/* * x86 exception helpers - sysemu code * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "tcg/helper-tcg.h" #define PG_ERROR_OK (-1) typedef hwaddr (*MMUTranslateFunc)(CPUState *cs, hwaddr gphys, MMUAccessType access_type, int *prot); #define GET_HPHYS(cs, gpa, access_type, prot) \ (get_hphys_func ? get_hphys_func(cs, gpa, access_type, prot) : gpa) static int mmu_translate(CPUState *cs, hwaddr addr, MMUTranslateFunc get_hphys_func, uint64_t cr3, int is_write1, int mmu_idx, int pg_mode, hwaddr *xlat, int *page_size, int *prot) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; uint64_t ptep, pte; int32_t a20_mask; target_ulong pde_addr, pte_addr; int error_code = 0; int is_dirty, is_write, is_user; uint64_t rsvd_mask = PG_ADDRESS_MASK & ~MAKE_64BIT_MASK(0, cpu->phys_bits); uint32_t page_offset; uint32_t pkr; is_user = (mmu_idx == MMU_USER_IDX); is_write = is_write1 & 1; a20_mask = x86_get_a20_mask(env); if (!(pg_mode & PG_MODE_NXE)) { rsvd_mask |= PG_NX_MASK; } if (pg_mode & PG_MODE_PAE) { uint64_t pde, pdpe; target_ulong pdpe_addr; #ifdef TARGET_X86_64 if (pg_mode & PG_MODE_LMA) { bool la57 = pg_mode & PG_MODE_LA57; uint64_t pml5e_addr, pml5e; uint64_t pml4e_addr, pml4e; if (la57) { pml5e_addr = ((cr3 & ~0xfff) + (((addr >> 48) & 0x1ff) << 3)) & a20_mask; pml5e_addr = GET_HPHYS(cs, pml5e_addr, MMU_DATA_STORE, NULL); pml5e = x86_ldq_phys(cs, pml5e_addr); if (!(pml5e & PG_PRESENT_MASK)) { goto do_fault; } if (pml5e & (rsvd_mask | PG_PSE_MASK)) { goto do_fault_rsvd; } if (!(pml5e & PG_ACCESSED_MASK)) { pml5e |= PG_ACCESSED_MASK; x86_stl_phys_notdirty(cs, pml5e_addr, pml5e); } ptep = pml5e ^ PG_NX_MASK; } else { pml5e = cr3; ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; } pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + (((addr >> 39) & 0x1ff) << 3)) & a20_mask; pml4e_addr = GET_HPHYS(cs, pml4e_addr, MMU_DATA_STORE, NULL); pml4e = x86_ldq_phys(cs, pml4e_addr); if (!(pml4e & PG_PRESENT_MASK)) { goto do_fault; } if (pml4e & (rsvd_mask | PG_PSE_MASK)) { goto do_fault_rsvd; } if (!(pml4e & PG_ACCESSED_MASK)) { pml4e |= PG_ACCESSED_MASK; x86_stl_phys_notdirty(cs, pml4e_addr, pml4e); } ptep &= pml4e ^ PG_NX_MASK; pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) & a20_mask; pdpe_addr = GET_HPHYS(cs, pdpe_addr, MMU_DATA_STORE, NULL); pdpe = x86_ldq_phys(cs, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { goto do_fault; } if (pdpe & rsvd_mask) { goto do_fault_rsvd; } ptep &= pdpe ^ PG_NX_MASK; if (!(pdpe & PG_ACCESSED_MASK)) { pdpe |= PG_ACCESSED_MASK; x86_stl_phys_notdirty(cs, pdpe_addr, pdpe); } if (pdpe & PG_PSE_MASK) { /* 1 GB page */ *page_size = 1024 * 1024 * 1024; pte_addr = pdpe_addr; pte = pdpe; goto do_check_protect; } } else #endif { /* XXX: load them when cr3 is loaded ? */ pdpe_addr = ((cr3 & ~0x1f) + ((addr >> 27) & 0x18)) & a20_mask; pdpe_addr = GET_HPHYS(cs, pdpe_addr, MMU_DATA_STORE, NULL); pdpe = x86_ldq_phys(cs, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { goto do_fault; } rsvd_mask |= PG_HI_USER_MASK; if (pdpe & (rsvd_mask | PG_NX_MASK)) { goto do_fault_rsvd; } ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; } pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) & a20_mask; pde_addr = GET_HPHYS(cs, pde_addr, MMU_DATA_STORE, NULL); pde = x86_ldq_phys(cs, pde_addr); if (!(pde & PG_PRESENT_MASK)) { goto do_fault; } if (pde & rsvd_mask) { goto do_fault_rsvd; } ptep &= pde ^ PG_NX_MASK; if (pde & PG_PSE_MASK) { /* 2 MB page */ *page_size = 2048 * 1024; pte_addr = pde_addr; pte = pde; goto do_check_protect; } /* 4 KB page */ if (!(pde & PG_ACCESSED_MASK)) { pde |= PG_ACCESSED_MASK; x86_stl_phys_notdirty(cs, pde_addr, pde); } pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) & a20_mask; pte_addr = GET_HPHYS(cs, pte_addr, MMU_DATA_STORE, NULL); pte = x86_ldq_phys(cs, pte_addr); if (!(pte & PG_PRESENT_MASK)) { goto do_fault; } if (pte & rsvd_mask) { goto do_fault_rsvd; } /* combine pde and pte nx, user and rw protections */ ptep &= pte ^ PG_NX_MASK; *page_size = 4096; } else { uint32_t pde; /* page directory entry */ pde_addr = ((cr3 & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask; pde_addr = GET_HPHYS(cs, pde_addr, MMU_DATA_STORE, NULL); pde = x86_ldl_phys(cs, pde_addr); if (!(pde & PG_PRESENT_MASK)) { goto do_fault; } ptep = pde | PG_NX_MASK; /* if PSE bit is set, then we use a 4MB page */ if ((pde & PG_PSE_MASK) && (pg_mode & PG_MODE_PSE)) { *page_size = 4096 * 1024; pte_addr = pde_addr; /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved. * Leave bits 20-13 in place for setting accessed/dirty bits below. */ pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); rsvd_mask = 0x200000; goto do_check_protect_pse36; } if (!(pde & PG_ACCESSED_MASK)) { pde |= PG_ACCESSED_MASK; x86_stl_phys_notdirty(cs, pde_addr, pde); } /* page directory entry */ pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask; pte_addr = GET_HPHYS(cs, pte_addr, MMU_DATA_STORE, NULL); pte = x86_ldl_phys(cs, pte_addr); if (!(pte & PG_PRESENT_MASK)) { goto do_fault; } /* combine pde and pte user and rw protections */ ptep &= pte | PG_NX_MASK; *page_size = 4096; rsvd_mask = 0; } do_check_protect: rsvd_mask |= (*page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK; do_check_protect_pse36: if (pte & rsvd_mask) { goto do_fault_rsvd; } ptep ^= PG_NX_MASK; /* can the page can be put in the TLB? prot will tell us */ if (is_user && !(ptep & PG_USER_MASK)) { goto do_fault_protect; } *prot = 0; if (mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) { *prot |= PAGE_READ; if ((ptep & PG_RW_MASK) || !(is_user || (pg_mode & PG_MODE_WP))) { *prot |= PAGE_WRITE; } } if (!(ptep & PG_NX_MASK) && (mmu_idx == MMU_USER_IDX || !((pg_mode & PG_MODE_SMEP) && (ptep & PG_USER_MASK)))) { *prot |= PAGE_EXEC; } if (ptep & PG_USER_MASK) { pkr = pg_mode & PG_MODE_PKE ? env->pkru : 0; } else { pkr = pg_mode & PG_MODE_PKS ? env->pkrs : 0; } if (pkr) { uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT; uint32_t pkr_ad = (pkr >> pk * 2) & 1; uint32_t pkr_wd = (pkr >> pk * 2) & 2; uint32_t pkr_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; if (pkr_ad) { pkr_prot &= ~(PAGE_READ | PAGE_WRITE); } else if (pkr_wd && (is_user || (pg_mode & PG_MODE_WP))) { pkr_prot &= ~PAGE_WRITE; } *prot &= pkr_prot; if ((pkr_prot & (1 << is_write1)) == 0) { assert(is_write1 != 2); error_code |= PG_ERROR_PK_MASK; goto do_fault_protect; } } if ((*prot & (1 << is_write1)) == 0) { goto do_fault_protect; } /* yes, it can! */ is_dirty = is_write && !(pte & PG_DIRTY_MASK); if (!(pte & PG_ACCESSED_MASK) || is_dirty) { pte |= PG_ACCESSED_MASK; if (is_dirty) { pte |= PG_DIRTY_MASK; } x86_stl_phys_notdirty(cs, pte_addr, pte); } if (!(pte & PG_DIRTY_MASK)) { /* only set write access if already dirty... otherwise wait for dirty access */ assert(!is_write); *prot &= ~PAGE_WRITE; } pte = pte & a20_mask; /* align to page_size */ pte &= PG_ADDRESS_MASK & ~(*page_size - 1); page_offset = addr & (*page_size - 1); *xlat = GET_HPHYS(cs, pte + page_offset, is_write1, prot); return PG_ERROR_OK; do_fault_rsvd: error_code |= PG_ERROR_RSVD_MASK; do_fault_protect: error_code |= PG_ERROR_P_MASK; do_fault: error_code |= (is_write << PG_ERROR_W_BIT); if (is_user) error_code |= PG_ERROR_U_MASK; if (is_write1 == 2 && ((pg_mode & PG_MODE_NXE) || (pg_mode & PG_MODE_SMEP))) error_code |= PG_ERROR_I_D_MASK; return error_code; } hwaddr get_hphys(CPUState *cs, hwaddr gphys, MMUAccessType access_type, int *prot) { CPUX86State *env = &X86_CPU(cs)->env; uint64_t exit_info_1; int page_size; int next_prot; hwaddr hphys; if (likely(!(env->hflags2 & HF2_NPT_MASK))) { return gphys; } exit_info_1 = mmu_translate(cs, gphys, NULL, env->nested_cr3, access_type, MMU_USER_IDX, env->nested_pg_mode, &hphys, &page_size, &next_prot); if (exit_info_1 == PG_ERROR_OK) { if (prot) { *prot &= next_prot; } return hphys; } x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), gphys); if (prot) { exit_info_1 |= SVM_NPTEXIT_GPA; } else { /* page table access */ exit_info_1 |= SVM_NPTEXIT_GPT; } cpu_vmexit(env, SVM_EXIT_NPF, exit_info_1, env->retaddr); } /* return value: * -1 = cannot handle fault * 0 = nothing more to do * 1 = generate PF fault */ static int handle_mmu_fault(CPUState *cs, vaddr addr, int size, int is_write1, int mmu_idx) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; int error_code = PG_ERROR_OK; int pg_mode, prot, page_size; int32_t a20_mask; hwaddr paddr; hwaddr vaddr; #if defined(DEBUG_MMU) printf("MMU fault: addr=%" VADDR_PRIx " w=%d mmu=%d eip=" TARGET_FMT_lx "\n", addr, is_write1, mmu_idx, env->eip); #endif if (!(env->cr[0] & CR0_PG_MASK)) { a20_mask = x86_get_a20_mask(env); paddr = addr & a20_mask; #ifdef TARGET_X86_64 if (!(env->hflags & HF_LMA_MASK)) { /* Without long mode we can only address 32bits in real mode */ paddr = (uint32_t)paddr; } #endif prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; page_size = 4096; } else { pg_mode = get_pg_mode(env); if (pg_mode & PG_MODE_LMA) { int32_t sext; /* test virtual address sign extension */ sext = (int64_t)addr >> (pg_mode & PG_MODE_LA57 ? 56 : 47); if (sext != 0 && sext != -1) { env->error_code = 0; cs->exception_index = EXCP0D_GPF; return 1; } } error_code = mmu_translate(cs, addr, get_hphys, env->cr[3], is_write1, mmu_idx, pg_mode, &paddr, &page_size, &prot); } if (error_code == PG_ERROR_OK) { /* Even if 4MB pages, we map only one 4KB page in the cache to avoid filling it too fast */ vaddr = addr & TARGET_PAGE_MASK; paddr &= TARGET_PAGE_MASK; assert(prot & (1 << is_write1)); tlb_set_page_with_attrs(cs, vaddr, paddr, cpu_get_mem_attrs(env), prot, mmu_idx, page_size); return 0; } else { if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) { /* cr2 is not modified in case of exceptions */ x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), addr); } else { env->cr[2] = addr; } env->error_code = error_code; cs->exception_index = EXCP0E_PAGE; return 1; } } bool x86_cpu_tlb_fill(CPUState *cs, vaddr addr, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; env->retaddr = retaddr; if (handle_mmu_fault(cs, addr, size, access_type, mmu_idx)) { /* FIXME: On error in get_hphys we have already jumped out. */ g_assert(!probe); raise_exception_err_ra(env, cs->exception_index, env->error_code, retaddr); } return true; } G_NORETURN void x86_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { X86CPU *cpu = X86_CPU(cs); handle_unaligned_access(&cpu->env, vaddr, access_type, retaddr); }