/* * x86 segmentation related helpers: * TSS, interrupts, system calls, jumps and call/task gates, descriptors * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "qemu/log.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "exec/log.h" #include "helper-tcg.h" #include "seg_helper.h" #include "access.h" #ifdef TARGET_X86_64 #define SET_ESP(val, sp_mask) \ do { \ if ((sp_mask) == 0xffff) { \ env->regs[R_ESP] = (env->regs[R_ESP] & ~0xffff) | \ ((val) & 0xffff); \ } else if ((sp_mask) == 0xffffffffLL) { \ env->regs[R_ESP] = (uint32_t)(val); \ } else { \ env->regs[R_ESP] = (val); \ } \ } while (0) #else #define SET_ESP(val, sp_mask) \ do { \ env->regs[R_ESP] = (env->regs[R_ESP] & ~(sp_mask)) | \ ((val) & (sp_mask)); \ } while (0) #endif /* XXX: use mmu_index to have proper DPL support */ typedef struct StackAccess { CPUX86State *env; uintptr_t ra; target_ulong ss_base; target_ulong sp; target_ulong sp_mask; int mmu_index; } StackAccess; static void pushw(StackAccess *sa, uint16_t val) { sa->sp -= 2; cpu_stw_mmuidx_ra(sa->env, sa->ss_base + (sa->sp & sa->sp_mask), val, sa->mmu_index, sa->ra); } static void pushl(StackAccess *sa, uint32_t val) { sa->sp -= 4; cpu_stl_mmuidx_ra(sa->env, sa->ss_base + (sa->sp & sa->sp_mask), val, sa->mmu_index, sa->ra); } static uint16_t popw(StackAccess *sa) { uint16_t ret = cpu_lduw_mmuidx_ra(sa->env, sa->ss_base + (sa->sp & sa->sp_mask), sa->mmu_index, sa->ra); sa->sp += 2; return ret; } static uint32_t popl(StackAccess *sa) { uint32_t ret = cpu_ldl_mmuidx_ra(sa->env, sa->ss_base + (sa->sp & sa->sp_mask), sa->mmu_index, sa->ra); sa->sp += 4; return ret; } int get_pg_mode(CPUX86State *env) { int pg_mode = 0; if (!(env->cr[0] & CR0_PG_MASK)) { return 0; } if (env->cr[0] & CR0_WP_MASK) { pg_mode |= PG_MODE_WP; } if (env->cr[4] & CR4_PAE_MASK) { pg_mode |= PG_MODE_PAE; if (env->efer & MSR_EFER_NXE) { pg_mode |= PG_MODE_NXE; } } if (env->cr[4] & CR4_PSE_MASK) { pg_mode |= PG_MODE_PSE; } if (env->cr[4] & CR4_SMEP_MASK) { pg_mode |= PG_MODE_SMEP; } if (env->hflags & HF_LMA_MASK) { pg_mode |= PG_MODE_LMA; if (env->cr[4] & CR4_PKE_MASK) { pg_mode |= PG_MODE_PKE; } if (env->cr[4] & CR4_PKS_MASK) { pg_mode |= PG_MODE_PKS; } if (env->cr[4] & CR4_LA57_MASK) { pg_mode |= PG_MODE_LA57; } } return pg_mode; } /* return non zero if error */ static inline int load_segment_ra(CPUX86State *env, uint32_t *e1_ptr, uint32_t *e2_ptr, int selector, uintptr_t retaddr) { SegmentCache *dt; int index; target_ulong ptr; if (selector & 0x4) { dt = &env->ldt; } else { dt = &env->gdt; } index = selector & ~7; if ((index + 7) > dt->limit) { return -1; } ptr = dt->base + index; *e1_ptr = cpu_ldl_kernel_ra(env, ptr, retaddr); *e2_ptr = cpu_ldl_kernel_ra(env, ptr + 4, retaddr); return 0; } static inline int load_segment(CPUX86State *env, uint32_t *e1_ptr, uint32_t *e2_ptr, int selector) { return load_segment_ra(env, e1_ptr, e2_ptr, selector, 0); } static inline unsigned int get_seg_limit(uint32_t e1, uint32_t e2) { unsigned int limit; limit = (e1 & 0xffff) | (e2 & 0x000f0000); if (e2 & DESC_G_MASK) { limit = (limit << 12) | 0xfff; } return limit; } static inline uint32_t get_seg_base(uint32_t e1, uint32_t e2) { return (e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000); } static inline void load_seg_cache_raw_dt(SegmentCache *sc, uint32_t e1, uint32_t e2) { sc->base = get_seg_base(e1, e2); sc->limit = get_seg_limit(e1, e2); sc->flags = e2; } /* init the segment cache in vm86 mode. */ static inline void load_seg_vm(CPUX86State *env, int seg, int selector) { selector &= 0xffff; cpu_x86_load_seg_cache(env, seg, selector, (selector << 4), 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK | (3 << DESC_DPL_SHIFT)); } static inline void get_ss_esp_from_tss(CPUX86State *env, uint32_t *ss_ptr, uint32_t *esp_ptr, int dpl, uintptr_t retaddr) { X86CPU *cpu = env_archcpu(env); int type, index, shift; #if 0 { int i; printf("TR: base=%p limit=%x\n", env->tr.base, env->tr.limit); for (i = 0; i < env->tr.limit; i++) { printf("%02x ", env->tr.base[i]); if ((i & 7) == 7) { printf("\n"); } } printf("\n"); } #endif if (!(env->tr.flags & DESC_P_MASK)) { cpu_abort(CPU(cpu), "invalid tss"); } type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf; if ((type & 7) != 1) { cpu_abort(CPU(cpu), "invalid tss type"); } shift = type >> 3; index = (dpl * 4 + 2) << shift; if (index + (4 << shift) - 1 > env->tr.limit) { raise_exception_err_ra(env, EXCP0A_TSS, env->tr.selector & 0xfffc, retaddr); } if (shift == 0) { *esp_ptr = cpu_lduw_kernel_ra(env, env->tr.base + index, retaddr); *ss_ptr = cpu_lduw_kernel_ra(env, env->tr.base + index + 2, retaddr); } else { *esp_ptr = cpu_ldl_kernel_ra(env, env->tr.base + index, retaddr); *ss_ptr = cpu_lduw_kernel_ra(env, env->tr.base + index + 4, retaddr); } } static void tss_load_seg(CPUX86State *env, X86Seg seg_reg, int selector, int cpl, uintptr_t retaddr) { uint32_t e1, e2; int rpl, dpl; if ((selector & 0xfffc) != 0) { if (load_segment_ra(env, &e1, &e2, selector, retaddr) != 0) { raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr); } if (!(e2 & DESC_S_MASK)) { raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr); } rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (seg_reg == R_CS) { if (!(e2 & DESC_CS_MASK)) { raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr); } if (dpl != rpl) { raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr); } } else if (seg_reg == R_SS) { /* SS must be writable data */ if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK)) { raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr); } if (dpl != cpl || dpl != rpl) { raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr); } } else { /* not readable code */ if ((e2 & DESC_CS_MASK) && !(e2 & DESC_R_MASK)) { raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr); } /* if data or non conforming code, checks the rights */ if (((e2 >> DESC_TYPE_SHIFT) & 0xf) < 12) { if (dpl < cpl || dpl < rpl) { raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr); } } } if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, selector & 0xfffc, retaddr); } cpu_x86_load_seg_cache(env, seg_reg, selector, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); } else { if (seg_reg == R_SS || seg_reg == R_CS) { raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr); } } } static void tss_set_busy(CPUX86State *env, int tss_selector, bool value, uintptr_t retaddr) { target_ulong ptr = env->gdt.base + (tss_selector & ~7); uint32_t e2 = cpu_ldl_kernel_ra(env, ptr + 4, retaddr); if (value) { e2 |= DESC_TSS_BUSY_MASK; } else { e2 &= ~DESC_TSS_BUSY_MASK; } cpu_stl_kernel_ra(env, ptr + 4, e2, retaddr); } #define SWITCH_TSS_JMP 0 #define SWITCH_TSS_IRET 1 #define SWITCH_TSS_CALL 2 /* return 0 if switching to a 16-bit selector */ static int switch_tss_ra(CPUX86State *env, int tss_selector, uint32_t e1, uint32_t e2, int source, uint32_t next_eip, uintptr_t retaddr) { int tss_limit, tss_limit_max, type, old_tss_limit_max, old_type, i; target_ulong tss_base; uint32_t new_regs[8], new_segs[6]; uint32_t new_eflags, new_eip, new_cr3, new_ldt, new_trap; uint32_t old_eflags, eflags_mask; SegmentCache *dt; int mmu_index, index; target_ulong ptr; X86Access old, new; type = (e2 >> DESC_TYPE_SHIFT) & 0xf; LOG_PCALL("switch_tss: sel=0x%04x type=%d src=%d\n", tss_selector, type, source); /* if task gate, we read the TSS segment and we load it */ if (type == 5) { if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, tss_selector & 0xfffc, retaddr); } tss_selector = e1 >> 16; if (tss_selector & 4) { raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, retaddr); } if (load_segment_ra(env, &e1, &e2, tss_selector, retaddr) != 0) { raise_exception_err_ra(env, EXCP0D_GPF, tss_selector & 0xfffc, retaddr); } if (e2 & DESC_S_MASK) { raise_exception_err_ra(env, EXCP0D_GPF, tss_selector & 0xfffc, retaddr); } type = (e2 >> DESC_TYPE_SHIFT) & 0xf; if ((type & 7) != 1) { raise_exception_err_ra(env, EXCP0D_GPF, tss_selector & 0xfffc, retaddr); } } if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, tss_selector & 0xfffc, retaddr); } if (type & 8) { tss_limit_max = 103; } else { tss_limit_max = 43; } tss_limit = get_seg_limit(e1, e2); tss_base = get_seg_base(e1, e2); if ((tss_selector & 4) != 0 || tss_limit < tss_limit_max) { raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, retaddr); } old_type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf; if (old_type & 8) { old_tss_limit_max = 103; } else { old_tss_limit_max = 43; } /* new TSS must be busy iff the source is an IRET instruction */ if (!!(e2 & DESC_TSS_BUSY_MASK) != (source == SWITCH_TSS_IRET)) { raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, retaddr); } /* X86Access avoids memory exceptions during the task switch */ mmu_index = cpu_mmu_index_kernel(env); access_prepare_mmu(&old, env, env->tr.base, old_tss_limit_max, MMU_DATA_STORE, mmu_index, retaddr); if (source == SWITCH_TSS_CALL) { /* Probe for future write of parent task */ probe_access(env, tss_base, 2, MMU_DATA_STORE, mmu_index, retaddr); } access_prepare_mmu(&new, env, tss_base, tss_limit, MMU_DATA_LOAD, mmu_index, retaddr); /* save the current state in the old TSS */ old_eflags = cpu_compute_eflags(env); if (old_type & 8) { /* 32 bit */ access_stl(&old, env->tr.base + 0x20, next_eip); access_stl(&old, env->tr.base + 0x24, old_eflags); access_stl(&old, env->tr.base + (0x28 + 0 * 4), env->regs[R_EAX]); access_stl(&old, env->tr.base + (0x28 + 1 * 4), env->regs[R_ECX]); access_stl(&old, env->tr.base + (0x28 + 2 * 4), env->regs[R_EDX]); access_stl(&old, env->tr.base + (0x28 + 3 * 4), env->regs[R_EBX]); access_stl(&old, env->tr.base + (0x28 + 4 * 4), env->regs[R_ESP]); access_stl(&old, env->tr.base + (0x28 + 5 * 4), env->regs[R_EBP]); access_stl(&old, env->tr.base + (0x28 + 6 * 4), env->regs[R_ESI]); access_stl(&old, env->tr.base + (0x28 + 7 * 4), env->regs[R_EDI]); for (i = 0; i < 6; i++) { access_stw(&old, env->tr.base + (0x48 + i * 4), env->segs[i].selector); } } else { /* 16 bit */ access_stw(&old, env->tr.base + 0x0e, next_eip); access_stw(&old, env->tr.base + 0x10, old_eflags); access_stw(&old, env->tr.base + (0x12 + 0 * 2), env->regs[R_EAX]); access_stw(&old, env->tr.base + (0x12 + 1 * 2), env->regs[R_ECX]); access_stw(&old, env->tr.base + (0x12 + 2 * 2), env->regs[R_EDX]); access_stw(&old, env->tr.base + (0x12 + 3 * 2), env->regs[R_EBX]); access_stw(&old, env->tr.base + (0x12 + 4 * 2), env->regs[R_ESP]); access_stw(&old, env->tr.base + (0x12 + 5 * 2), env->regs[R_EBP]); access_stw(&old, env->tr.base + (0x12 + 6 * 2), env->regs[R_ESI]); access_stw(&old, env->tr.base + (0x12 + 7 * 2), env->regs[R_EDI]); for (i = 0; i < 4; i++) { access_stw(&old, env->tr.base + (0x22 + i * 2), env->segs[i].selector); } } /* read all the registers from the new TSS */ if (type & 8) { /* 32 bit */ new_cr3 = access_ldl(&new, tss_base + 0x1c); new_eip = access_ldl(&new, tss_base + 0x20); new_eflags = access_ldl(&new, tss_base + 0x24); for (i = 0; i < 8; i++) { new_regs[i] = access_ldl(&new, tss_base + (0x28 + i * 4)); } for (i = 0; i < 6; i++) { new_segs[i] = access_ldw(&new, tss_base + (0x48 + i * 4)); } new_ldt = access_ldw(&new, tss_base + 0x60); new_trap = access_ldl(&new, tss_base + 0x64); } else { /* 16 bit */ new_cr3 = 0; new_eip = access_ldw(&new, tss_base + 0x0e); new_eflags = access_ldw(&new, tss_base + 0x10); for (i = 0; i < 8; i++) { new_regs[i] = access_ldw(&new, tss_base + (0x12 + i * 2)); } for (i = 0; i < 4; i++) { new_segs[i] = access_ldw(&new, tss_base + (0x22 + i * 2)); } new_ldt = access_ldw(&new, tss_base + 0x2a); new_segs[R_FS] = 0; new_segs[R_GS] = 0; new_trap = 0; } /* XXX: avoid a compiler warning, see http://support.amd.com/us/Processor_TechDocs/24593.pdf chapters 12.2.5 and 13.2.4 on how to implement TSS Trap bit */ (void)new_trap; /* clear busy bit (it is restartable) */ if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_IRET) { tss_set_busy(env, env->tr.selector, 0, retaddr); } if (source == SWITCH_TSS_IRET) { old_eflags &= ~NT_MASK; if (old_type & 8) { access_stl(&old, env->tr.base + 0x24, old_eflags); } else { access_stw(&old, env->tr.base + 0x10, old_eflags); } } if (source == SWITCH_TSS_CALL) { /* * Thanks to the probe_access above, we know the first two * bytes addressed by &new are writable too. */ access_stw(&new, tss_base, env->tr.selector); new_eflags |= NT_MASK; } /* set busy bit */ if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_CALL) { tss_set_busy(env, tss_selector, 1, retaddr); } /* set the new CPU state */ /* now if an exception occurs, it will occur in the next task context */ env->cr[0] |= CR0_TS_MASK; env->hflags |= HF_TS_MASK; env->tr.selector = tss_selector; env->tr.base = tss_base; env->tr.limit = tss_limit; env->tr.flags = e2 & ~DESC_TSS_BUSY_MASK; if ((type & 8) && (env->cr[0] & CR0_PG_MASK)) { cpu_x86_update_cr3(env, new_cr3); } /* load all registers without an exception, then reload them with possible exception */ env->eip = new_eip; eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK; if (type & 8) { cpu_load_eflags(env, new_eflags, eflags_mask); for (i = 0; i < 8; i++) { env->regs[i] = new_regs[i]; } } else { cpu_load_eflags(env, new_eflags, eflags_mask & 0xffff); for (i = 0; i < 8; i++) { env->regs[i] = (env->regs[i] & 0xffff0000) | new_regs[i]; } } if (new_eflags & VM_MASK) { for (i = 0; i < 6; i++) { load_seg_vm(env, i, new_segs[i]); } } else { /* first just selectors as the rest may trigger exceptions */ for (i = 0; i < 6; i++) { cpu_x86_load_seg_cache(env, i, new_segs[i], 0, 0, 0); } } env->ldt.selector = new_ldt & ~4; env->ldt.base = 0; env->ldt.limit = 0; env->ldt.flags = 0; /* load the LDT */ if (new_ldt & 4) { raise_exception_err_ra(env, EXCP0A_TSS, new_ldt & 0xfffc, retaddr); } if ((new_ldt & 0xfffc) != 0) { dt = &env->gdt; index = new_ldt & ~7; if ((index + 7) > dt->limit) { raise_exception_err_ra(env, EXCP0A_TSS, new_ldt & 0xfffc, retaddr); } ptr = dt->base + index; e1 = cpu_ldl_kernel_ra(env, ptr, retaddr); e2 = cpu_ldl_kernel_ra(env, ptr + 4, retaddr); if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2) { raise_exception_err_ra(env, EXCP0A_TSS, new_ldt & 0xfffc, retaddr); } if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0A_TSS, new_ldt & 0xfffc, retaddr); } load_seg_cache_raw_dt(&env->ldt, e1, e2); } /* load the segments */ if (!(new_eflags & VM_MASK)) { int cpl = new_segs[R_CS] & 3; tss_load_seg(env, R_CS, new_segs[R_CS], cpl, retaddr); tss_load_seg(env, R_SS, new_segs[R_SS], cpl, retaddr); tss_load_seg(env, R_ES, new_segs[R_ES], cpl, retaddr); tss_load_seg(env, R_DS, new_segs[R_DS], cpl, retaddr); tss_load_seg(env, R_FS, new_segs[R_FS], cpl, retaddr); tss_load_seg(env, R_GS, new_segs[R_GS], cpl, retaddr); } /* check that env->eip is in the CS segment limits */ if (new_eip > env->segs[R_CS].limit) { /* XXX: different exception if CALL? */ raise_exception_err_ra(env, EXCP0D_GPF, 0, retaddr); } #ifndef CONFIG_USER_ONLY /* reset local breakpoints */ if (env->dr[7] & DR7_LOCAL_BP_MASK) { cpu_x86_update_dr7(env, env->dr[7] & ~DR7_LOCAL_BP_MASK); } #endif return type >> 3; } static int switch_tss(CPUX86State *env, int tss_selector, uint32_t e1, uint32_t e2, int source, uint32_t next_eip) { return switch_tss_ra(env, tss_selector, e1, e2, source, next_eip, 0); } static inline unsigned int get_sp_mask(unsigned int e2) { #ifdef TARGET_X86_64 if (e2 & DESC_L_MASK) { return 0; } else #endif if (e2 & DESC_B_MASK) { return 0xffffffff; } else { return 0xffff; } } static int exception_is_fault(int intno) { switch (intno) { /* * #DB can be both fault- and trap-like, but it never sets RF=1 * in the RFLAGS value pushed on the stack. */ case EXCP01_DB: case EXCP03_INT3: case EXCP04_INTO: case EXCP08_DBLE: case EXCP12_MCHK: return 0; } /* Everything else including reserved exception is a fault. */ return 1; } int exception_has_error_code(int intno) { switch (intno) { case 8: case 10: case 11: case 12: case 13: case 14: case 17: return 1; } return 0; } /* protected mode interrupt */ static void do_interrupt_protected(CPUX86State *env, int intno, int is_int, int error_code, unsigned int next_eip, int is_hw) { SegmentCache *dt; target_ulong ptr; int type, dpl, selector, ss_dpl, cpl; int has_error_code, new_stack, shift; uint32_t e1, e2, offset, ss = 0, ss_e1 = 0, ss_e2 = 0; uint32_t old_eip, eflags; int vm86 = env->eflags & VM_MASK; StackAccess sa; bool set_rf; has_error_code = 0; if (!is_int && !is_hw) { has_error_code = exception_has_error_code(intno); } if (is_int) { old_eip = next_eip; set_rf = false; } else { old_eip = env->eip; set_rf = exception_is_fault(intno); } dt = &env->idt; if (intno * 8 + 7 > dt->limit) { raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2); } ptr = dt->base + intno * 8; e1 = cpu_ldl_kernel(env, ptr); e2 = cpu_ldl_kernel(env, ptr + 4); /* check gate type */ type = (e2 >> DESC_TYPE_SHIFT) & 0x1f; switch (type) { case 5: /* task gate */ case 6: /* 286 interrupt gate */ case 7: /* 286 trap gate */ case 14: /* 386 interrupt gate */ case 15: /* 386 trap gate */ break; default: raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2); break; } dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; /* check privilege if software int */ if (is_int && dpl < cpl) { raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2); } sa.env = env; sa.ra = 0; sa.mmu_index = cpu_mmu_index_kernel(env); if (type == 5) { /* task gate */ /* must do that check here to return the correct error code */ if (!(e2 & DESC_P_MASK)) { raise_exception_err(env, EXCP0B_NOSEG, intno * 8 + 2); } shift = switch_tss(env, intno * 8, e1, e2, SWITCH_TSS_CALL, old_eip); if (has_error_code) { /* push the error code */ if (env->segs[R_SS].flags & DESC_B_MASK) { sa.sp_mask = 0xffffffff; } else { sa.sp_mask = 0xffff; } sa.sp = env->regs[R_ESP]; sa.ss_base = env->segs[R_SS].base; if (shift) { pushl(&sa, error_code); } else { pushw(&sa, error_code); } SET_ESP(sa.sp, sa.sp_mask); } return; } /* Otherwise, trap or interrupt gate */ /* check valid bit */ if (!(e2 & DESC_P_MASK)) { raise_exception_err(env, EXCP0B_NOSEG, intno * 8 + 2); } selector = e1 >> 16; offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff); if ((selector & 0xfffc) == 0) { raise_exception_err(env, EXCP0D_GPF, 0); } if (load_segment(env, &e1, &e2, selector) != 0) { raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc); } if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK))) { raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc); } dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (dpl > cpl) { raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc); } if (!(e2 & DESC_P_MASK)) { raise_exception_err(env, EXCP0B_NOSEG, selector & 0xfffc); } if (e2 & DESC_C_MASK) { dpl = cpl; } if (dpl < cpl) { /* to inner privilege */ uint32_t esp; get_ss_esp_from_tss(env, &ss, &esp, dpl, 0); if ((ss & 0xfffc) == 0) { raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc); } if ((ss & 3) != dpl) { raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc); } if (load_segment(env, &ss_e1, &ss_e2, ss) != 0) { raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc); } ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3; if (ss_dpl != dpl) { raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc); } if (!(ss_e2 & DESC_S_MASK) || (ss_e2 & DESC_CS_MASK) || !(ss_e2 & DESC_W_MASK)) { raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc); } if (!(ss_e2 & DESC_P_MASK)) { raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc); } new_stack = 1; sa.sp = esp; sa.sp_mask = get_sp_mask(ss_e2); sa.ss_base = get_seg_base(ss_e1, ss_e2); } else { /* to same privilege */ if (vm86) { raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc); } new_stack = 0; sa.sp = env->regs[R_ESP]; sa.sp_mask = get_sp_mask(env->segs[R_SS].flags); sa.ss_base = env->segs[R_SS].base; } shift = type >> 3; #if 0 /* XXX: check that enough room is available */ push_size = 6 + (new_stack << 2) + (has_error_code << 1); if (vm86) { push_size += 8; } push_size <<= shift; #endif eflags = cpu_compute_eflags(env); /* * AMD states that code breakpoint #DBs clear RF=0, Intel leaves it * as is. AMD behavior could be implemented in check_hw_breakpoints(). */ if (set_rf) { eflags |= RF_MASK; } if (shift == 1) { if (new_stack) { if (vm86) { pushl(&sa, env->segs[R_GS].selector); pushl(&sa, env->segs[R_FS].selector); pushl(&sa, env->segs[R_DS].selector); pushl(&sa, env->segs[R_ES].selector); } pushl(&sa, env->segs[R_SS].selector); pushl(&sa, env->regs[R_ESP]); } pushl(&sa, eflags); pushl(&sa, env->segs[R_CS].selector); pushl(&sa, old_eip); if (has_error_code) { pushl(&sa, error_code); } } else { if (new_stack) { if (vm86) { pushw(&sa, env->segs[R_GS].selector); pushw(&sa, env->segs[R_FS].selector); pushw(&sa, env->segs[R_DS].selector); pushw(&sa, env->segs[R_ES].selector); } pushw(&sa, env->segs[R_SS].selector); pushw(&sa, env->regs[R_ESP]); } pushw(&sa, eflags); pushw(&sa, env->segs[R_CS].selector); pushw(&sa, old_eip); if (has_error_code) { pushw(&sa, error_code); } } /* interrupt gate clear IF mask */ if ((type & 1) == 0) { env->eflags &= ~IF_MASK; } env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK); if (new_stack) { if (vm86) { cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0, 0); cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0, 0); cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0, 0); cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0, 0); } ss = (ss & ~3) | dpl; cpu_x86_load_seg_cache(env, R_SS, ss, sa.ss_base, get_seg_limit(ss_e1, ss_e2), ss_e2); } SET_ESP(sa.sp, sa.sp_mask); selector = (selector & ~3) | dpl; cpu_x86_load_seg_cache(env, R_CS, selector, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); env->eip = offset; } #ifdef TARGET_X86_64 static void pushq(StackAccess *sa, uint64_t val) { sa->sp -= 8; cpu_stq_mmuidx_ra(sa->env, sa->sp, val, sa->mmu_index, sa->ra); } static uint64_t popq(StackAccess *sa) { uint64_t ret = cpu_ldq_mmuidx_ra(sa->env, sa->sp, sa->mmu_index, sa->ra); sa->sp += 8; return ret; } static inline target_ulong get_rsp_from_tss(CPUX86State *env, int level) { X86CPU *cpu = env_archcpu(env); int index, pg_mode; target_ulong rsp; int32_t sext; #if 0 printf("TR: base=" TARGET_FMT_lx " limit=%x\n", env->tr.base, env->tr.limit); #endif if (!(env->tr.flags & DESC_P_MASK)) { cpu_abort(CPU(cpu), "invalid tss"); } index = 8 * level + 4; if ((index + 7) > env->tr.limit) { raise_exception_err(env, EXCP0A_TSS, env->tr.selector & 0xfffc); } rsp = cpu_ldq_kernel(env, env->tr.base + index); /* test virtual address sign extension */ pg_mode = get_pg_mode(env); sext = (int64_t)rsp >> (pg_mode & PG_MODE_LA57 ? 56 : 47); if (sext != 0 && sext != -1) { raise_exception_err(env, EXCP0C_STACK, 0); } return rsp; } /* 64 bit interrupt */ static void do_interrupt64(CPUX86State *env, int intno, int is_int, int error_code, target_ulong next_eip, int is_hw) { SegmentCache *dt; target_ulong ptr; int type, dpl, selector, cpl, ist; int has_error_code, new_stack; uint32_t e1, e2, e3, ss, eflags; target_ulong old_eip, offset; bool set_rf; StackAccess sa; has_error_code = 0; if (!is_int && !is_hw) { has_error_code = exception_has_error_code(intno); } if (is_int) { old_eip = next_eip; set_rf = false; } else { old_eip = env->eip; set_rf = exception_is_fault(intno); } dt = &env->idt; if (intno * 16 + 15 > dt->limit) { raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2); } ptr = dt->base + intno * 16; e1 = cpu_ldl_kernel(env, ptr); e2 = cpu_ldl_kernel(env, ptr + 4); e3 = cpu_ldl_kernel(env, ptr + 8); /* check gate type */ type = (e2 >> DESC_TYPE_SHIFT) & 0x1f; switch (type) { case 14: /* 386 interrupt gate */ case 15: /* 386 trap gate */ break; default: raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2); break; } dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; /* check privilege if software int */ if (is_int && dpl < cpl) { raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2); } /* check valid bit */ if (!(e2 & DESC_P_MASK)) { raise_exception_err(env, EXCP0B_NOSEG, intno * 8 + 2); } selector = e1 >> 16; offset = ((target_ulong)e3 << 32) | (e2 & 0xffff0000) | (e1 & 0x0000ffff); ist = e2 & 7; if ((selector & 0xfffc) == 0) { raise_exception_err(env, EXCP0D_GPF, 0); } if (load_segment(env, &e1, &e2, selector) != 0) { raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc); } if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK))) { raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc); } dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (dpl > cpl) { raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc); } if (!(e2 & DESC_P_MASK)) { raise_exception_err(env, EXCP0B_NOSEG, selector & 0xfffc); } if (!(e2 & DESC_L_MASK) || (e2 & DESC_B_MASK)) { raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc); } if (e2 & DESC_C_MASK) { dpl = cpl; } sa.env = env; sa.ra = 0; sa.mmu_index = cpu_mmu_index_kernel(env); sa.sp_mask = -1; sa.ss_base = 0; if (dpl < cpl || ist != 0) { /* to inner privilege */ new_stack = 1; sa.sp = get_rsp_from_tss(env, ist != 0 ? ist + 3 : dpl); ss = 0; } else { /* to same privilege */ if (env->eflags & VM_MASK) { raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc); } new_stack = 0; sa.sp = env->regs[R_ESP]; } sa.sp &= ~0xfLL; /* align stack */ /* See do_interrupt_protected. */ eflags = cpu_compute_eflags(env); if (set_rf) { eflags |= RF_MASK; } pushq(&sa, env->segs[R_SS].selector); pushq(&sa, env->regs[R_ESP]); pushq(&sa, eflags); pushq(&sa, env->segs[R_CS].selector); pushq(&sa, old_eip); if (has_error_code) { pushq(&sa, error_code); } /* interrupt gate clear IF mask */ if ((type & 1) == 0) { env->eflags &= ~IF_MASK; } env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK); if (new_stack) { ss = 0 | dpl; cpu_x86_load_seg_cache(env, R_SS, ss, 0, 0, dpl << DESC_DPL_SHIFT); } env->regs[R_ESP] = sa.sp; selector = (selector & ~3) | dpl; cpu_x86_load_seg_cache(env, R_CS, selector, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); env->eip = offset; } #endif /* TARGET_X86_64 */ void helper_sysret(CPUX86State *env, int dflag) { int cpl, selector; if (!(env->efer & MSR_EFER_SCE)) { raise_exception_err_ra(env, EXCP06_ILLOP, 0, GETPC()); } cpl = env->hflags & HF_CPL_MASK; if (!(env->cr[0] & CR0_PE_MASK) || cpl != 0) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } selector = (env->star >> 48) & 0xffff; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { cpu_load_eflags(env, (uint32_t)(env->regs[11]), TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK); if (dflag == 2) { cpu_x86_load_seg_cache(env, R_CS, (selector + 16) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK); env->eip = env->regs[R_ECX]; } else { cpu_x86_load_seg_cache(env, R_CS, selector | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); env->eip = (uint32_t)env->regs[R_ECX]; } cpu_x86_load_seg_cache(env, R_SS, (selector + 8) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_W_MASK | DESC_A_MASK); } else #endif { env->eflags |= IF_MASK; cpu_x86_load_seg_cache(env, R_CS, selector | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); env->eip = (uint32_t)env->regs[R_ECX]; cpu_x86_load_seg_cache(env, R_SS, (selector + 8) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_W_MASK | DESC_A_MASK); } } /* real mode interrupt */ static void do_interrupt_real(CPUX86State *env, int intno, int is_int, int error_code, unsigned int next_eip) { SegmentCache *dt; target_ulong ptr; int selector; uint32_t offset; uint32_t old_cs, old_eip; StackAccess sa; /* real mode (simpler!) */ dt = &env->idt; if (intno * 4 + 3 > dt->limit) { raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2); } ptr = dt->base + intno * 4; offset = cpu_lduw_kernel(env, ptr); selector = cpu_lduw_kernel(env, ptr + 2); sa.env = env; sa.ra = 0; sa.sp = env->regs[R_ESP]; sa.sp_mask = 0xffff; sa.ss_base = env->segs[R_SS].base; sa.mmu_index = cpu_mmu_index_kernel(env); if (is_int) { old_eip = next_eip; } else { old_eip = env->eip; } old_cs = env->segs[R_CS].selector; /* XXX: use SS segment size? */ pushw(&sa, cpu_compute_eflags(env)); pushw(&sa, old_cs); pushw(&sa, old_eip); /* update processor state */ SET_ESP(sa.sp, sa.sp_mask); env->eip = offset; env->segs[R_CS].selector = selector; env->segs[R_CS].base = (selector << 4); env->eflags &= ~(IF_MASK | TF_MASK | AC_MASK | RF_MASK); } /* * Begin execution of an interruption. is_int is TRUE if coming from * the int instruction. next_eip is the env->eip value AFTER the interrupt * instruction. It is only relevant if is_int is TRUE. */ void do_interrupt_all(X86CPU *cpu, int intno, int is_int, int error_code, target_ulong next_eip, int is_hw) { CPUX86State *env = &cpu->env; if (qemu_loglevel_mask(CPU_LOG_INT)) { if ((env->cr[0] & CR0_PE_MASK)) { static int count; qemu_log("%6d: v=%02x e=%04x i=%d cpl=%d IP=%04x:" TARGET_FMT_lx " pc=" TARGET_FMT_lx " SP=%04x:" TARGET_FMT_lx, count, intno, error_code, is_int, env->hflags & HF_CPL_MASK, env->segs[R_CS].selector, env->eip, (int)env->segs[R_CS].base + env->eip, env->segs[R_SS].selector, env->regs[R_ESP]); if (intno == 0x0e) { qemu_log(" CR2=" TARGET_FMT_lx, env->cr[2]); } else { qemu_log(" env->regs[R_EAX]=" TARGET_FMT_lx, env->regs[R_EAX]); } qemu_log("\n"); log_cpu_state(CPU(cpu), CPU_DUMP_CCOP); #if 0 { int i; target_ulong ptr; qemu_log(" code="); ptr = env->segs[R_CS].base + env->eip; for (i = 0; i < 16; i++) { qemu_log(" %02x", ldub(ptr + i)); } qemu_log("\n"); } #endif count++; } } if (env->cr[0] & CR0_PE_MASK) { #if !defined(CONFIG_USER_ONLY) if (env->hflags & HF_GUEST_MASK) { handle_even_inj(env, intno, is_int, error_code, is_hw, 0); } #endif #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { do_interrupt64(env, intno, is_int, error_code, next_eip, is_hw); } else #endif { do_interrupt_protected(env, intno, is_int, error_code, next_eip, is_hw); } } else { #if !defined(CONFIG_USER_ONLY) if (env->hflags & HF_GUEST_MASK) { handle_even_inj(env, intno, is_int, error_code, is_hw, 1); } #endif do_interrupt_real(env, intno, is_int, error_code, next_eip); } #if !defined(CONFIG_USER_ONLY) if (env->hflags & HF_GUEST_MASK) { CPUState *cs = CPU(cpu); uint32_t event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.event_inj)); x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj & ~SVM_EVTINJ_VALID); } #endif } void do_interrupt_x86_hardirq(CPUX86State *env, int intno, int is_hw) { do_interrupt_all(env_archcpu(env), intno, 0, 0, 0, is_hw); } void helper_lldt(CPUX86State *env, int selector) { SegmentCache *dt; uint32_t e1, e2; int index, entry_limit; target_ulong ptr; selector &= 0xffff; if ((selector & 0xfffc) == 0) { /* XXX: NULL selector case: invalid LDT */ env->ldt.base = 0; env->ldt.limit = 0; } else { if (selector & 0x4) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } dt = &env->gdt; index = selector & ~7; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { entry_limit = 15; } else #endif { entry_limit = 7; } if ((index + entry_limit) > dt->limit) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } ptr = dt->base + index; e1 = cpu_ldl_kernel_ra(env, ptr, GETPC()); e2 = cpu_ldl_kernel_ra(env, ptr + 4, GETPC()); if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, selector & 0xfffc, GETPC()); } #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { uint32_t e3; e3 = cpu_ldl_kernel_ra(env, ptr + 8, GETPC()); load_seg_cache_raw_dt(&env->ldt, e1, e2); env->ldt.base |= (target_ulong)e3 << 32; } else #endif { load_seg_cache_raw_dt(&env->ldt, e1, e2); } } env->ldt.selector = selector; } void helper_ltr(CPUX86State *env, int selector) { SegmentCache *dt; uint32_t e1, e2; int index, type, entry_limit; target_ulong ptr; selector &= 0xffff; if ((selector & 0xfffc) == 0) { /* NULL selector case: invalid TR */ env->tr.base = 0; env->tr.limit = 0; env->tr.flags = 0; } else { if (selector & 0x4) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } dt = &env->gdt; index = selector & ~7; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { entry_limit = 15; } else #endif { entry_limit = 7; } if ((index + entry_limit) > dt->limit) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } ptr = dt->base + index; e1 = cpu_ldl_kernel_ra(env, ptr, GETPC()); e2 = cpu_ldl_kernel_ra(env, ptr + 4, GETPC()); type = (e2 >> DESC_TYPE_SHIFT) & 0xf; if ((e2 & DESC_S_MASK) || (type != 1 && type != 9)) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, selector & 0xfffc, GETPC()); } #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { uint32_t e3, e4; e3 = cpu_ldl_kernel_ra(env, ptr + 8, GETPC()); e4 = cpu_ldl_kernel_ra(env, ptr + 12, GETPC()); if ((e4 >> DESC_TYPE_SHIFT) & 0xf) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } load_seg_cache_raw_dt(&env->tr, e1, e2); env->tr.base |= (target_ulong)e3 << 32; } else #endif { load_seg_cache_raw_dt(&env->tr, e1, e2); } e2 |= DESC_TSS_BUSY_MASK; cpu_stl_kernel_ra(env, ptr + 4, e2, GETPC()); } env->tr.selector = selector; } /* only works if protected mode and not VM86. seg_reg must be != R_CS */ void helper_load_seg(CPUX86State *env, int seg_reg, int selector) { uint32_t e1, e2; int cpl, dpl, rpl; SegmentCache *dt; int index; target_ulong ptr; selector &= 0xffff; cpl = env->hflags & HF_CPL_MASK; if ((selector & 0xfffc) == 0) { /* null selector case */ if (seg_reg == R_SS #ifdef TARGET_X86_64 && (!(env->hflags & HF_CS64_MASK) || cpl == 3) #endif ) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } cpu_x86_load_seg_cache(env, seg_reg, selector, 0, 0, 0); } else { if (selector & 0x4) { dt = &env->ldt; } else { dt = &env->gdt; } index = selector & ~7; if ((index + 7) > dt->limit) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } ptr = dt->base + index; e1 = cpu_ldl_kernel_ra(env, ptr, GETPC()); e2 = cpu_ldl_kernel_ra(env, ptr + 4, GETPC()); if (!(e2 & DESC_S_MASK)) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (seg_reg == R_SS) { /* must be writable segment */ if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK)) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } if (rpl != cpl || dpl != cpl) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } } else { /* must be readable segment */ if ((e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) { /* if not conforming code, test rights */ if (dpl < cpl || dpl < rpl) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } } } if (!(e2 & DESC_P_MASK)) { if (seg_reg == R_SS) { raise_exception_err_ra(env, EXCP0C_STACK, selector & 0xfffc, GETPC()); } else { raise_exception_err_ra(env, EXCP0B_NOSEG, selector & 0xfffc, GETPC()); } } /* set the access bit if not already set */ if (!(e2 & DESC_A_MASK)) { e2 |= DESC_A_MASK; cpu_stl_kernel_ra(env, ptr + 4, e2, GETPC()); } cpu_x86_load_seg_cache(env, seg_reg, selector, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); #if 0 qemu_log("load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx flags=%08x\n", selector, (unsigned long)sc->base, sc->limit, sc->flags); #endif } } /* protected mode jump */ void helper_ljmp_protected(CPUX86State *env, int new_cs, target_ulong new_eip, target_ulong next_eip) { int gate_cs, type; uint32_t e1, e2, cpl, dpl, rpl, limit; if ((new_cs & 0xfffc) == 0) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } if (load_segment_ra(env, &e1, &e2, new_cs, GETPC()) != 0) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } cpl = env->hflags & HF_CPL_MASK; if (e2 & DESC_S_MASK) { if (!(e2 & DESC_CS_MASK)) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (e2 & DESC_C_MASK) { /* conforming code segment */ if (dpl > cpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } } else { /* non conforming code segment */ rpl = new_cs & 3; if (rpl > cpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } if (dpl != cpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } } if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, new_cs & 0xfffc, GETPC()); } limit = get_seg_limit(e1, e2); if (new_eip > limit && (!(env->hflags & HF_LMA_MASK) || !(e2 & DESC_L_MASK))) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl, get_seg_base(e1, e2), limit, e2); env->eip = new_eip; } else { /* jump to call or task gate */ dpl = (e2 >> DESC_DPL_SHIFT) & 3; rpl = new_cs & 3; cpl = env->hflags & HF_CPL_MASK; type = (e2 >> DESC_TYPE_SHIFT) & 0xf; #ifdef TARGET_X86_64 if (env->efer & MSR_EFER_LMA) { if (type != 12) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } } #endif switch (type) { case 1: /* 286 TSS */ case 9: /* 386 TSS */ case 5: /* task gate */ if (dpl < cpl || dpl < rpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } switch_tss_ra(env, new_cs, e1, e2, SWITCH_TSS_JMP, next_eip, GETPC()); break; case 4: /* 286 call gate */ case 12: /* 386 call gate */ if ((dpl < cpl) || (dpl < rpl)) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, new_cs & 0xfffc, GETPC()); } gate_cs = e1 >> 16; new_eip = (e1 & 0xffff); if (type == 12) { new_eip |= (e2 & 0xffff0000); } #ifdef TARGET_X86_64 if (env->efer & MSR_EFER_LMA) { /* load the upper 8 bytes of the 64-bit call gate */ if (load_segment_ra(env, &e1, &e2, new_cs + 8, GETPC())) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } type = (e2 >> DESC_TYPE_SHIFT) & 0x1f; if (type != 0) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } new_eip |= ((target_ulong)e1) << 32; } #endif if (load_segment_ra(env, &e1, &e2, gate_cs, GETPC()) != 0) { raise_exception_err_ra(env, EXCP0D_GPF, gate_cs & 0xfffc, GETPC()); } dpl = (e2 >> DESC_DPL_SHIFT) & 3; /* must be code segment */ if (((e2 & (DESC_S_MASK | DESC_CS_MASK)) != (DESC_S_MASK | DESC_CS_MASK))) { raise_exception_err_ra(env, EXCP0D_GPF, gate_cs & 0xfffc, GETPC()); } if (((e2 & DESC_C_MASK) && (dpl > cpl)) || (!(e2 & DESC_C_MASK) && (dpl != cpl))) { raise_exception_err_ra(env, EXCP0D_GPF, gate_cs & 0xfffc, GETPC()); } #ifdef TARGET_X86_64 if (env->efer & MSR_EFER_LMA) { if (!(e2 & DESC_L_MASK)) { raise_exception_err_ra(env, EXCP0D_GPF, gate_cs & 0xfffc, GETPC()); } if (e2 & DESC_B_MASK) { raise_exception_err_ra(env, EXCP0D_GPF, gate_cs & 0xfffc, GETPC()); } } #endif if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0D_GPF, gate_cs & 0xfffc, GETPC()); } limit = get_seg_limit(e1, e2); if (new_eip > limit && (!(env->hflags & HF_LMA_MASK) || !(e2 & DESC_L_MASK))) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } cpu_x86_load_seg_cache(env, R_CS, (gate_cs & 0xfffc) | cpl, get_seg_base(e1, e2), limit, e2); env->eip = new_eip; break; default: raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); break; } } } /* real mode call */ void helper_lcall_real(CPUX86State *env, uint32_t new_cs, uint32_t new_eip, int shift, uint32_t next_eip) { StackAccess sa; sa.env = env; sa.ra = GETPC(); sa.sp = env->regs[R_ESP]; sa.sp_mask = get_sp_mask(env->segs[R_SS].flags); sa.ss_base = env->segs[R_SS].base; sa.mmu_index = cpu_mmu_index_kernel(env); if (shift) { pushl(&sa, env->segs[R_CS].selector); pushl(&sa, next_eip); } else { pushw(&sa, env->segs[R_CS].selector); pushw(&sa, next_eip); } SET_ESP(sa.sp, sa.sp_mask); env->eip = new_eip; env->segs[R_CS].selector = new_cs; env->segs[R_CS].base = (new_cs << 4); } /* protected mode call */ void helper_lcall_protected(CPUX86State *env, int new_cs, target_ulong new_eip, int shift, target_ulong next_eip) { int new_stack, i; uint32_t e1, e2, cpl, dpl, rpl, selector, param_count; uint32_t ss = 0, ss_e1 = 0, ss_e2 = 0, type, ss_dpl; uint32_t val, limit, old_sp_mask; target_ulong old_ssp, offset; StackAccess sa; LOG_PCALL("lcall %04x:" TARGET_FMT_lx " s=%d\n", new_cs, new_eip, shift); LOG_PCALL_STATE(env_cpu(env)); if ((new_cs & 0xfffc) == 0) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } if (load_segment_ra(env, &e1, &e2, new_cs, GETPC()) != 0) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } cpl = env->hflags & HF_CPL_MASK; LOG_PCALL("desc=%08x:%08x\n", e1, e2); sa.env = env; sa.ra = GETPC(); sa.mmu_index = cpu_mmu_index_kernel(env); if (e2 & DESC_S_MASK) { if (!(e2 & DESC_CS_MASK)) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (e2 & DESC_C_MASK) { /* conforming code segment */ if (dpl > cpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } } else { /* non conforming code segment */ rpl = new_cs & 3; if (rpl > cpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } if (dpl != cpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } } if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, new_cs & 0xfffc, GETPC()); } #ifdef TARGET_X86_64 /* XXX: check 16/32 bit cases in long mode */ if (shift == 2) { /* 64 bit case */ sa.sp = env->regs[R_ESP]; sa.sp_mask = -1; sa.ss_base = 0; pushq(&sa, env->segs[R_CS].selector); pushq(&sa, next_eip); /* from this point, not restartable */ env->regs[R_ESP] = sa.sp; cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); env->eip = new_eip; } else #endif { sa.sp = env->regs[R_ESP]; sa.sp_mask = get_sp_mask(env->segs[R_SS].flags); sa.ss_base = env->segs[R_SS].base; if (shift) { pushl(&sa, env->segs[R_CS].selector); pushl(&sa, next_eip); } else { pushw(&sa, env->segs[R_CS].selector); pushw(&sa, next_eip); } limit = get_seg_limit(e1, e2); if (new_eip > limit) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } /* from this point, not restartable */ SET_ESP(sa.sp, sa.sp_mask); cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl, get_seg_base(e1, e2), limit, e2); env->eip = new_eip; } } else { /* check gate type */ type = (e2 >> DESC_TYPE_SHIFT) & 0x1f; dpl = (e2 >> DESC_DPL_SHIFT) & 3; rpl = new_cs & 3; #ifdef TARGET_X86_64 if (env->efer & MSR_EFER_LMA) { if (type != 12) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } } #endif switch (type) { case 1: /* available 286 TSS */ case 9: /* available 386 TSS */ case 5: /* task gate */ if (dpl < cpl || dpl < rpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } switch_tss_ra(env, new_cs, e1, e2, SWITCH_TSS_CALL, next_eip, GETPC()); return; case 4: /* 286 call gate */ case 12: /* 386 call gate */ break; default: raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); break; } shift = type >> 3; if (dpl < cpl || dpl < rpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } /* check valid bit */ if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, new_cs & 0xfffc, GETPC()); } selector = e1 >> 16; param_count = e2 & 0x1f; offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff); #ifdef TARGET_X86_64 if (env->efer & MSR_EFER_LMA) { /* load the upper 8 bytes of the 64-bit call gate */ if (load_segment_ra(env, &e1, &e2, new_cs + 8, GETPC())) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } type = (e2 >> DESC_TYPE_SHIFT) & 0x1f; if (type != 0) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC()); } offset |= ((target_ulong)e1) << 32; } #endif if ((selector & 0xfffc) == 0) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } if (load_segment_ra(env, &e1, &e2, selector, GETPC()) != 0) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK))) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (dpl > cpl) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } #ifdef TARGET_X86_64 if (env->efer & MSR_EFER_LMA) { if (!(e2 & DESC_L_MASK)) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } if (e2 & DESC_B_MASK) { raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC()); } shift++; } #endif if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, selector & 0xfffc, GETPC()); } if (!(e2 & DESC_C_MASK) && dpl < cpl) { /* to inner privilege */ #ifdef TARGET_X86_64 if (shift == 2) { ss = dpl; /* SS = NULL selector with RPL = new CPL */ new_stack = 1; sa.sp = get_rsp_from_tss(env, dpl); sa.sp_mask = -1; sa.ss_base = 0; /* SS base is always zero in IA-32e mode */ LOG_PCALL("new ss:rsp=%04x:%016llx env->regs[R_ESP]=" TARGET_FMT_lx "\n", ss, sa.sp, env->regs[R_ESP]); } else #endif { uint32_t sp32; get_ss_esp_from_tss(env, &ss, &sp32, dpl, GETPC()); LOG_PCALL("new ss:esp=%04x:%08x param_count=%d env->regs[R_ESP]=" TARGET_FMT_lx "\n", ss, sp32, param_count, env->regs[R_ESP]); if ((ss & 0xfffc) == 0) { raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC()); } if ((ss & 3) != dpl) { raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC()); } if (load_segment_ra(env, &ss_e1, &ss_e2, ss, GETPC()) != 0) { raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC()); } ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3; if (ss_dpl != dpl) { raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC()); } if (!(ss_e2 & DESC_S_MASK) || (ss_e2 & DESC_CS_MASK) || !(ss_e2 & DESC_W_MASK)) { raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC()); } if (!(ss_e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC()); } sa.sp = sp32; sa.sp_mask = get_sp_mask(ss_e2); sa.ss_base = get_seg_base(ss_e1, ss_e2); } /* push_size = ((param_count * 2) + 8) << shift; */ old_sp_mask = get_sp_mask(env->segs[R_SS].flags); old_ssp = env->segs[R_SS].base; #ifdef TARGET_X86_64 if (shift == 2) { /* XXX: verify if new stack address is canonical */ pushq(&sa, env->segs[R_SS].selector); pushq(&sa, env->regs[R_ESP]); /* parameters aren't supported for 64-bit call gates */ } else #endif if (shift == 1) { pushl(&sa, env->segs[R_SS].selector); pushl(&sa, env->regs[R_ESP]); for (i = param_count - 1; i >= 0; i--) { val = cpu_ldl_data_ra(env, old_ssp + ((env->regs[R_ESP] + i * 4) & old_sp_mask), GETPC()); pushl(&sa, val); } } else { pushw(&sa, env->segs[R_SS].selector); pushw(&sa, env->regs[R_ESP]); for (i = param_count - 1; i >= 0; i--) { val = cpu_lduw_data_ra(env, old_ssp + ((env->regs[R_ESP] + i * 2) & old_sp_mask), GETPC()); pushw(&sa, val); } } new_stack = 1; } else { /* to same privilege */ sa.sp = env->regs[R_ESP]; sa.sp_mask = get_sp_mask(env->segs[R_SS].flags); sa.ss_base = env->segs[R_SS].base; /* push_size = (4 << shift); */ new_stack = 0; } #ifdef TARGET_X86_64 if (shift == 2) { pushq(&sa, env->segs[R_CS].selector); pushq(&sa, next_eip); } else #endif if (shift == 1) { pushl(&sa, env->segs[R_CS].selector); pushl(&sa, next_eip); } else { pushw(&sa, env->segs[R_CS].selector); pushw(&sa, next_eip); } /* from this point, not restartable */ if (new_stack) { #ifdef TARGET_X86_64 if (shift == 2) { cpu_x86_load_seg_cache(env, R_SS, ss, 0, 0, 0); } else #endif { ss = (ss & ~3) | dpl; cpu_x86_load_seg_cache(env, R_SS, ss, sa.ss_base, get_seg_limit(ss_e1, ss_e2), ss_e2); } } selector = (selector & ~3) | dpl; cpu_x86_load_seg_cache(env, R_CS, selector, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); SET_ESP(sa.sp, sa.sp_mask); env->eip = offset; } } /* real and vm86 mode iret */ void helper_iret_real(CPUX86State *env, int shift) { uint32_t new_cs, new_eip, new_eflags; int eflags_mask; StackAccess sa; sa.env = env; sa.ra = GETPC(); sa.mmu_index = x86_mmu_index_pl(env, 0); sa.sp_mask = 0xffff; /* XXXX: use SS segment size? */ sa.sp = env->regs[R_ESP]; sa.ss_base = env->segs[R_SS].base; if (shift == 1) { /* 32 bits */ new_eip = popl(&sa); new_cs = popl(&sa) & 0xffff; new_eflags = popl(&sa); } else { /* 16 bits */ new_eip = popw(&sa); new_cs = popw(&sa); new_eflags = popw(&sa); } SET_ESP(sa.sp, sa.sp_mask); env->segs[R_CS].selector = new_cs; env->segs[R_CS].base = (new_cs << 4); env->eip = new_eip; if (env->eflags & VM_MASK) { eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | RF_MASK | NT_MASK; } else { eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | RF_MASK | NT_MASK; } if (shift == 0) { eflags_mask &= 0xffff; } cpu_load_eflags(env, new_eflags, eflags_mask); env->hflags2 &= ~HF2_NMI_MASK; } static inline void validate_seg(CPUX86State *env, X86Seg seg_reg, int cpl) { int dpl; uint32_t e2; /* XXX: on x86_64, we do not want to nullify FS and GS because they may still contain a valid base. I would be interested to know how a real x86_64 CPU behaves */ if ((seg_reg == R_FS || seg_reg == R_GS) && (env->segs[seg_reg].selector & 0xfffc) == 0) { return; } e2 = env->segs[seg_reg].flags; dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) { /* data or non conforming code segment */ if (dpl < cpl) { cpu_x86_load_seg_cache(env, seg_reg, 0, env->segs[seg_reg].base, env->segs[seg_reg].limit, env->segs[seg_reg].flags & ~DESC_P_MASK); } } } /* protected mode iret */ static inline void helper_ret_protected(CPUX86State *env, int shift, int is_iret, int addend, uintptr_t retaddr) { uint32_t new_cs, new_eflags, new_ss; uint32_t new_es, new_ds, new_fs, new_gs; uint32_t e1, e2, ss_e1, ss_e2; int cpl, dpl, rpl, eflags_mask, iopl; target_ulong new_eip, new_esp; StackAccess sa; cpl = env->hflags & HF_CPL_MASK; sa.env = env; sa.ra = retaddr; sa.mmu_index = x86_mmu_index_pl(env, cpl); #ifdef TARGET_X86_64 if (shift == 2) { sa.sp_mask = -1; } else #endif { sa.sp_mask = get_sp_mask(env->segs[R_SS].flags); } sa.sp = env->regs[R_ESP]; sa.ss_base = env->segs[R_SS].base; new_eflags = 0; /* avoid warning */ #ifdef TARGET_X86_64 if (shift == 2) { new_eip = popq(&sa); new_cs = popq(&sa) & 0xffff; if (is_iret) { new_eflags = popq(&sa); } } else #endif { if (shift == 1) { /* 32 bits */ new_eip = popl(&sa); new_cs = popl(&sa) & 0xffff; if (is_iret) { new_eflags = popl(&sa); if (new_eflags & VM_MASK) { goto return_to_vm86; } } } else { /* 16 bits */ new_eip = popw(&sa); new_cs = popw(&sa); if (is_iret) { new_eflags = popw(&sa); } } } LOG_PCALL("lret new %04x:" TARGET_FMT_lx " s=%d addend=0x%x\n", new_cs, new_eip, shift, addend); LOG_PCALL_STATE(env_cpu(env)); if ((new_cs & 0xfffc) == 0) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr); } if (load_segment_ra(env, &e1, &e2, new_cs, retaddr) != 0) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr); } if (!(e2 & DESC_S_MASK) || !(e2 & DESC_CS_MASK)) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr); } rpl = new_cs & 3; if (rpl < cpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr); } dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (e2 & DESC_C_MASK) { if (dpl > rpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr); } } else { if (dpl != rpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr); } } if (!(e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, new_cs & 0xfffc, retaddr); } sa.sp += addend; if (rpl == cpl && (!(env->hflags & HF_CS64_MASK) || ((env->hflags & HF_CS64_MASK) && !is_iret))) { /* return to same privilege level */ cpu_x86_load_seg_cache(env, R_CS, new_cs, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); } else { /* return to different privilege level */ #ifdef TARGET_X86_64 if (shift == 2) { new_esp = popq(&sa); new_ss = popq(&sa) & 0xffff; } else #endif { if (shift == 1) { /* 32 bits */ new_esp = popl(&sa); new_ss = popl(&sa) & 0xffff; } else { /* 16 bits */ new_esp = popw(&sa); new_ss = popw(&sa); } } LOG_PCALL("new ss:esp=%04x:" TARGET_FMT_lx "\n", new_ss, new_esp); if ((new_ss & 0xfffc) == 0) { #ifdef TARGET_X86_64 /* NULL ss is allowed in long mode if cpl != 3 */ /* XXX: test CS64? */ if ((env->hflags & HF_LMA_MASK) && rpl != 3) { cpu_x86_load_seg_cache(env, R_SS, new_ss, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (rpl << DESC_DPL_SHIFT) | DESC_W_MASK | DESC_A_MASK); ss_e2 = DESC_B_MASK; /* XXX: should not be needed? */ } else #endif { raise_exception_err_ra(env, EXCP0D_GPF, 0, retaddr); } } else { if ((new_ss & 3) != rpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_ss & 0xfffc, retaddr); } if (load_segment_ra(env, &ss_e1, &ss_e2, new_ss, retaddr) != 0) { raise_exception_err_ra(env, EXCP0D_GPF, new_ss & 0xfffc, retaddr); } if (!(ss_e2 & DESC_S_MASK) || (ss_e2 & DESC_CS_MASK) || !(ss_e2 & DESC_W_MASK)) { raise_exception_err_ra(env, EXCP0D_GPF, new_ss & 0xfffc, retaddr); } dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3; if (dpl != rpl) { raise_exception_err_ra(env, EXCP0D_GPF, new_ss & 0xfffc, retaddr); } if (!(ss_e2 & DESC_P_MASK)) { raise_exception_err_ra(env, EXCP0B_NOSEG, new_ss & 0xfffc, retaddr); } cpu_x86_load_seg_cache(env, R_SS, new_ss, get_seg_base(ss_e1, ss_e2), get_seg_limit(ss_e1, ss_e2), ss_e2); } cpu_x86_load_seg_cache(env, R_CS, new_cs, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); sa.sp = new_esp; #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { sa.sp_mask = -1; } else #endif { sa.sp_mask = get_sp_mask(ss_e2); } /* validate data segments */ validate_seg(env, R_ES, rpl); validate_seg(env, R_DS, rpl); validate_seg(env, R_FS, rpl); validate_seg(env, R_GS, rpl); sa.sp += addend; } SET_ESP(sa.sp, sa.sp_mask); env->eip = new_eip; if (is_iret) { /* NOTE: 'cpl' is the _old_ CPL */ eflags_mask = TF_MASK | AC_MASK | ID_MASK | RF_MASK | NT_MASK; if (cpl == 0) { eflags_mask |= IOPL_MASK; } iopl = (env->eflags >> IOPL_SHIFT) & 3; if (cpl <= iopl) { eflags_mask |= IF_MASK; } if (shift == 0) { eflags_mask &= 0xffff; } cpu_load_eflags(env, new_eflags, eflags_mask); } return; return_to_vm86: new_esp = popl(&sa); new_ss = popl(&sa); new_es = popl(&sa); new_ds = popl(&sa); new_fs = popl(&sa); new_gs = popl(&sa); /* modify processor state */ cpu_load_eflags(env, new_eflags, TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | VM_MASK | NT_MASK | VIF_MASK | VIP_MASK); load_seg_vm(env, R_CS, new_cs & 0xffff); load_seg_vm(env, R_SS, new_ss & 0xffff); load_seg_vm(env, R_ES, new_es & 0xffff); load_seg_vm(env, R_DS, new_ds & 0xffff); load_seg_vm(env, R_FS, new_fs & 0xffff); load_seg_vm(env, R_GS, new_gs & 0xffff); env->eip = new_eip & 0xffff; env->regs[R_ESP] = new_esp; } void helper_iret_protected(CPUX86State *env, int shift, int next_eip) { int tss_selector, type; uint32_t e1, e2; /* specific case for TSS */ if (env->eflags & NT_MASK) { #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } #endif tss_selector = cpu_lduw_kernel_ra(env, env->tr.base + 0, GETPC()); if (tss_selector & 4) { raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, GETPC()); } if (load_segment_ra(env, &e1, &e2, tss_selector, GETPC()) != 0) { raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, GETPC()); } type = (e2 >> DESC_TYPE_SHIFT) & 0x17; /* NOTE: we check both segment and busy TSS */ if (type != 3) { raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, GETPC()); } switch_tss_ra(env, tss_selector, e1, e2, SWITCH_TSS_IRET, next_eip, GETPC()); } else { helper_ret_protected(env, shift, 1, 0, GETPC()); } env->hflags2 &= ~HF2_NMI_MASK; } void helper_lret_protected(CPUX86State *env, int shift, int addend) { helper_ret_protected(env, shift, 0, addend, GETPC()); } void helper_sysenter(CPUX86State *env) { if (env->sysenter_cs == 0) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } env->eflags &= ~(VM_MASK | IF_MASK | RF_MASK); #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK); } else #endif { cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); } cpu_x86_load_seg_cache(env, R_SS, (env->sysenter_cs + 8) & 0xfffc, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); env->regs[R_ESP] = env->sysenter_esp; env->eip = env->sysenter_eip; } void helper_sysexit(CPUX86State *env, int dflag) { int cpl; cpl = env->hflags & HF_CPL_MASK; if (env->sysenter_cs == 0 || cpl != 0) { raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); } #ifdef TARGET_X86_64 if (dflag == 2) { cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 32) & 0xfffc) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK); cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 40) & 0xfffc) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_W_MASK | DESC_A_MASK); } else #endif { cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 16) & 0xfffc) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 24) & 0xfffc) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_W_MASK | DESC_A_MASK); } env->regs[R_ESP] = env->regs[R_ECX]; env->eip = env->regs[R_EDX]; } target_ulong helper_lsl(CPUX86State *env, target_ulong selector1) { unsigned int limit; uint32_t e1, e2, selector; int rpl, dpl, cpl, type; selector = selector1 & 0xffff; assert(CC_OP == CC_OP_EFLAGS); if ((selector & 0xfffc) == 0) { goto fail; } if (load_segment_ra(env, &e1, &e2, selector, GETPC()) != 0) { goto fail; } rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; if (e2 & DESC_S_MASK) { if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) { /* conforming */ } else { if (dpl < cpl || dpl < rpl) { goto fail; } } } else { type = (e2 >> DESC_TYPE_SHIFT) & 0xf; switch (type) { case 1: case 2: case 3: case 9: case 11: break; default: goto fail; } if (dpl < cpl || dpl < rpl) { fail: CC_SRC &= ~CC_Z; return 0; } } limit = get_seg_limit(e1, e2); CC_SRC |= CC_Z; return limit; } target_ulong helper_lar(CPUX86State *env, target_ulong selector1) { uint32_t e1, e2, selector; int rpl, dpl, cpl, type; selector = selector1 & 0xffff; assert(CC_OP == CC_OP_EFLAGS); if ((selector & 0xfffc) == 0) { goto fail; } if (load_segment_ra(env, &e1, &e2, selector, GETPC()) != 0) { goto fail; } rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; if (e2 & DESC_S_MASK) { if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) { /* conforming */ } else { if (dpl < cpl || dpl < rpl) { goto fail; } } } else { type = (e2 >> DESC_TYPE_SHIFT) & 0xf; switch (type) { case 1: case 2: case 3: case 4: case 5: case 9: case 11: case 12: break; default: goto fail; } if (dpl < cpl || dpl < rpl) { fail: CC_SRC &= ~CC_Z; return 0; } } CC_SRC |= CC_Z; return e2 & 0x00f0ff00; } void helper_verr(CPUX86State *env, target_ulong selector1) { uint32_t e1, e2, eflags, selector; int rpl, dpl, cpl; selector = selector1 & 0xffff; eflags = cpu_cc_compute_all(env) | CC_Z; if ((selector & 0xfffc) == 0) { goto fail; } if (load_segment_ra(env, &e1, &e2, selector, GETPC()) != 0) { goto fail; } if (!(e2 & DESC_S_MASK)) { goto fail; } rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; if (e2 & DESC_CS_MASK) { if (!(e2 & DESC_R_MASK)) { goto fail; } if (!(e2 & DESC_C_MASK)) { if (dpl < cpl || dpl < rpl) { goto fail; } } } else { if (dpl < cpl || dpl < rpl) { fail: eflags &= ~CC_Z; } } CC_SRC = eflags; CC_OP = CC_OP_EFLAGS; } void helper_verw(CPUX86State *env, target_ulong selector1) { uint32_t e1, e2, eflags, selector; int rpl, dpl, cpl; selector = selector1 & 0xffff; eflags = cpu_cc_compute_all(env) | CC_Z; if ((selector & 0xfffc) == 0) { goto fail; } if (load_segment_ra(env, &e1, &e2, selector, GETPC()) != 0) { goto fail; } if (!(e2 & DESC_S_MASK)) { goto fail; } rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; if (e2 & DESC_CS_MASK) { goto fail; } else { if (dpl < cpl || dpl < rpl) { goto fail; } if (!(e2 & DESC_W_MASK)) { fail: eflags &= ~CC_Z; } } CC_SRC = eflags; CC_OP = CC_OP_EFLAGS; }