We have already exited the TB. */ return; } t_sync_flags(dc); switch (dc->base.is_jmp) { case DISAS_TOO_MANY: gen_goto_tb(dc, 0, dc->base.pc_next); return; case DISAS_EXIT: break; case DISAS_EXIT_NEXT: tcg_gen_movi_i32(cpu_pc, dc->base.pc_next); break; case DISAS_EXIT_JUMP: tcg_gen_mov_i32(cpu_pc, cpu_btarget); tcg_gen_discard_i32(cpu_btarget); break; case DISAS_JUMP: if (dc->jmp_dest != -1 && !(tb_cflags(dc->base.tb) & CF_NO_GOTO_TB)) { /* Direct jump. */ tcg_gen_discard_i32(cpu_btarget); if (dc->jmp_cond != TCG_COND_ALWAYS) { /* Conditional direct jump. */ TCGLabel *taken = gen_new_label(); TCGv_i32 tmp = tcg_temp_new_i32(); /* * Copy bvalue to a temp now, so we can discard bvalue. * This can avoid writing bvalue to memory when the * delay slot cannot raise an exception. */ tcg_gen_mov_i32(tmp, cpu_bvalue); tcg_gen_discard_i32(cpu_bvalue); tcg_gen_brcondi_i32(dc->jmp_cond, tmp, 0, taken); gen_goto_tb(dc, 1, dc->base.pc_next); gen_set_label(taken); } gen_goto_tb(dc, 0, dc->jmp_dest); return; } /* Indirect jump (or direct jump w/ goto_tb disabled) */ tcg_gen_mov_i32(cpu_pc, cpu_btarget); tcg_gen_discard_i32(cpu_btarget); tcg_gen_lookup_and_goto_ptr(); return; default: g_assert_not_reached(); } /* Finish DISAS_EXIT_* */ if (unlikely(cs->singlestep_enabled)) { gen_raise_exception(dc, EXCP_DEBUG); } else { tcg_gen_exit_tb(NULL, 0); } } static void mb_tr_disas_log(const DisasContextBase *dcb, CPUState *cs, FILE *logfile) { fprintf(logfile, "IN: %s\n", lookup_symbol(dcb->pc_first)); target_disas(logfile, cs, dcb->pc_first, dcb->tb->size); } static const TranslatorOps mb_tr_ops = { .init_disas_context = mb_tr_init_disas_context, .tb_start = mb_tr_tb_start, .insn_start = mb_tr_insn_start, .translate_insn = mb_tr_translate_insn, .tb_stop = mb_tr_tb_stop, .disas_log = mb_tr_disas_log, }; void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int *max_insns, target_ulong pc, void *host_pc) { DisasContext dc; translator_loop(cpu, tb, max_insns, pc, host_pc, &mb_tr_ops, &dc.base); } void mb_cpu_dump_state(CPUState *cs, FILE *f, int flags) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; uint32_t iflags; int i; qemu_fprintf(f, "pc=0x%08x msr=0x%05x mode=%s(saved=%s) eip=%d ie=%d\n", env->pc, env->msr, (env->msr & MSR_UM) ? "user" : "kernel", (env->msr & MSR_UMS) ? "user" : "kernel", (bool)(env->msr & MSR_EIP), (bool)(env->msr & MSR_IE)); iflags = env->iflags; qemu_fprintf(f, "iflags: 0x%08x", iflags); if (iflags & IMM_FLAG) { qemu_fprintf(f, " IMM(0x%08x)", env->imm); } if (iflags & BIMM_FLAG) { qemu_fprintf(f, " BIMM"); } if (iflags & D_FLAG) { qemu_fprintf(f, " D(btarget=0x%08x)", env->btarget); } if (iflags & DRTI_FLAG) { qemu_fprintf(f, " DRTI"); } if (iflags & DRTE_FLAG) { qemu_fprintf(f, " DRTE"); } if (iflags & DRTB_FLAG) { qemu_fprintf(f, " DRTB"); } if (iflags & ESR_ESS_FLAG) { qemu_fprintf(f, " ESR_ESS(0x%04x)", iflags & ESR_ESS_MASK); } qemu_fprintf(f, "\nesr=0x%04x fsr=0x%02x btr=0x%08x edr=0x%x\n" "ear=0x" TARGET_FMT_lx " slr=0x%x shr=0x%x\n", env->esr, env->fsr, env->btr, env->edr, env->ear, env->slr, env->shr); for (i = 0; i < 32; i++) { qemu_fprintf(f, "r%2.2d=%08x%c", i, env->regs[i], i % 4 == 3 ? '\n' : ' '); } qemu_fprintf(f, "\n"); } void mb_tcg_init(void) { #define R(X) { &cpu_R[X], offsetof(CPUMBState, regs[X]), "r" #X } #define SP(X) { &cpu_##X, offsetof(CPUMBState, X), #X } static const struct { TCGv_i32 *var; int ofs; char name[8]; } i32s[] = { /* * Note that r0 is handled specially in reg_for_read * and reg_for_write. Nothing should touch cpu_R[0]. * Leave that element NULL, which will assert quickly * inside the tcg generator functions. */ R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15), R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23), R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31), SP(pc), SP(msr), SP(msr_c), SP(imm), SP(iflags), SP(bvalue), SP(btarget), SP(res_val), }; #undef R #undef SP for (int i = 0; i < ARRAY_SIZE(i32s); ++i) { *i32s[i].var = tcg_global_mem_new_i32(cpu_env, i32s[i].ofs, i32s[i].name); } cpu_res_addr = tcg_global_mem_new(cpu_env, offsetof(CPUMBState, res_addr), "res_addr"); }