/* * x86 SVM helpers (sysemu only) * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "tcg/helper-tcg.h" /* Secure Virtual Machine helpers */ static void svm_save_seg(CPUX86State *env, int mmu_idx, hwaddr addr, const SegmentCache *sc) { cpu_stw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, selector), sc->selector, mmu_idx, 0); cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, base), sc->base, mmu_idx, 0); cpu_stl_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, limit), sc->limit, mmu_idx, 0); cpu_stw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, attrib), ((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00), mmu_idx, 0); } /* * VMRUN and VMLOAD canonicalizes (i.e., sign-extend to bit 63) all base * addresses in the segment registers that have been loaded. */ static inline void svm_canonicalization(CPUX86State *env, target_ulong *seg_base) { uint16_t shift_amt = 64 - cpu_x86_virtual_addr_width(env); *seg_base = ((((long) *seg_base) << shift_amt) >> shift_amt); } static void svm_load_seg(CPUX86State *env, int mmu_idx, hwaddr addr, SegmentCache *sc) { unsigned int flags; sc->selector = cpu_lduw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, selector), mmu_idx, 0); sc->base = cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, base), mmu_idx, 0); sc->limit = cpu_ldl_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, limit), mmu_idx, 0); flags = cpu_lduw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, attrib), mmu_idx, 0); sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12); svm_canonicalization(env, &sc->base); } static void svm_load_seg_cache(CPUX86State *env, int mmu_idx, hwaddr addr, int seg_reg) { SegmentCache sc; svm_load_seg(env, mmu_idx, addr, &sc); cpu_x86_load_seg_cache(env, seg_reg, sc.selector, sc.base, sc.limit, sc.flags); } static inline bool is_efer_invalid_state (CPUX86State *env) { if (!(env->efer & MSR_EFER_SVME)) { return true; } if (env->efer & MSR_EFER_RESERVED) { return true; } if ((env->efer & (MSR_EFER_LMA | MSR_EFER_LME)) && !(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { return true; } if ((env->efer & MSR_EFER_LME) && (env->cr[0] & CR0_PG_MASK) && !(env->cr[4] & CR4_PAE_MASK)) { return true; } if ((env->efer & MSR_EFER_LME) && (env->cr[0] & CR0_PG_MASK) && !(env->cr[0] & CR0_PE_MASK)) { return true; } if ((env->efer & MSR_EFER_LME) && (env->cr[0] & CR0_PG_MASK) && (env->cr[4] & CR4_PAE_MASK) && (env->segs[R_CS].flags & DESC_L_MASK) && (env->segs[R_CS].flags & DESC_B_MASK)) { return true; } return false; } static inline bool virtual_gif_enabled(CPUX86State *env) { if (likely(env->hflags & HF_GUEST_MASK)) { return (env->features[FEAT_SVM] & CPUID_SVM_VGIF) && (env->int_ctl & V_GIF_ENABLED_MASK); } return false; } static inline bool virtual_vm_load_save_enabled(CPUX86State *env, uint32_t exit_code, uintptr_t retaddr) { uint64_t lbr_ctl; if (likely(env->hflags & HF_GUEST_MASK)) { if (likely(!(env->hflags2 & HF2_NPT_MASK)) || !(env->efer & MSR_EFER_LMA)) { cpu_vmexit(env, exit_code, 0, retaddr); } lbr_ctl = x86_ldl_phys(env_cpu(env), env->vm_vmcb + offsetof(struct vmcb, control.lbr_ctl)); return (env->features[FEAT_SVM] & CPUID_SVM_V_VMSAVE_VMLOAD) && (lbr_ctl & V_VMLOAD_VMSAVE_ENABLED_MASK); } return false; } static inline bool virtual_gif_set(CPUX86State *env) { return !virtual_gif_enabled(env) || (env->int_ctl & V_GIF_MASK); } void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend) { CPUState *cs = env_cpu(env); X86CPU *cpu = env_archcpu(env); target_ulong addr; uint64_t nested_ctl; uint32_t event_inj; uint32_t asid; uint64_t new_cr0; uint64_t new_cr3; uint64_t new_cr4; cpu_svm_check_intercept_param(env, SVM_EXIT_VMRUN, 0, GETPC()); if (aflag == 2) { addr = env->regs[R_EAX]; } else { addr = (uint32_t)env->regs[R_EAX]; } qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr); env->vm_vmcb = addr; /* save the current CPU state in the hsave page */ x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), env->gdt.base); x86_stl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.base), env->idt.base); x86_stl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), env->idt.limit); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rflags), cpu_compute_eflags(env)); svm_save_seg(env, MMU_PHYS_IDX, env->vm_hsave + offsetof(struct vmcb, save.es), &env->segs[R_ES]); svm_save_seg(env, MMU_PHYS_IDX, env->vm_hsave + offsetof(struct vmcb, save.cs), &env->segs[R_CS]); svm_save_seg(env, MMU_PHYS_IDX, env->vm_hsave + offsetof(struct vmcb, save.ss), &env->segs[R_SS]); svm_save_seg(env, MMU_PHYS_IDX, env->vm_hsave + offsetof(struct vmcb, save.ds), &env->segs[R_DS]); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rip), env->eip + next_eip_addend); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); /* load the interception bitmaps so we do not need to access the vmcb in svm mode */ env->intercept = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.intercept)); env->intercept_cr_read = x86_lduw_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_read)); env->intercept_cr_write = x86_lduw_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_write)); env->intercept_dr_read = x86_lduw_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_read)); env->intercept_dr_write = x86_lduw_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_write)); env->intercept_exceptions = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.intercept_exceptions )); nested_ctl = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.nested_ctl)); asid = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.asid)); uint64_t msrpm_base_pa = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.msrpm_base_pa)); uint64_t iopm_base_pa = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.iopm_base_pa)); if ((msrpm_base_pa & ~0xfff) >= (1ull << cpu->phys_bits) - SVM_MSRPM_SIZE) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } if ((iopm_base_pa & ~0xfff) >= (1ull << cpu->phys_bits) - SVM_IOPM_SIZE) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } env->nested_pg_mode = 0; if (!cpu_svm_has_intercept(env, SVM_EXIT_VMRUN)) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } if (asid == 0) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } if (nested_ctl & SVM_NPT_ENABLED) { env->nested_cr3 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.nested_cr3)); env->hflags2 |= HF2_NPT_MASK; env->nested_pg_mode = get_pg_mode(env) & PG_MODE_SVM_MASK; tlb_flush_by_mmuidx(cs, 1 << MMU_NESTED_IDX); } /* enable intercepts */ env->hflags |= HF_GUEST_MASK; env->tsc_offset = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.tsc_offset)); new_cr0 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr0)); if (new_cr0 & SVM_CR0_RESERVED_MASK) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } if ((new_cr0 & CR0_NW_MASK) && !(new_cr0 & CR0_CD_MASK)) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } new_cr3 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr3)); if ((env->efer & MSR_EFER_LMA) && (new_cr3 & ((~0ULL) << cpu->phys_bits))) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } new_cr4 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr4)); if (new_cr4 & cr4_reserved_bits(env)) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } /* clear exit_info_2 so we behave like the real hardware */ x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0); cpu_x86_update_cr0(env, new_cr0); cpu_x86_update_cr4(env, new_cr4); cpu_x86_update_cr3(env, new_cr3); env->cr[2] = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr2)); env->int_ctl = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); if (env->int_ctl & V_INTR_MASKING_MASK) { env->hflags2 |= HF2_VINTR_MASK; if (env->eflags & IF_MASK) { env->hflags2 |= HF2_HIF_MASK; } } cpu_load_efer(env, x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.efer))); env->eflags = 0; cpu_load_eflags(env, x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rflags)), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); svm_load_seg_cache(env, MMU_PHYS_IDX, env->vm_vmcb + offsetof(struct vmcb, save.es), R_ES); svm_load_seg_cache(env, MMU_PHYS_IDX, env->vm_vmcb + offsetof(struct vmcb, save.cs), R_CS); svm_load_seg_cache(env, MMU_PHYS_IDX, env->vm_vmcb + offsetof(struct vmcb, save.ss), R_SS); svm_load_seg_cache(env, MMU_PHYS_IDX, env->vm_vmcb + offsetof(struct vmcb, save.ds), R_DS); svm_load_seg(env, MMU_PHYS_IDX, env->vm_vmcb + offsetof(struct vmcb, save.idtr), &env->idt); svm_load_seg(env, MMU_PHYS_IDX, env->vm_vmcb + offsetof(struct vmcb, save.gdtr), &env->gdt); env->eip = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rip)); env->regs[R_ESP] = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rsp)); env->regs[R_EAX] = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rax)); env->dr[7] = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.dr7)); env->dr[6] = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.dr6)); #ifdef TARGET_X86_64 if (env->dr[6] & DR_RESERVED_MASK) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } if (env->dr[7] & DR_RESERVED_MASK) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } #endif if (is_efer_invalid_state(env)) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } switch (x86_ldub_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) { case TLB_CONTROL_DO_NOTHING: break; case TLB_CONTROL_FLUSH_ALL_ASID: /* FIXME: this is not 100% correct but should work for now */ tlb_flush(cs); break; } env->hflags2 |= HF2_GIF_MASK; if (ctl_has_irq(env)) { CPUState *cs = env_cpu(env); cs->interrupt_request |= CPU_INTERRUPT_VIRQ; } if (virtual_gif_set(env)) { env->hflags2 |= HF2_VGIF_MASK; } /* maybe we need to inject an event */ event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.event_inj)); if (event_inj & SVM_EVTINJ_VALID) { uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK; uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR; uint32_t event_inj_err = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err)); qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err); /* FIXME: need to implement valid_err */ switch (event_inj & SVM_EVTINJ_TYPE_MASK) { case SVM_EVTINJ_TYPE_INTR: cs->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = -1; qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR"); /* XXX: is it always correct? */ do_interrupt_x86_hardirq(env, vector, 1); break; case SVM_EVTINJ_TYPE_NMI: cs->exception_index = EXCP02_NMI; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = env->eip; qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI"); cpu_loop_exit(cs); break; case SVM_EVTINJ_TYPE_EXEPT: if (vector == EXCP02_NMI || vector >= 31) { cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); } cs->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = -1; qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT"); cpu_loop_exit(cs); break; case SVM_EVTINJ_TYPE_SOFT: cs->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 1; env->exception_next_eip = env->eip; qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT"); cpu_loop_exit(cs); break; default: cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); break; } qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", cs->exception_index, env->error_code); } } void helper_vmmcall(CPUX86State *env) { cpu_svm_check_intercept_param(env, SVM_EXIT_VMMCALL, 0, GETPC()); raise_exception(env, EXCP06_ILLOP); } void helper_vmload(CPUX86State *env, int aflag) { int mmu_idx = MMU_PHYS_IDX; target_ulong addr; cpu_svm_check_intercept_param(env, SVM_EXIT_VMLOAD, 0, GETPC()); if (aflag == 2) { addr = env->regs[R_EAX]; } else { addr = (uint32_t)env->regs[R_EAX]; } if (virtual_vm_load_save_enabled(env, SVM_EXIT_VMLOAD, GETPC())) { mmu_idx = MMU_NESTED_IDX; } svm_load_seg_cache(env, mmu_idx, addr + offsetof(struct vmcb, save.fs), R_FS); svm_load_seg_cache(env, mmu_idx, addr + offsetof(struct vmcb, save.gs), R_GS); svm_load_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.tr), &env->tr); svm_load_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.ldtr), &env->ldt); #ifdef TARGET_X86_64 env->kernelgsbase = cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.kernel_gs_base), mmu_idx, 0); env->lstar = cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.lstar), mmu_idx, 0); env->cstar = cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.cstar), mmu_idx, 0); env->fmask = cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sfmask), mmu_idx, 0); svm_canonicalization(env, &env->kernelgsbase); #endif env->star = cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.star), mmu_idx, 0); env->sysenter_cs = cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_cs), mmu_idx, 0); env->sysenter_esp = cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_esp), mmu_idx, 0); env->sysenter_eip = cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_eip), mmu_idx, 0); } void helper_vmsave(CPUX86State *env, int aflag) { int mmu_idx = MMU_PHYS_IDX; target_ulong addr; cpu_svm_check_intercept_param(env, SVM_EXIT_VMSAVE, 0, GETPC()); if (aflag == 2) { addr = env->regs[R_EAX]; } else { addr = (uint32_t)env->regs[R_EAX]; } if (virtual_vm_load_save_enabled(env, SVM_EXIT_VMSAVE, GETPC())) { mmu_idx = MMU_NESTED_IDX; } svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.fs), &env->segs[R_FS]); svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.gs), &env->segs[R_GS]); svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.tr), &env->tr); svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.ldtr), &env->ldt); #ifdef TARGET_X86_64 cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.kernel_gs_base), env->kernelgsbase, mmu_idx, 0); cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.lstar), env->lstar, mmu_idx, 0); cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.cstar), env->cstar, mmu_idx, 0); cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sfmask), env->fmask, mmu_idx, 0); #endif cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.star), env->star, mmu_idx, 0); cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs, mmu_idx, 0); cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_esp), env->sysenter_esp, mmu_idx, 0); cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_eip), env->sysenter_eip, mmu_idx, 0); } void helper_stgi(CPUX86State *env) { cpu_svm_check_intercept_param(env, SVM_EXIT_STGI, 0, GETPC()); if (virtual_gif_enabled(env)) { env->int_ctl |= V_GIF_MASK; env->hflags2 |= HF2_VGIF_MASK; } else { env->hflags2 |= HF2_GIF_MASK; } } void helper_clgi(CPUX86State *env) { cpu_svm_check_intercept_param(env, SVM_EXIT_CLGI, 0, GETPC()); if (virtual_gif_enabled(env)) { env->int_ctl &= ~V_GIF_MASK; env->hflags2 &= ~HF2_VGIF_MASK; } else { env->hflags2 &= ~HF2_GIF_MASK; } } bool cpu_svm_has_intercept(CPUX86State *env, uint32_t type) { switch (type) { case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8: if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) { return true; } break; case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8: if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) { return true; } break; case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7: if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) { return true; } break; case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7: if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) { return true; } break; case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31: if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) { return true; } break; default: if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) { return true; } break; } return false; } void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type, uint64_t param, uintptr_t retaddr) { CPUState *cs = env_cpu(env); if (likely(!(env->hflags & HF_GUEST_MASK))) { return; } if (!cpu_svm_has_intercept(env, type)) { return; } if (type == SVM_EXIT_MSR) { /* FIXME: this should be read in at vmrun (faster this way?) */ uint64_t addr = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.msrpm_base_pa)); uint32_t t0, t1; switch ((uint32_t)env->regs[R_ECX]) { case 0 ... 0x1fff: t0 = (env->regs[R_ECX] * 2) % 8; t1 = (env->regs[R_ECX] * 2) / 8; break; case 0xc0000000 ... 0xc0001fff: t0 = (8192 + env->regs[R_ECX] - 0xc0000000) * 2; t1 = (t0 / 8); t0 %= 8; break; case 0xc0010000 ... 0xc0011fff: t0 = (16384 + env->regs[R_ECX] - 0xc0010000) * 2; t1 = (t0 / 8); t0 %= 8; break; default: cpu_vmexit(env, type, param, retaddr); t0 = 0; t1 = 0; break; } if (x86_ldub_phys(cs, addr + t1) & ((1 << param) << t0)) { cpu_vmexit(env, type, param, retaddr); } return; } cpu_vmexit(env, type, param, retaddr); } void helper_svm_check_intercept(CPUX86State *env, uint32_t type) { cpu_svm_check_intercept_param(env, type, 0, GETPC()); } void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param, uint32_t next_eip_addend) { CPUState *cs = env_cpu(env); if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) { /* FIXME: this should be read in at vmrun (faster this way?) */ uint64_t addr = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.iopm_base_pa)); uint16_t mask = (1 << ((param >> 4) & 7)) - 1; if (x86_lduw_phys(cs, addr + port / 8) & (mask << (port & 7))) { /* next env->eip */ x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), env->eip + next_eip_addend); cpu_vmexit(env, SVM_EXIT_IOIO, param | (port << 16), GETPC()); } } } void cpu_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1, uintptr_t retaddr) { CPUState *cs = env_cpu(env); cpu_restore_state(cs, retaddr, true); qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016" PRIx64 ", " TARGET_FMT_lx ")!\n", exit_code, exit_info_1, x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2)), env->eip); cs->exception_index = EXCP_VMEXIT; x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_code), exit_code); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1), exit_info_1), /* remove any pending exception */ env->old_exception = -1; cpu_loop_exit(cs); } void do_vmexit(CPUX86State *env) { CPUState *cs = env_cpu(env); if (env->hflags & HF_INHIBIT_IRQ_MASK) { x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.int_state), SVM_INTERRUPT_SHADOW_MASK); env->hflags &= ~HF_INHIBIT_IRQ_MASK; } else { x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0); } env->hflags2 &= ~HF2_NPT_MASK; tlb_flush_by_mmuidx(cs, 1 << MMU_NESTED_IDX); /* Save the VM state in the vmcb */ svm_save_seg(env, MMU_PHYS_IDX, env->vm_vmcb + offsetof(struct vmcb, save.es), &env->segs[R_ES]); svm_save_seg(env, MMU_PHYS_IDX, env->vm_vmcb + offsetof(struct vmcb, save.cs), &env->segs[R_CS]); svm_save_seg(env, MMU_PHYS_IDX, env->vm_vmcb + offsetof(struct vmcb, save.ss), &env->segs[R_SS]); svm_save_seg(env, MMU_PHYS_IDX, env->vm_vmcb + offsetof(struct vmcb, save.ds), &env->segs[R_DS]); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base), env->gdt.base); x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.idtr.base), env->idt.base); x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit), env->idt.limit); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]); x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), env->int_ctl); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rflags), cpu_compute_eflags(env)); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rip), env->eip); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]); x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]); x86_stb_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cpl), env->hflags & HF_CPL_MASK); /* Reload the host state from vm_hsave */ env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); env->hflags &= ~HF_GUEST_MASK; env->intercept = 0; env->intercept_exceptions = 0; cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ; env->int_ctl = 0; env->tsc_offset = 0; env->gdt.base = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base)); env->gdt.limit = x86_ldl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit)); env->idt.base = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.base)); env->idt.limit = x86_ldl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit)); cpu_x86_update_cr0(env, x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.cr0)) | CR0_PE_MASK); cpu_x86_update_cr4(env, x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.cr4))); cpu_x86_update_cr3(env, x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.cr3))); /* we need to set the efer after the crs so the hidden flags get set properly */ cpu_load_efer(env, x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.efer))); env->eflags = 0; cpu_load_eflags(env, x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rflags)), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK | VM_MASK)); svm_load_seg_cache(env, MMU_PHYS_IDX, env->vm_hsave + offsetof(struct vmcb, save.es), R_ES); svm_load_seg_cache(env, MMU_PHYS_IDX, env->vm_hsave + offsetof(struct vmcb, save.cs), R_CS); svm_load_seg_cache(env, MMU_PHYS_IDX, env->vm_hsave + offsetof(struct vmcb, save.ss), R_SS); svm_load_seg_cache(env, MMU_PHYS_IDX, env->vm_hsave + offsetof(struct vmcb, save.ds), R_DS); env->eip = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rip)); env->regs[R_ESP] = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rsp)); env->regs[R_EAX] = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rax)); env->dr[6] = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.dr6)); env->dr[7] = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.dr7)); /* other setups */ x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info), x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.event_inj))); x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err), x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err))); x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0); env->hflags2 &= ~HF2_GIF_MASK; env->hflags2 &= ~HF2_VGIF_MASK; /* FIXME: Resets the current ASID register to zero (host ASID). */ /* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */ /* Clears the TSC_OFFSET inside the processor. */ /* If the host is in PAE mode, the processor reloads the host's PDPEs from the page table indicated the host's CR3. If the PDPEs contain illegal state, the processor causes a shutdown. */ /* Disables all breakpoints in the host DR7 register. */ /* Checks the reloaded host state for consistency. */ /* If the host's rIP reloaded by #VMEXIT is outside the limit of the host's code segment or non-canonical (in the case of long mode), a #GP fault is delivered inside the host. */ }