/* * New-style TCG opcode generator for i386 instructions * * Copyright (c) 2022 Red Hat, Inc. * * Author: Paolo Bonzini * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * Sometimes, knowing what the backend has can produce better code. * The exact opcode to check depends on 32- vs. 64-bit. */ #ifdef TARGET_X86_64 #define TCG_TARGET_HAS_extract2_tl TCG_TARGET_HAS_extract2_i64 #define TCG_TARGET_deposit_tl_valid TCG_TARGET_deposit_i64_valid #define TCG_TARGET_extract_tl_valid TCG_TARGET_extract_i64_valid #else #define TCG_TARGET_HAS_extract2_tl TCG_TARGET_HAS_extract2_i32 #define TCG_TARGET_deposit_tl_valid TCG_TARGET_deposit_i32_valid #define TCG_TARGET_extract_tl_valid TCG_TARGET_extract_i32_valid #endif #define MMX_OFFSET(reg) \ ({ assert((reg) >= 0 && (reg) <= 7); \ offsetof(CPUX86State, fpregs[reg].mmx); }) #define ZMM_OFFSET(reg) \ ({ assert((reg) >= 0 && (reg) <= 15); \ offsetof(CPUX86State, xmm_regs[reg]); }) typedef void (*SSEFunc_i_ep)(TCGv_i32 val, TCGv_ptr env, TCGv_ptr reg); typedef void (*SSEFunc_l_ep)(TCGv_i64 val, TCGv_ptr env, TCGv_ptr reg); typedef void (*SSEFunc_0_epp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b); typedef void (*SSEFunc_0_eppp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c); typedef void (*SSEFunc_0_epppp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv_ptr reg_d); typedef void (*SSEFunc_0_eppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_i32 val); typedef void (*SSEFunc_0_epppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv_i32 val); typedef void (*SSEFunc_0_ppi)(TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_i32 val); typedef void (*SSEFunc_0_pppi)(TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv_i32 val); typedef void (*SSEFunc_0_eppt)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv val); typedef void (*SSEFunc_0_epppti)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv a0, TCGv_i32 scale); typedef void (*SSEFunc_0_eppppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv_ptr reg_d, TCGv_i32 flags); typedef void (*SSEFunc_0_eppppii)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv_ptr reg_d, TCGv_i32 even, TCGv_i32 odd); static void gen_JMP_m(DisasContext *s, X86DecodedInsn *decode); static void gen_JMP(DisasContext *s, X86DecodedInsn *decode); static inline TCGv_i32 tcg_constant8u_i32(uint8_t val) { return tcg_constant_i32(val); } static void gen_NM_exception(DisasContext *s) { gen_exception(s, EXCP07_PREX); } static void gen_lea_modrm(DisasContext *s, X86DecodedInsn *decode) { AddressParts *mem = &decode->mem; TCGv ea; ea = gen_lea_modrm_1(s, *mem, decode->e.vex_class == 12); if (decode->e.special == X86_SPECIAL_BitTest) { MemOp ot = decode->op[1].ot; int poslen = 8 << ot; int opn = decode->op[2].n; TCGv ofs = tcg_temp_new(); /* Extract memory displacement from the second operand. */ assert(decode->op[2].unit == X86_OP_INT && decode->op[2].ot != MO_8); tcg_gen_sextract_tl(ofs, cpu_regs[opn], 3, poslen - 3); tcg_gen_andi_tl(ofs, ofs, -1 << ot); tcg_gen_add_tl(s->A0, ea, ofs); ea = s->A0; } gen_lea_v_seg(s, ea, mem->def_seg, s->override); } static inline int mmx_offset(MemOp ot) { switch (ot) { case MO_8: return offsetof(MMXReg, MMX_B(0)); case MO_16: return offsetof(MMXReg, MMX_W(0)); case MO_32: return offsetof(MMXReg, MMX_L(0)); case MO_64: return offsetof(MMXReg, MMX_Q(0)); default: g_assert_not_reached(); } } static inline int xmm_offset(MemOp ot) { switch (ot) { case MO_8: return offsetof(ZMMReg, ZMM_B(0)); case MO_16: return offsetof(ZMMReg, ZMM_W(0)); case MO_32: return offsetof(ZMMReg, ZMM_L(0)); case MO_64: return offsetof(ZMMReg, ZMM_Q(0)); case MO_128: return offsetof(ZMMReg, ZMM_X(0)); case MO_256: return offsetof(ZMMReg, ZMM_Y(0)); default: g_assert_not_reached(); } } static int vector_reg_offset(X86DecodedOp *op) { assert(op->unit == X86_OP_MMX || op->unit == X86_OP_SSE); if (op->unit == X86_OP_MMX) { return op->offset - mmx_offset(op->ot); } else { return op->offset - xmm_offset(op->ot); } } static int vector_elem_offset(X86DecodedOp *op, MemOp ot, int n) { int base_ofs = vector_reg_offset(op); switch(ot) { case MO_8: if (op->unit == X86_OP_MMX) { return base_ofs + offsetof(MMXReg, MMX_B(n)); } else { return base_ofs + offsetof(ZMMReg, ZMM_B(n)); } case MO_16: if (op->unit == X86_OP_MMX) { return base_ofs + offsetof(MMXReg, MMX_W(n)); } else { return base_ofs + offsetof(ZMMReg, ZMM_W(n)); } case MO_32: if (op->unit == X86_OP_MMX) { return base_ofs + offsetof(MMXReg, MMX_L(n)); } else { return base_ofs + offsetof(ZMMReg, ZMM_L(n)); } case MO_64: if (op->unit == X86_OP_MMX) { return base_ofs; } else { return base_ofs + offsetof(ZMMReg, ZMM_Q(n)); } case MO_128: assert(op->unit == X86_OP_SSE); return base_ofs + offsetof(ZMMReg, ZMM_X(n)); case MO_256: assert(op->unit == X86_OP_SSE); return base_ofs + offsetof(ZMMReg, ZMM_Y(n)); default: g_assert_not_reached(); } } static void compute_mmx_offset(X86DecodedOp *op) { if (!op->has_ea) { op->offset = MMX_OFFSET(op->n) + mmx_offset(op->ot); } else { op->offset = offsetof(CPUX86State, mmx_t0) + mmx_offset(op->ot); } } static void compute_xmm_offset(X86DecodedOp *op) { if (!op->has_ea) { op->offset = ZMM_OFFSET(op->n) + xmm_offset(op->ot); } else { op->offset = offsetof(CPUX86State, xmm_t0) + xmm_offset(op->ot); } } static void gen_load_sse(DisasContext *s, TCGv temp, MemOp ot, int dest_ofs, bool aligned) { switch(ot) { case MO_8: gen_op_ld_v(s, MO_8, temp, s->A0); tcg_gen_st8_tl(temp, tcg_env, dest_ofs); break; case MO_16: gen_op_ld_v(s, MO_16, temp, s->A0); tcg_gen_st16_tl(temp, tcg_env, dest_ofs); break; case MO_32: gen_op_ld_v(s, MO_32, temp, s->A0); tcg_gen_st32_tl(temp, tcg_env, dest_ofs); break; case MO_64: gen_ldq_env_A0(s, dest_ofs); break; case MO_128: gen_ldo_env_A0(s, dest_ofs, aligned); break; case MO_256: gen_ldy_env_A0(s, dest_ofs, aligned); break; default: g_assert_not_reached(); } } static bool sse_needs_alignment(DisasContext *s, X86DecodedInsn *decode, MemOp ot) { switch (decode->e.vex_class) { case 2: case 4: if ((s->prefix & PREFIX_VEX) || decode->e.vex_special == X86_VEX_SSEUnaligned) { /* MOST legacy SSE instructions require aligned memory operands, but not all. */ return false; } /* fall through */ case 1: return ot >= MO_128; default: return false; } } static void gen_load(DisasContext *s, X86DecodedInsn *decode, int opn, TCGv v) { X86DecodedOp *op = &decode->op[opn]; switch (op->unit) { case X86_OP_SKIP: return; case X86_OP_SEG: tcg_gen_ld32u_tl(v, tcg_env, offsetof(CPUX86State,segs[op->n].selector)); break; #ifndef CONFIG_USER_ONLY case X86_OP_CR: if (op->n == 8) { translator_io_start(&s->base); gen_helper_read_cr8(v, tcg_env); } else { tcg_gen_ld_tl(v, tcg_env, offsetof(CPUX86State, cr[op->n])); } break; case X86_OP_DR: /* CR4.DE tested in the helper. */ gen_helper_get_dr(v, tcg_env, tcg_constant_i32(op->n)); break; #endif case X86_OP_INT: if (op->has_ea) { if (v == s->T0 && decode->e.special == X86_SPECIAL_SExtT0) { gen_op_ld_v(s, op->ot | MO_SIGN, v, s->A0); } else { gen_op_ld_v(s, op->ot, v, s->A0); } } else if (op->ot == MO_8 && byte_reg_is_xH(s, op->n)) { if (v == s->T0 && decode->e.special == X86_SPECIAL_SExtT0) { tcg_gen_sextract_tl(v, cpu_regs[op->n - 4], 8, 8); } else { tcg_gen_extract_tl(v, cpu_regs[op->n - 4], 8, 8); } } else if (op->ot < MO_TL && v == s->T0 && (decode->e.special == X86_SPECIAL_SExtT0 || decode->e.special == X86_SPECIAL_ZExtT0)) { if (decode->e.special == X86_SPECIAL_SExtT0) { tcg_gen_ext_tl(v, cpu_regs[op->n], op->ot | MO_SIGN); } else { tcg_gen_ext_tl(v, cpu_regs[op->n], op->ot); } } else { tcg_gen_mov_tl(v, cpu_regs[op->n]); } break; case X86_OP_IMM: tcg_gen_movi_tl(v, op->imm); break; case X86_OP_MMX: compute_mmx_offset(op); goto load_vector; case X86_OP_SSE: compute_xmm_offset(op); load_vector: if (op->has_ea) { bool aligned = sse_needs_alignment(s, decode, op->ot); gen_load_sse(s, v, op->ot, op->offset, aligned); } break; default: g_assert_not_reached(); } } static TCGv_ptr op_ptr(X86DecodedInsn *decode, int opn) { X86DecodedOp *op = &decode->op[opn]; assert(op->unit == X86_OP_MMX || op->unit == X86_OP_SSE); if (op->v_ptr) { return op->v_ptr; } op->v_ptr = tcg_temp_new_ptr(); /* The temporary points to the MMXReg or ZMMReg. */ tcg_gen_addi_ptr(op->v_ptr, tcg_env, vector_reg_offset(op)); return op->v_ptr; } #define OP_PTR0 op_ptr(decode, 0) #define OP_PTR1 op_ptr(decode, 1) #define OP_PTR2 op_ptr(decode, 2) static void gen_writeback(DisasContext *s, X86DecodedInsn *decode, int opn, TCGv v) { X86DecodedOp *op = &decode->op[opn]; switch (op->unit) { case X86_OP_SKIP: break; case X86_OP_SEG: /* Note that gen_movl_seg takes care of interrupt shadow and TF. */ gen_movl_seg(s, op->n, s->T0); break; case X86_OP_INT: if (op->has_ea) { gen_op_st_v(s, op->ot, v, s->A0); } else { gen_op_mov_reg_v(s, op->ot, op->n, v); } break; case X86_OP_MMX: break; case X86_OP_SSE: if (!op->has_ea && (s->prefix & PREFIX_VEX) && op->ot <= MO_128) { tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[op->n].ZMM_X(1)), 16, 16, 0); } break; #ifndef CONFIG_USER_ONLY case X86_OP_CR: if (op->n == 8) { translator_io_start(&s->base); } gen_helper_write_crN(tcg_env, tcg_constant_i32(op->n), v); s->base.is_jmp = DISAS_EOB_NEXT; break; case X86_OP_DR: /* CR4.DE tested in the helper. */ gen_helper_set_dr(tcg_env, tcg_constant_i32(op->n), v); s->base.is_jmp = DISAS_EOB_NEXT; break; #endif default: g_assert_not_reached(); } op->unit = X86_OP_SKIP; } static inline int vector_len(DisasContext *s, X86DecodedInsn *decode) { if (decode->e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { return 8; } return s->vex_l ? 32 : 16; } static void prepare_update1_cc(X86DecodedInsn *decode, DisasContext *s, CCOp op) { decode->cc_dst = s->T0; decode->cc_op = op; } static void prepare_update2_cc(X86DecodedInsn *decode, DisasContext *s, CCOp op) { decode->cc_src = s->T1; decode->cc_dst = s->T0; decode->cc_op = op; } static void prepare_update_cc_incdec(X86DecodedInsn *decode, DisasContext *s, CCOp op) { gen_compute_eflags_c(s, s->T1); prepare_update2_cc(decode, s, op); } static void prepare_update3_cc(X86DecodedInsn *decode, DisasContext *s, CCOp op, TCGv reg) { decode->cc_src2 = reg; decode->cc_src = s->T1; decode->cc_dst = s->T0; decode->cc_op = op; } /* Set up decode->cc_* to modify CF while keeping other flags unchanged. */ static void prepare_update_cf(X86DecodedInsn *decode, DisasContext *s, TCGv cf) { switch (s->cc_op) { case CC_OP_ADOX: case CC_OP_ADCOX: decode->cc_src2 = cpu_cc_src2; decode->cc_src = cpu_cc_src; decode->cc_op = CC_OP_ADCOX; break; case CC_OP_EFLAGS: case CC_OP_ADCX: decode->cc_src = cpu_cc_src; decode->cc_op = CC_OP_ADCX; break; default: decode->cc_src = tcg_temp_new(); gen_mov_eflags(s, decode->cc_src); decode->cc_op = CC_OP_ADCX; break; } decode->cc_dst = cf; } static void gen_store_sse(DisasContext *s, X86DecodedInsn *decode, int src_ofs) { MemOp ot = decode->op[0].ot; int vec_len = vector_len(s, decode); bool aligned = sse_needs_alignment(s, decode, ot); if (!decode->op[0].has_ea) { tcg_gen_gvec_mov(MO_64, decode->op[0].offset, src_ofs, vec_len, vec_len); return; } switch (ot) { case MO_64: gen_stq_env_A0(s, src_ofs); break; case MO_128: gen_sto_env_A0(s, src_ofs, aligned); break; case MO_256: gen_sty_env_A0(s, src_ofs, aligned); break; default: g_assert_not_reached(); } } static void gen_helper_pavgusb(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b) { gen_helper_pavgb_mmx(env, reg_a, reg_a, reg_b); } #define FN_3DNOW_MOVE ((SSEFunc_0_epp) (uintptr_t) 1) static const SSEFunc_0_epp fns_3dnow[] = { [0x0c] = gen_helper_pi2fw, [0x0d] = gen_helper_pi2fd, [0x1c] = gen_helper_pf2iw, [0x1d] = gen_helper_pf2id, [0x8a] = gen_helper_pfnacc, [0x8e] = gen_helper_pfpnacc, [0x90] = gen_helper_pfcmpge, [0x94] = gen_helper_pfmin, [0x96] = gen_helper_pfrcp, [0x97] = gen_helper_pfrsqrt, [0x9a] = gen_helper_pfsub, [0x9e] = gen_helper_pfadd, [0xa0] = gen_helper_pfcmpgt, [0xa4] = gen_helper_pfmax, [0xa6] = FN_3DNOW_MOVE, /* PFRCPIT1; no need to actually increase precision */ [0xa7] = FN_3DNOW_MOVE, /* PFRSQIT1 */ [0xb6] = FN_3DNOW_MOVE, /* PFRCPIT2 */ [0xaa] = gen_helper_pfsubr, [0xae] = gen_helper_pfacc, [0xb0] = gen_helper_pfcmpeq, [0xb4] = gen_helper_pfmul, [0xb7] = gen_helper_pmulhrw_mmx, [0xbb] = gen_helper_pswapd, [0xbf] = gen_helper_pavgusb, }; static void gen_3dnow(DisasContext *s, X86DecodedInsn *decode) { uint8_t b = decode->immediate; SSEFunc_0_epp fn = b < ARRAY_SIZE(fns_3dnow) ? fns_3dnow[b] : NULL; if (!fn) { gen_illegal_opcode(s); return; } if (s->flags & HF_TS_MASK) { gen_NM_exception(s); return; } if (s->flags & HF_EM_MASK) { gen_illegal_opcode(s); return; } gen_helper_enter_mmx(tcg_env); if (fn == FN_3DNOW_MOVE) { tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset); tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset); } else { fn(tcg_env, OP_PTR0, OP_PTR1); } } /* * 00 = v*ps Vps, Hps, Wpd * 66 = v*pd Vpd, Hpd, Wps * f3 = v*ss Vss, Hss, Wps * f2 = v*sd Vsd, Hsd, Wps */ static inline void gen_unary_fp_sse(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_epp pd_xmm, SSEFunc_0_epp ps_xmm, SSEFunc_0_epp pd_ymm, SSEFunc_0_epp ps_ymm, SSEFunc_0_eppp sd, SSEFunc_0_eppp ss) { if ((s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) != 0) { SSEFunc_0_eppp fn = s->prefix & PREFIX_REPZ ? ss : sd; if (!fn) { gen_illegal_opcode(s); return; } fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } else { SSEFunc_0_epp ps, pd, fn; ps = s->vex_l ? ps_ymm : ps_xmm; pd = s->vex_l ? pd_ymm : pd_xmm; fn = s->prefix & PREFIX_DATA ? pd : ps; if (!fn) { gen_illegal_opcode(s); return; } fn(tcg_env, OP_PTR0, OP_PTR2); } } #define UNARY_FP_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_unary_fp_sse(s, decode, \ gen_helper_##lname##pd_xmm, \ gen_helper_##lname##ps_xmm, \ gen_helper_##lname##pd_ymm, \ gen_helper_##lname##ps_ymm, \ gen_helper_##lname##sd, \ gen_helper_##lname##ss); \ } UNARY_FP_SSE(VSQRT, sqrt) /* * 00 = v*ps Vps, Hps, Wpd * 66 = v*pd Vpd, Hpd, Wps * f3 = v*ss Vss, Hss, Wps * f2 = v*sd Vsd, Hsd, Wps */ static inline void gen_fp_sse(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_eppp pd_xmm, SSEFunc_0_eppp ps_xmm, SSEFunc_0_eppp pd_ymm, SSEFunc_0_eppp ps_ymm, SSEFunc_0_eppp sd, SSEFunc_0_eppp ss) { SSEFunc_0_eppp ps, pd, fn; if ((s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) != 0) { fn = s->prefix & PREFIX_REPZ ? ss : sd; } else { ps = s->vex_l ? ps_ymm : ps_xmm; pd = s->vex_l ? pd_ymm : pd_xmm; fn = s->prefix & PREFIX_DATA ? pd : ps; } if (fn) { fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } else { gen_illegal_opcode(s); } } #define FP_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_fp_sse(s, decode, \ gen_helper_##lname##pd_xmm, \ gen_helper_##lname##ps_xmm, \ gen_helper_##lname##pd_ymm, \ gen_helper_##lname##ps_ymm, \ gen_helper_##lname##sd, \ gen_helper_##lname##ss); \ } FP_SSE(VADD, add) FP_SSE(VMUL, mul) FP_SSE(VSUB, sub) FP_SSE(VMIN, min) FP_SSE(VDIV, div) FP_SSE(VMAX, max) #define FMA_SSE_PACKED(uname, ptr0, ptr1, ptr2, even, odd) \ static void gen_##uname##Px(DisasContext *s, X86DecodedInsn *decode) \ { \ SSEFunc_0_eppppii xmm = s->vex_w ? gen_helper_fma4pd_xmm : gen_helper_fma4ps_xmm; \ SSEFunc_0_eppppii ymm = s->vex_w ? gen_helper_fma4pd_ymm : gen_helper_fma4ps_ymm; \ SSEFunc_0_eppppii fn = s->vex_l ? ymm : xmm; \ \ fn(tcg_env, OP_PTR0, ptr0, ptr1, ptr2, \ tcg_constant_i32(even), \ tcg_constant_i32((even) ^ (odd))); \ } #define FMA_SSE(uname, ptr0, ptr1, ptr2, flags) \ FMA_SSE_PACKED(uname, ptr0, ptr1, ptr2, flags, flags) \ static void gen_##uname##Sx(DisasContext *s, X86DecodedInsn *decode) \ { \ SSEFunc_0_eppppi fn = s->vex_w ? gen_helper_fma4sd : gen_helper_fma4ss; \ \ fn(tcg_env, OP_PTR0, ptr0, ptr1, ptr2, \ tcg_constant_i32(flags)); \ } \ FMA_SSE(VFMADD231, OP_PTR1, OP_PTR2, OP_PTR0, 0) FMA_SSE(VFMADD213, OP_PTR1, OP_PTR0, OP_PTR2, 0) FMA_SSE(VFMADD132, OP_PTR0, OP_PTR2, OP_PTR1, 0) FMA_SSE(VFNMADD231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_product) FMA_SSE(VFNMADD213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_product) FMA_SSE(VFNMADD132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_product) FMA_SSE(VFMSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c) FMA_SSE(VFMSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c) FMA_SSE(VFMSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c) FMA_SSE(VFNMSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c|float_muladd_negate_product) FMA_SSE(VFNMSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c|float_muladd_negate_product) FMA_SSE(VFNMSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c|float_muladd_negate_product) FMA_SSE_PACKED(VFMADDSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c, 0) FMA_SSE_PACKED(VFMADDSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c, 0) FMA_SSE_PACKED(VFMADDSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c, 0) FMA_SSE_PACKED(VFMSUBADD231, OP_PTR1, OP_PTR2, OP_PTR0, 0, float_muladd_negate_c) FMA_SSE_PACKED(VFMSUBADD213, OP_PTR1, OP_PTR0, OP_PTR2, 0, float_muladd_negate_c) FMA_SSE_PACKED(VFMSUBADD132, OP_PTR0, OP_PTR2, OP_PTR1, 0, float_muladd_negate_c) #define FP_UNPACK_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ /* PS maps to the DQ integer instruction, PD maps to QDQ. */ \ gen_fp_sse(s, decode, \ gen_helper_##lname##qdq_xmm, \ gen_helper_##lname##dq_xmm, \ gen_helper_##lname##qdq_ymm, \ gen_helper_##lname##dq_ymm, \ NULL, NULL); \ } FP_UNPACK_SSE(VUNPCKLPx, punpckl) FP_UNPACK_SSE(VUNPCKHPx, punpckh) /* * 00 = v*ps Vps, Wpd * f3 = v*ss Vss, Wps */ static inline void gen_unary_fp32_sse(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_epp ps_xmm, SSEFunc_0_epp ps_ymm, SSEFunc_0_eppp ss) { if ((s->prefix & (PREFIX_DATA | PREFIX_REPNZ)) != 0) { goto illegal_op; } else if (s->prefix & PREFIX_REPZ) { if (!ss) { goto illegal_op; } ss(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } else { SSEFunc_0_epp fn = s->vex_l ? ps_ymm : ps_xmm; if (!fn) { goto illegal_op; } fn(tcg_env, OP_PTR0, OP_PTR2); } return; illegal_op: gen_illegal_opcode(s); } #define UNARY_FP32_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_unary_fp32_sse(s, decode, \ gen_helper_##lname##ps_xmm, \ gen_helper_##lname##ps_ymm, \ gen_helper_##lname##ss); \ } UNARY_FP32_SSE(VRSQRT, rsqrt) UNARY_FP32_SSE(VRCP, rcp) /* * 66 = v*pd Vpd, Hpd, Wpd * f2 = v*ps Vps, Hps, Wps */ static inline void gen_horizontal_fp_sse(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_eppp pd_xmm, SSEFunc_0_eppp ps_xmm, SSEFunc_0_eppp pd_ymm, SSEFunc_0_eppp ps_ymm) { SSEFunc_0_eppp ps, pd, fn; ps = s->vex_l ? ps_ymm : ps_xmm; pd = s->vex_l ? pd_ymm : pd_xmm; fn = s->prefix & PREFIX_DATA ? pd : ps; fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } #define HORIZONTAL_FP_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_horizontal_fp_sse(s, decode, \ gen_helper_##lname##pd_xmm, gen_helper_##lname##ps_xmm, \ gen_helper_##lname##pd_ymm, gen_helper_##lname##ps_ymm); \ } HORIZONTAL_FP_SSE(VHADD, hadd) HORIZONTAL_FP_SSE(VHSUB, hsub) HORIZONTAL_FP_SSE(VADDSUB, addsub) static inline void gen_ternary_sse(DisasContext *s, X86DecodedInsn *decode, int op3, SSEFunc_0_epppp xmm, SSEFunc_0_epppp ymm) { SSEFunc_0_epppp fn = s->vex_l ? ymm : xmm; TCGv_ptr ptr3 = tcg_temp_new_ptr(); /* The format of the fourth input is Lx */ tcg_gen_addi_ptr(ptr3, tcg_env, ZMM_OFFSET(op3)); fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, ptr3); } #define TERNARY_SSE(uname, uvname, lname) \ static void gen_##uvname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_ternary_sse(s, decode, (uint8_t)decode->immediate >> 4, \ gen_helper_##lname##_xmm, gen_helper_##lname##_ymm); \ } \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_ternary_sse(s, decode, 0, \ gen_helper_##lname##_xmm, gen_helper_##lname##_ymm); \ } TERNARY_SSE(BLENDVPS, VBLENDVPS, blendvps) TERNARY_SSE(BLENDVPD, VBLENDVPD, blendvpd) TERNARY_SSE(PBLENDVB, VPBLENDVB, pblendvb) static inline void gen_binary_imm_sse(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_epppi xmm, SSEFunc_0_epppi ymm) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); if (!s->vex_l) { xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } else { ymm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } } #define BINARY_IMM_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_binary_imm_sse(s, decode, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } BINARY_IMM_SSE(VBLENDPD, blendpd) BINARY_IMM_SSE(VBLENDPS, blendps) BINARY_IMM_SSE(VPBLENDW, pblendw) BINARY_IMM_SSE(VDDPS, dpps) #define gen_helper_dppd_ymm NULL BINARY_IMM_SSE(VDDPD, dppd) BINARY_IMM_SSE(VMPSADBW, mpsadbw) BINARY_IMM_SSE(PCLMULQDQ, pclmulqdq) #define UNARY_INT_GVEC(uname, func, ...) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ int vec_len = vector_len(s, decode); \ \ func(__VA_ARGS__, decode->op[0].offset, \ decode->op[2].offset, vec_len, vec_len); \ } UNARY_INT_GVEC(PABSB, tcg_gen_gvec_abs, MO_8) UNARY_INT_GVEC(PABSW, tcg_gen_gvec_abs, MO_16) UNARY_INT_GVEC(PABSD, tcg_gen_gvec_abs, MO_32) UNARY_INT_GVEC(VBROADCASTx128, tcg_gen_gvec_dup_mem, MO_128) UNARY_INT_GVEC(VPBROADCASTB, tcg_gen_gvec_dup_mem, MO_8) UNARY_INT_GVEC(VPBROADCASTW, tcg_gen_gvec_dup_mem, MO_16) UNARY_INT_GVEC(VPBROADCASTD, tcg_gen_gvec_dup_mem, MO_32) UNARY_INT_GVEC(VPBROADCASTQ, tcg_gen_gvec_dup_mem, MO_64) #define BINARY_INT_GVEC(uname, func, ...) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ int vec_len = vector_len(s, decode); \ \ func(__VA_ARGS__, \ decode->op[0].offset, decode->op[1].offset, \ decode->op[2].offset, vec_len, vec_len); \ } BINARY_INT_GVEC(PADDB, tcg_gen_gvec_add, MO_8) BINARY_INT_GVEC(PADDW, tcg_gen_gvec_add, MO_16) BINARY_INT_GVEC(PADDD, tcg_gen_gvec_add, MO_32) BINARY_INT_GVEC(PADDQ, tcg_gen_gvec_add, MO_64) BINARY_INT_GVEC(PADDSB, tcg_gen_gvec_ssadd, MO_8) BINARY_INT_GVEC(PADDSW, tcg_gen_gvec_ssadd, MO_16) BINARY_INT_GVEC(PADDUSB, tcg_gen_gvec_usadd, MO_8) BINARY_INT_GVEC(PADDUSW, tcg_gen_gvec_usadd, MO_16) BINARY_INT_GVEC(PAND, tcg_gen_gvec_and, MO_64) BINARY_INT_GVEC(PCMPEQB, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_8) BINARY_INT_GVEC(PCMPEQD, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_32) BINARY_INT_GVEC(PCMPEQW, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_16) BINARY_INT_GVEC(PCMPEQQ, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_64) BINARY_INT_GVEC(PCMPGTB, tcg_gen_gvec_cmp, TCG_COND_GT, MO_8) BINARY_INT_GVEC(PCMPGTW, tcg_gen_gvec_cmp, TCG_COND_GT, MO_16) BINARY_INT_GVEC(PCMPGTD, tcg_gen_gvec_cmp, TCG_COND_GT, MO_32) BINARY_INT_GVEC(PCMPGTQ, tcg_gen_gvec_cmp, TCG_COND_GT, MO_64) BINARY_INT_GVEC(PMAXSB, tcg_gen_gvec_smax, MO_8) BINARY_INT_GVEC(PMAXSW, tcg_gen_gvec_smax, MO_16) BINARY_INT_GVEC(PMAXSD, tcg_gen_gvec_smax, MO_32) BINARY_INT_GVEC(PMAXUB, tcg_gen_gvec_umax, MO_8) BINARY_INT_GVEC(PMAXUW, tcg_gen_gvec_umax, MO_16) BINARY_INT_GVEC(PMAXUD, tcg_gen_gvec_umax, MO_32) BINARY_INT_GVEC(PMINSB, tcg_gen_gvec_smin, MO_8) BINARY_INT_GVEC(PMINSW, tcg_gen_gvec_smin, MO_16) BINARY_INT_GVEC(PMINSD, tcg_gen_gvec_smin, MO_32) BINARY_INT_GVEC(PMINUB, tcg_gen_gvec_umin, MO_8) BINARY_INT_GVEC(PMINUW, tcg_gen_gvec_umin, MO_16) BINARY_INT_GVEC(PMINUD, tcg_gen_gvec_umin, MO_32) BINARY_INT_GVEC(PMULLW, tcg_gen_gvec_mul, MO_16) BINARY_INT_GVEC(PMULLD, tcg_gen_gvec_mul, MO_32) BINARY_INT_GVEC(POR, tcg_gen_gvec_or, MO_64) BINARY_INT_GVEC(PSUBB, tcg_gen_gvec_sub, MO_8) BINARY_INT_GVEC(PSUBW, tcg_gen_gvec_sub, MO_16) BINARY_INT_GVEC(PSUBD, tcg_gen_gvec_sub, MO_32) BINARY_INT_GVEC(PSUBQ, tcg_gen_gvec_sub, MO_64) BINARY_INT_GVEC(PSUBSB, tcg_gen_gvec_sssub, MO_8) BINARY_INT_GVEC(PSUBSW, tcg_gen_gvec_sssub, MO_16) BINARY_INT_GVEC(PSUBUSB, tcg_gen_gvec_ussub, MO_8) BINARY_INT_GVEC(PSUBUSW, tcg_gen_gvec_ussub, MO_16) BINARY_INT_GVEC(PXOR, tcg_gen_gvec_xor, MO_64) /* * 00 = p* Pq, Qq (if mmx not NULL; no VEX) * 66 = vp* Vx, Hx, Wx * * These are really the same encoding, because 1) V is the same as P when VEX.V * is not present 2) P and Q are the same as H and W apart from MM/XMM */ static inline void gen_binary_int_sse(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_eppp mmx, SSEFunc_0_eppp xmm, SSEFunc_0_eppp ymm) { assert(!!mmx == !!(decode->e.special == X86_SPECIAL_MMX)); if (mmx && (s->prefix & PREFIX_VEX) && !(s->prefix & PREFIX_DATA)) { /* VEX encoding is not applicable to MMX instructions. */ gen_illegal_opcode(s); return; } if (!(s->prefix & PREFIX_DATA)) { mmx(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } else if (!s->vex_l) { xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } else { ymm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } } #define BINARY_INT_MMX(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_binary_int_sse(s, decode, \ gen_helper_##lname##_mmx, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } BINARY_INT_MMX(PUNPCKLBW, punpcklbw) BINARY_INT_MMX(PUNPCKLWD, punpcklwd) BINARY_INT_MMX(PUNPCKLDQ, punpckldq) BINARY_INT_MMX(PACKSSWB, packsswb) BINARY_INT_MMX(PACKUSWB, packuswb) BINARY_INT_MMX(PUNPCKHBW, punpckhbw) BINARY_INT_MMX(PUNPCKHWD, punpckhwd) BINARY_INT_MMX(PUNPCKHDQ, punpckhdq) BINARY_INT_MMX(PACKSSDW, packssdw) BINARY_INT_MMX(PAVGB, pavgb) BINARY_INT_MMX(PAVGW, pavgw) BINARY_INT_MMX(PMADDWD, pmaddwd) BINARY_INT_MMX(PMULHUW, pmulhuw) BINARY_INT_MMX(PMULHW, pmulhw) BINARY_INT_MMX(PMULUDQ, pmuludq) BINARY_INT_MMX(PSADBW, psadbw) BINARY_INT_MMX(PSLLW_r, psllw) BINARY_INT_MMX(PSLLD_r, pslld) BINARY_INT_MMX(PSLLQ_r, psllq) BINARY_INT_MMX(PSRLW_r, psrlw) BINARY_INT_MMX(PSRLD_r, psrld) BINARY_INT_MMX(PSRLQ_r, psrlq) BINARY_INT_MMX(PSRAW_r, psraw) BINARY_INT_MMX(PSRAD_r, psrad) BINARY_INT_MMX(PHADDW, phaddw) BINARY_INT_MMX(PHADDSW, phaddsw) BINARY_INT_MMX(PHADDD, phaddd) BINARY_INT_MMX(PHSUBW, phsubw) BINARY_INT_MMX(PHSUBSW, phsubsw) BINARY_INT_MMX(PHSUBD, phsubd) BINARY_INT_MMX(PMADDUBSW, pmaddubsw) BINARY_INT_MMX(PSHUFB, pshufb) BINARY_INT_MMX(PSIGNB, psignb) BINARY_INT_MMX(PSIGNW, psignw) BINARY_INT_MMX(PSIGND, psignd) BINARY_INT_MMX(PMULHRSW, pmulhrsw) /* Instructions with no MMX equivalent. */ #define BINARY_INT_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_binary_int_sse(s, decode, \ NULL, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } /* Instructions with no MMX equivalent. */ BINARY_INT_SSE(PUNPCKLQDQ, punpcklqdq) BINARY_INT_SSE(PUNPCKHQDQ, punpckhqdq) BINARY_INT_SSE(VPACKUSDW, packusdw) BINARY_INT_SSE(VPERMILPS, vpermilps) BINARY_INT_SSE(VPERMILPD, vpermilpd) BINARY_INT_SSE(VMASKMOVPS, vpmaskmovd) BINARY_INT_SSE(VMASKMOVPD, vpmaskmovq) BINARY_INT_SSE(PMULDQ, pmuldq) BINARY_INT_SSE(VAESDEC, aesdec) BINARY_INT_SSE(VAESDECLAST, aesdeclast) BINARY_INT_SSE(VAESENC, aesenc) BINARY_INT_SSE(VAESENCLAST, aesenclast) #define UNARY_CMP_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ if (!s->vex_l) { \ gen_helper_##lname##_xmm(tcg_env, OP_PTR1, OP_PTR2); \ } else { \ gen_helper_##lname##_ymm(tcg_env, OP_PTR1, OP_PTR2); \ } \ assume_cc_op(s, CC_OP_EFLAGS); \ } UNARY_CMP_SSE(VPTEST, ptest) UNARY_CMP_SSE(VTESTPS, vtestps) UNARY_CMP_SSE(VTESTPD, vtestpd) static inline void gen_unary_int_sse(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_epp xmm, SSEFunc_0_epp ymm) { if (!s->vex_l) { xmm(tcg_env, OP_PTR0, OP_PTR2); } else { ymm(tcg_env, OP_PTR0, OP_PTR2); } } #define UNARY_INT_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_unary_int_sse(s, decode, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } UNARY_INT_SSE(VPMOVSXBW, pmovsxbw) UNARY_INT_SSE(VPMOVSXBD, pmovsxbd) UNARY_INT_SSE(VPMOVSXBQ, pmovsxbq) UNARY_INT_SSE(VPMOVSXWD, pmovsxwd) UNARY_INT_SSE(VPMOVSXWQ, pmovsxwq) UNARY_INT_SSE(VPMOVSXDQ, pmovsxdq) UNARY_INT_SSE(VPMOVZXBW, pmovzxbw) UNARY_INT_SSE(VPMOVZXBD, pmovzxbd) UNARY_INT_SSE(VPMOVZXBQ, pmovzxbq) UNARY_INT_SSE(VPMOVZXWD, pmovzxwd) UNARY_INT_SSE(VPMOVZXWQ, pmovzxwq) UNARY_INT_SSE(VPMOVZXDQ, pmovzxdq) UNARY_INT_SSE(VMOVSLDUP, pmovsldup) UNARY_INT_SSE(VMOVSHDUP, pmovshdup) UNARY_INT_SSE(VMOVDDUP, pmovdldup) UNARY_INT_SSE(VCVTDQ2PD, cvtdq2pd) UNARY_INT_SSE(VCVTPD2DQ, cvtpd2dq) UNARY_INT_SSE(VCVTTPD2DQ, cvttpd2dq) UNARY_INT_SSE(VCVTDQ2PS, cvtdq2ps) UNARY_INT_SSE(VCVTPS2DQ, cvtps2dq) UNARY_INT_SSE(VCVTTPS2DQ, cvttps2dq) UNARY_INT_SSE(VCVTPH2PS, cvtph2ps) static inline void gen_unary_imm_sse(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_ppi xmm, SSEFunc_0_ppi ymm) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); if (!s->vex_l) { xmm(OP_PTR0, OP_PTR1, imm); } else { ymm(OP_PTR0, OP_PTR1, imm); } } #define UNARY_IMM_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_unary_imm_sse(s, decode, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } UNARY_IMM_SSE(PSHUFD, pshufd) UNARY_IMM_SSE(PSHUFHW, pshufhw) UNARY_IMM_SSE(PSHUFLW, pshuflw) #define gen_helper_vpermq_xmm NULL UNARY_IMM_SSE(VPERMQ, vpermq) UNARY_IMM_SSE(VPERMILPS_i, vpermilps_imm) UNARY_IMM_SSE(VPERMILPD_i, vpermilpd_imm) static inline void gen_unary_imm_fp_sse(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_eppi xmm, SSEFunc_0_eppi ymm) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); if (!s->vex_l) { xmm(tcg_env, OP_PTR0, OP_PTR1, imm); } else { ymm(tcg_env, OP_PTR0, OP_PTR1, imm); } } #define UNARY_IMM_FP_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_unary_imm_fp_sse(s, decode, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } UNARY_IMM_FP_SSE(VROUNDPS, roundps) UNARY_IMM_FP_SSE(VROUNDPD, roundpd) static inline void gen_vexw_avx(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_eppp d_xmm, SSEFunc_0_eppp q_xmm, SSEFunc_0_eppp d_ymm, SSEFunc_0_eppp q_ymm) { SSEFunc_0_eppp d = s->vex_l ? d_ymm : d_xmm; SSEFunc_0_eppp q = s->vex_l ? q_ymm : q_xmm; SSEFunc_0_eppp fn = s->vex_w ? q : d; fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } /* VEX.W affects whether to operate on 32- or 64-bit elements. */ #define VEXW_AVX(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_vexw_avx(s, decode, \ gen_helper_##lname##d_xmm, gen_helper_##lname##q_xmm, \ gen_helper_##lname##d_ymm, gen_helper_##lname##q_ymm); \ } VEXW_AVX(VPSLLV, vpsllv) VEXW_AVX(VPSRLV, vpsrlv) VEXW_AVX(VPSRAV, vpsrav) VEXW_AVX(VPMASKMOV, vpmaskmov) /* Same as above, but with extra arguments to the helper. */ static inline void gen_vsib_avx(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_epppti d_xmm, SSEFunc_0_epppti q_xmm, SSEFunc_0_epppti d_ymm, SSEFunc_0_epppti q_ymm) { SSEFunc_0_epppti d = s->vex_l ? d_ymm : d_xmm; SSEFunc_0_epppti q = s->vex_l ? q_ymm : q_xmm; SSEFunc_0_epppti fn = s->vex_w ? q : d; TCGv_i32 scale = tcg_constant_i32(decode->mem.scale); TCGv_ptr index = tcg_temp_new_ptr(); /* Pass third input as (index, base, scale) */ tcg_gen_addi_ptr(index, tcg_env, ZMM_OFFSET(decode->mem.index)); fn(tcg_env, OP_PTR0, OP_PTR1, index, s->A0, scale); /* * There are two output operands, so zero OP1's high 128 bits * in the VEX.128 case. */ if (!s->vex_l) { int ymmh_ofs = vector_elem_offset(&decode->op[1], MO_128, 1); tcg_gen_gvec_dup_imm(MO_64, ymmh_ofs, 16, 16, 0); } } #define VSIB_AVX(uname, lname) \ static void gen_##uname(DisasContext *s, X86DecodedInsn *decode) \ { \ gen_vsib_avx(s, decode, \ gen_helper_##lname##d_xmm, gen_helper_##lname##q_xmm, \ gen_helper_##lname##d_ymm, gen_helper_##lname##q_ymm); \ } VSIB_AVX(VPGATHERD, vpgatherd) VSIB_AVX(VPGATHERQ, vpgatherq) static void gen_AAA(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_helper_aaa(tcg_env); assume_cc_op(s, CC_OP_EFLAGS); } static void gen_AAD(DisasContext *s, X86DecodedInsn *decode) { gen_helper_aad(s->T0, s->T0, s->T1); prepare_update1_cc(decode, s, CC_OP_LOGICB); } static void gen_AAM(DisasContext *s, X86DecodedInsn *decode) { if (decode->immediate == 0) { gen_exception(s, EXCP00_DIVZ); } else { gen_helper_aam(s->T0, s->T0, s->T1); prepare_update1_cc(decode, s, CC_OP_LOGICB); } } static void gen_AAS(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_helper_aas(tcg_env); assume_cc_op(s, CC_OP_EFLAGS); } static void gen_ADC(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; TCGv c_in = tcg_temp_new(); gen_compute_eflags_c(s, c_in); if (s->prefix & PREFIX_LOCK) { tcg_gen_add_tl(s->T0, c_in, s->T1); tcg_gen_atomic_add_fetch_tl(s->T0, s->A0, s->T0, s->mem_index, ot | MO_LE); } else { tcg_gen_add_tl(s->T0, s->T0, s->T1); tcg_gen_add_tl(s->T0, s->T0, c_in); } prepare_update3_cc(decode, s, CC_OP_ADCB + ot, c_in); } static void gen_ADCOX(DisasContext *s, X86DecodedInsn *decode, int cc_op) { MemOp ot = decode->op[0].ot; TCGv carry_in = NULL; TCGv *carry_out = (cc_op == CC_OP_ADCX ? &decode->cc_dst : &decode->cc_src2); TCGv zero; decode->cc_op = cc_op; *carry_out = tcg_temp_new(); if (CC_OP_HAS_EFLAGS(s->cc_op)) { decode->cc_src = cpu_cc_src; /* Re-use the carry-out from a previous round? */ if (s->cc_op == cc_op || s->cc_op == CC_OP_ADCOX) { carry_in = (cc_op == CC_OP_ADCX ? cpu_cc_dst : cpu_cc_src2); } /* Preserve the opposite carry from previous rounds? */ if (s->cc_op != cc_op && s->cc_op != CC_OP_EFLAGS) { decode->cc_op = CC_OP_ADCOX; if (carry_out == &decode->cc_dst) { decode->cc_src2 = cpu_cc_src2; } else { decode->cc_dst = cpu_cc_dst; } } } else { decode->cc_src = tcg_temp_new(); gen_mov_eflags(s, decode->cc_src); } if (!carry_in) { /* Get carry_in out of EFLAGS. */ carry_in = tcg_temp_new(); tcg_gen_extract_tl(carry_in, decode->cc_src, ctz32(cc_op == CC_OP_ADCX ? CC_C : CC_O), 1); } switch (ot) { #ifdef TARGET_X86_64 case MO_32: /* If TL is 64-bit just do everything in 64-bit arithmetic. */ tcg_gen_ext32u_tl(s->T0, s->T0); tcg_gen_ext32u_tl(s->T1, s->T1); tcg_gen_add_i64(s->T0, s->T0, s->T1); tcg_gen_add_i64(s->T0, s->T0, carry_in); tcg_gen_shri_i64(*carry_out, s->T0, 32); break; #endif default: zero = tcg_constant_tl(0); tcg_gen_add2_tl(s->T0, *carry_out, s->T0, zero, carry_in, zero); tcg_gen_add2_tl(s->T0, *carry_out, s->T0, *carry_out, s->T1, zero); break; } } static void gen_ADCX(DisasContext *s, X86DecodedInsn *decode) { gen_ADCOX(s, decode, CC_OP_ADCX); } static void gen_ADD(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_add_fetch_tl(s->T0, s->A0, s->T1, s->mem_index, ot | MO_LE); } else { tcg_gen_add_tl(s->T0, s->T0, s->T1); } prepare_update2_cc(decode, s, CC_OP_ADDB + ot); } static void gen_ADOX(DisasContext *s, X86DecodedInsn *decode) { gen_ADCOX(s, decode, CC_OP_ADOX); } static void gen_AND(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_and_fetch_tl(s->T0, s->A0, s->T1, s->mem_index, ot | MO_LE); } else { tcg_gen_and_tl(s->T0, s->T0, s->T1); } prepare_update1_cc(decode, s, CC_OP_LOGICB + ot); } static void gen_ANDN(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; tcg_gen_andc_tl(s->T0, s->T1, s->T0); prepare_update1_cc(decode, s, CC_OP_LOGICB + ot); } static void gen_ARPL(DisasContext *s, X86DecodedInsn *decode) { TCGv zf = tcg_temp_new(); TCGv flags = tcg_temp_new(); gen_mov_eflags(s, flags); /* Compute adjusted DST in T1, merging in SRC[RPL]. */ tcg_gen_deposit_tl(s->T1, s->T0, s->T1, 0, 2); /* Z flag set if DST[RPL] < SRC[RPL] */ tcg_gen_setcond_tl(TCG_COND_LTU, zf, s->T0, s->T1); tcg_gen_deposit_tl(flags, flags, zf, ctz32(CC_Z), 1); /* Place maximum RPL in DST */ tcg_gen_umax_tl(s->T0, s->T0, s->T1); decode->cc_src = flags; decode->cc_op = CC_OP_EFLAGS; } static void gen_BEXTR(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv bound = tcg_constant_tl(ot == MO_64 ? 63 : 31); TCGv zero = tcg_constant_tl(0); TCGv mone = tcg_constant_tl(-1); /* * Extract START, and shift the operand. * Shifts larger than operand size get zeros. */ tcg_gen_ext8u_tl(s->A0, s->T1); tcg_gen_shr_tl(s->T0, s->T0, s->A0); tcg_gen_movcond_tl(TCG_COND_LEU, s->T0, s->A0, bound, s->T0, zero); /* * Extract the LEN into an inverse mask. Lengths larger than * operand size get all zeros, length 0 gets all ones. */ tcg_gen_extract_tl(s->A0, s->T1, 8, 8); tcg_gen_shl_tl(s->T1, mone, s->A0); tcg_gen_movcond_tl(TCG_COND_LEU, s->T1, s->A0, bound, s->T1, zero); tcg_gen_andc_tl(s->T0, s->T0, s->T1); prepare_update1_cc(decode, s, CC_OP_LOGICB + ot); } static void gen_BLSI(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* input in T1, which is ready for prepare_update2_cc */ tcg_gen_neg_tl(s->T0, s->T1); tcg_gen_and_tl(s->T0, s->T0, s->T1); prepare_update2_cc(decode, s, CC_OP_BLSIB + ot); } static void gen_BLSMSK(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* input in T1, which is ready for prepare_update2_cc */ tcg_gen_subi_tl(s->T0, s->T1, 1); tcg_gen_xor_tl(s->T0, s->T0, s->T1); prepare_update2_cc(decode, s, CC_OP_BMILGB + ot); } static void gen_BLSR(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* input in T1, which is ready for prepare_update2_cc */ tcg_gen_subi_tl(s->T0, s->T1, 1); tcg_gen_and_tl(s->T0, s->T0, s->T1); prepare_update2_cc(decode, s, CC_OP_BMILGB + ot); } static void gen_BOUND(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 op = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(op, s->T0); if (decode->op[1].ot == MO_16) { gen_helper_boundw(tcg_env, s->A0, op); } else { gen_helper_boundl(tcg_env, s->A0, op); } } /* Non-standard convention - on entry T0 is zero-extended input, T1 is the output. */ static void gen_BSF(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* Only the Z bit is defined and it is related to the input. */ decode->cc_dst = tcg_temp_new(); decode->cc_op = CC_OP_LOGICB + ot; tcg_gen_mov_tl(decode->cc_dst, s->T0); /* * The manual says that the output is undefined when the * input is zero, but real hardware leaves it unchanged, and * real programs appear to depend on that. Accomplish this * by passing the output as the value to return upon zero. */ tcg_gen_ctz_tl(s->T0, s->T0, s->T1); } /* Non-standard convention - on entry T0 is zero-extended input, T1 is the output. */ static void gen_BSR(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* Only the Z bit is defined and it is related to the input. */ decode->cc_dst = tcg_temp_new(); decode->cc_op = CC_OP_LOGICB + ot; tcg_gen_mov_tl(decode->cc_dst, s->T0); /* * The manual says that the output is undefined when the * input is zero, but real hardware leaves it unchanged, and * real programs appear to depend on that. Accomplish this * by passing the output as the value to return upon zero. * Plus, return the bit index of the first 1 bit. */ tcg_gen_xori_tl(s->T1, s->T1, TARGET_LONG_BITS - 1); tcg_gen_clz_tl(s->T0, s->T0, s->T1); tcg_gen_xori_tl(s->T0, s->T0, TARGET_LONG_BITS - 1); } static void gen_BSWAP(DisasContext *s, X86DecodedInsn *decode) { #ifdef TARGET_X86_64 if (s->dflag == MO_64) { tcg_gen_bswap64_i64(s->T0, s->T0); return; } #endif tcg_gen_bswap32_tl(s->T0, s->T0, TCG_BSWAP_OZ); } static TCGv gen_bt_mask(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; TCGv mask = tcg_temp_new(); tcg_gen_andi_tl(s->T1, s->T1, (8 << ot) - 1); tcg_gen_shl_tl(mask, tcg_constant_tl(1), s->T1); return mask; } /* Expects truncated bit index in s->T1, 1 << s->T1 in MASK. */ static void gen_bt_flags(DisasContext *s, X86DecodedInsn *decode, TCGv src, TCGv mask) { TCGv cf; /* * C is the result of the test, Z is unchanged, and the others * are all undefined. */ if (s->cc_op == CC_OP_DYNAMIC || CC_OP_HAS_EFLAGS(s->cc_op)) { /* Generate EFLAGS and replace the C bit. */ cf = tcg_temp_new(); tcg_gen_setcond_tl(TCG_COND_TSTNE, cf, src, mask); prepare_update_cf(decode, s, cf); } else { /* * Z was going to be computed from the non-zero status of CC_DST. * We can get that same Z value (and the new C value) by leaving * CC_DST alone, setting CC_SRC, and using a CC_OP_SAR of the * same width. */ decode->cc_src = tcg_temp_new(); decode->cc_dst = cpu_cc_dst; decode->cc_op = CC_OP_SARB + cc_op_size(s->cc_op); tcg_gen_shr_tl(decode->cc_src, src, s->T1); } } static void gen_BT(DisasContext *s, X86DecodedInsn *decode) { TCGv mask = gen_bt_mask(s, decode); gen_bt_flags(s, decode, s->T0, mask); } static void gen_BTC(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv old = tcg_temp_new(); TCGv mask = gen_bt_mask(s, decode); if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_fetch_xor_tl(old, s->A0, mask, s->mem_index, ot | MO_LE); } else { tcg_gen_mov_tl(old, s->T0); tcg_gen_xor_tl(s->T0, s->T0, mask); } gen_bt_flags(s, decode, old, mask); } static void gen_BTR(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv old = tcg_temp_new(); TCGv mask = gen_bt_mask(s, decode); if (s->prefix & PREFIX_LOCK) { TCGv maskc = tcg_temp_new(); tcg_gen_not_tl(maskc, mask); tcg_gen_atomic_fetch_and_tl(old, s->A0, maskc, s->mem_index, ot | MO_LE); } else { tcg_gen_mov_tl(old, s->T0); tcg_gen_andc_tl(s->T0, s->T0, mask); } gen_bt_flags(s, decode, old, mask); } static void gen_BTS(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv old = tcg_temp_new(); TCGv mask = gen_bt_mask(s, decode); if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_fetch_or_tl(old, s->A0, mask, s->mem_index, ot | MO_LE); } else { tcg_gen_mov_tl(old, s->T0); tcg_gen_or_tl(s->T0, s->T0, mask); } gen_bt_flags(s, decode, old, mask); } static void gen_BZHI(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv bound = tcg_constant_tl(ot == MO_64 ? 63 : 31); TCGv zero = tcg_constant_tl(0); TCGv mone = tcg_constant_tl(-1); tcg_gen_ext8u_tl(s->T1, s->T1); tcg_gen_shl_tl(s->A0, mone, s->T1); tcg_gen_movcond_tl(TCG_COND_LEU, s->A0, s->T1, bound, s->A0, zero); tcg_gen_andc_tl(s->T0, s->T0, s->A0); /* * Note that since we're using BMILG (in order to get O * cleared) we need to store the inverse into C. */ tcg_gen_setcond_tl(TCG_COND_LEU, s->T1, s->T1, bound); prepare_update2_cc(decode, s, CC_OP_BMILGB + ot); } static void gen_CALL(DisasContext *s, X86DecodedInsn *decode) { gen_push_v(s, eip_next_tl(s)); gen_JMP(s, decode); } static void gen_CALL_m(DisasContext *s, X86DecodedInsn *decode) { gen_push_v(s, eip_next_tl(s)); gen_JMP_m(s, decode); } static void gen_CALLF(DisasContext *s, X86DecodedInsn *decode) { gen_far_call(s); } static void gen_CALLF_m(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; gen_op_ld_v(s, ot, s->T0, s->A0); gen_add_A0_im(s, 1 << ot); gen_op_ld_v(s, MO_16, s->T1, s->A0); gen_far_call(s); } static void gen_CBW(DisasContext *s, X86DecodedInsn *decode) { MemOp src_ot = decode->op[0].ot - 1; tcg_gen_ext_tl(s->T0, s->T0, src_ot | MO_SIGN); } static void gen_CLC(DisasContext *s, X86DecodedInsn *decode) { gen_compute_eflags(s); tcg_gen_andi_tl(cpu_cc_src, cpu_cc_src, ~CC_C); } static void gen_CLD(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_st_i32(tcg_constant_i32(1), tcg_env, offsetof(CPUX86State, df)); } static void gen_CLI(DisasContext *s, X86DecodedInsn *decode) { gen_reset_eflags(s, IF_MASK); } static void gen_CLTS(DisasContext *s, X86DecodedInsn *decode) { gen_helper_clts(tcg_env); /* abort block because static cpu state changed */ s->base.is_jmp = DISAS_EOB_NEXT; } static void gen_CMC(DisasContext *s, X86DecodedInsn *decode) { gen_compute_eflags(s); tcg_gen_xori_tl(cpu_cc_src, cpu_cc_src, CC_C); } static void gen_CMOVcc(DisasContext *s, X86DecodedInsn *decode) { gen_cmovcc1(s, decode->b & 0xf, s->T0, s->T1); } static void gen_CMPccXADD(DisasContext *s, X86DecodedInsn *decode) { TCGLabel *label_top = gen_new_label(); TCGLabel *label_bottom = gen_new_label(); TCGv oldv = tcg_temp_new(); TCGv newv = tcg_temp_new(); TCGv cmpv = tcg_temp_new(); TCGCond cond; TCGv cmp_lhs, cmp_rhs; MemOp ot, ot_full; int jcc_op = (decode->b >> 1) & 7; static const TCGCond cond_table[8] = { [JCC_O] = TCG_COND_LT, /* test sign bit by comparing against 0 */ [JCC_B] = TCG_COND_LTU, [JCC_Z] = TCG_COND_EQ, [JCC_BE] = TCG_COND_LEU, [JCC_S] = TCG_COND_LT, /* test sign bit by comparing against 0 */ [JCC_P] = TCG_COND_TSTEQ, /* even parity - tests low bit of popcount */ [JCC_L] = TCG_COND_LT, [JCC_LE] = TCG_COND_LE, }; cond = cond_table[jcc_op]; if (decode->b & 1) { cond = tcg_invert_cond(cond); } ot = decode->op[0].ot; ot_full = ot | MO_LE; if (jcc_op >= JCC_S) { /* * Sign-extend values before subtracting for S, P (zero/sign extension * does not matter there) L, LE and their inverses. */ ot_full |= MO_SIGN; } /* * cmpv will be moved to cc_src *after* cpu_regs[] is written back, so use * tcg_gen_ext_tl instead of gen_ext_tl. */ tcg_gen_ext_tl(cmpv, cpu_regs[decode->op[1].n], ot_full); /* * Cmpxchg loop starts here. * - s->T1: addition operand (from decoder) * - s->A0: dest address (from decoder) * - s->cc_srcT: memory operand (lhs for comparison) * - cmpv: rhs for comparison */ gen_set_label(label_top); gen_op_ld_v(s, ot_full, s->cc_srcT, s->A0); tcg_gen_sub_tl(s->T0, s->cc_srcT, cmpv); /* Compute the comparison result by hand, to avoid clobbering cc_*. */ switch (jcc_op) { case JCC_O: /* (src1 ^ src2) & (src1 ^ dst). newv is only used here for a moment */ tcg_gen_xor_tl(newv, s->cc_srcT, s->T0); tcg_gen_xor_tl(s->tmp0, s->cc_srcT, cmpv); tcg_gen_and_tl(s->tmp0, s->tmp0, newv); tcg_gen_sextract_tl(s->tmp0, s->tmp0, 0, 8 << ot); cmp_lhs = s->tmp0, cmp_rhs = tcg_constant_tl(0); break; case JCC_P: tcg_gen_ext8u_tl(s->tmp0, s->T0); tcg_gen_ctpop_tl(s->tmp0, s->tmp0); cmp_lhs = s->tmp0, cmp_rhs = tcg_constant_tl(1); break; case JCC_S: tcg_gen_sextract_tl(s->tmp0, s->T0, 0, 8 << ot); cmp_lhs = s->tmp0, cmp_rhs = tcg_constant_tl(0); break; default: cmp_lhs = s->cc_srcT, cmp_rhs = cmpv; break; } /* Compute new value: if condition does not hold, just store back s->cc_srcT */ tcg_gen_add_tl(newv, s->cc_srcT, s->T1); tcg_gen_movcond_tl(cond, newv, cmp_lhs, cmp_rhs, newv, s->cc_srcT); tcg_gen_atomic_cmpxchg_tl(oldv, s->A0, s->cc_srcT, newv, s->mem_index, ot_full); /* Exit unconditionally if cmpxchg succeeded. */ tcg_gen_brcond_tl(TCG_COND_EQ, oldv, s->cc_srcT, label_bottom); /* Try again if there was actually a store to make. */ tcg_gen_brcond_tl(cond, cmp_lhs, cmp_rhs, label_top); gen_set_label(label_bottom); /* Store old value to registers only after a successful store. */ gen_writeback(s, decode, 1, s->cc_srcT); decode->cc_dst = s->T0; decode->cc_src = cmpv; decode->cc_op = CC_OP_SUBB + ot; } static void gen_CMPS(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz_nz(s, ot, gen_cmps); } else { gen_cmps(s, ot); } } static void gen_CMPXCHG(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; TCGv cmpv = tcg_temp_new(); TCGv oldv = tcg_temp_new(); TCGv newv = tcg_temp_new(); TCGv dest; tcg_gen_ext_tl(cmpv, cpu_regs[R_EAX], ot); tcg_gen_ext_tl(newv, s->T1, ot); if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_cmpxchg_tl(oldv, s->A0, cmpv, newv, s->mem_index, ot | MO_LE); } else { tcg_gen_ext_tl(oldv, s->T0, ot); if (decode->op[0].has_ea) { /* * Perform an unconditional store cycle like physical cpu; * must be before changing accumulator to ensure * idempotency if the store faults and the instruction * is restarted */ tcg_gen_movcond_tl(TCG_COND_EQ, newv, oldv, cmpv, newv, oldv); gen_op_st_v(s, ot, newv, s->A0); } else { /* * Unlike the memory case, where "the destination operand receives * a write cycle without regard to the result of the comparison", * rm must not be touched altogether if the write fails, including * not zero-extending it on 64-bit processors. So, precompute * the result of a successful writeback and perform the movcond * directly on cpu_regs. In case rm is part of RAX, note that this * movcond and the one below are mutually exclusive is executed. */ dest = gen_op_deposit_reg_v(s, ot, decode->op[0].n, newv, newv); tcg_gen_movcond_tl(TCG_COND_EQ, dest, oldv, cmpv, newv, dest); } decode->op[0].unit = X86_OP_SKIP; } /* Write RAX only if the cmpxchg fails. */ dest = gen_op_deposit_reg_v(s, ot, R_EAX, s->T0, oldv); tcg_gen_movcond_tl(TCG_COND_NE, dest, oldv, cmpv, s->T0, dest); tcg_gen_mov_tl(s->cc_srcT, cmpv); tcg_gen_sub_tl(cmpv, cmpv, oldv); decode->cc_dst = cmpv; decode->cc_src = oldv; decode->cc_op = CC_OP_SUBB + ot; } static void gen_CMPXCHG16B(DisasContext *s, X86DecodedInsn *decode) { #ifdef TARGET_X86_64 MemOp mop = MO_TE | MO_128 | MO_ALIGN; TCGv_i64 t0, t1; TCGv_i128 cmp, val; cmp = tcg_temp_new_i128(); val = tcg_temp_new_i128(); tcg_gen_concat_i64_i128(cmp, cpu_regs[R_EAX], cpu_regs[R_EDX]); tcg_gen_concat_i64_i128(val, cpu_regs[R_EBX], cpu_regs[R_ECX]); /* Only require atomic with LOCK; non-parallel handled in generator. */ if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_cmpxchg_i128(val, s->A0, cmp, val, s->mem_index, mop); } else { tcg_gen_nonatomic_cmpxchg_i128(val, s->A0, cmp, val, s->mem_index, mop); } tcg_gen_extr_i128_i64(s->T0, s->T1, val); /* Determine success after the fact. */ t0 = tcg_temp_new_i64(); t1 = tcg_temp_new_i64(); tcg_gen_xor_i64(t0, s->T0, cpu_regs[R_EAX]); tcg_gen_xor_i64(t1, s->T1, cpu_regs[R_EDX]); tcg_gen_or_i64(t0, t0, t1); /* Update Z. */ gen_compute_eflags(s); tcg_gen_setcondi_i64(TCG_COND_EQ, t0, t0, 0); tcg_gen_deposit_tl(cpu_cc_src, cpu_cc_src, t0, ctz32(CC_Z), 1); /* * Extract the result values for the register pair. We may do this * unconditionally, because on success (Z=1), the old value matches * the previous value in RDX:RAX. */ tcg_gen_mov_i64(cpu_regs[R_EAX], s->T0); tcg_gen_mov_i64(cpu_regs[R_EDX], s->T1); #else abort(); #endif } static void gen_CMPXCHG8B(DisasContext *s, X86DecodedInsn *decode) { TCGv_i64 cmp, val, old; TCGv Z; cmp = tcg_temp_new_i64(); val = tcg_temp_new_i64(); old = tcg_temp_new_i64(); /* Construct the comparison values from the register pair. */ tcg_gen_concat_tl_i64(cmp, cpu_regs[R_EAX], cpu_regs[R_EDX]); tcg_gen_concat_tl_i64(val, cpu_regs[R_EBX], cpu_regs[R_ECX]); /* Only require atomic with LOCK; non-parallel handled in generator. */ if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_cmpxchg_i64(old, s->A0, cmp, val, s->mem_index, MO_TEUQ); } else { tcg_gen_nonatomic_cmpxchg_i64(old, s->A0, cmp, val, s->mem_index, MO_TEUQ); } /* Set tmp0 to match the required value of Z. */ tcg_gen_setcond_i64(TCG_COND_EQ, cmp, old, cmp); Z = tcg_temp_new(); tcg_gen_trunc_i64_tl(Z, cmp); /* * Extract the result values for the register pair. * For 32-bit, we may do this unconditionally, because on success (Z=1), * the old value matches the previous value in EDX:EAX. For x86_64, * the store must be conditional, because we must leave the source * registers unchanged on success, and zero-extend the writeback * on failure (Z=0). */ if (TARGET_LONG_BITS == 32) { tcg_gen_extr_i64_tl(cpu_regs[R_EAX], cpu_regs[R_EDX], old); } else { TCGv zero = tcg_constant_tl(0); tcg_gen_extr_i64_tl(s->T0, s->T1, old); tcg_gen_movcond_tl(TCG_COND_EQ, cpu_regs[R_EAX], Z, zero, s->T0, cpu_regs[R_EAX]); tcg_gen_movcond_tl(TCG_COND_EQ, cpu_regs[R_EDX], Z, zero, s->T1, cpu_regs[R_EDX]); } /* Update Z. */ gen_compute_eflags(s); tcg_gen_deposit_tl(cpu_cc_src, cpu_cc_src, Z, ctz32(CC_Z), 1); } static void gen_CPUID(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_update_eip_cur(s); gen_helper_cpuid(tcg_env); } static void gen_CRC32(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0); gen_helper_crc32(s->T0, s->tmp2_i32, s->T1, tcg_constant_i32(8 << ot)); } static void gen_CVTPI2Px(DisasContext *s, X86DecodedInsn *decode) { gen_helper_enter_mmx(tcg_env); if (s->prefix & PREFIX_DATA) { gen_helper_cvtpi2pd(tcg_env, OP_PTR0, OP_PTR2); } else { gen_helper_cvtpi2ps(tcg_env, OP_PTR0, OP_PTR2); } } static void gen_CVTPx2PI(DisasContext *s, X86DecodedInsn *decode) { gen_helper_enter_mmx(tcg_env); if (s->prefix & PREFIX_DATA) { gen_helper_cvtpd2pi(tcg_env, OP_PTR0, OP_PTR2); } else { gen_helper_cvtps2pi(tcg_env, OP_PTR0, OP_PTR2); } } static void gen_CVTTPx2PI(DisasContext *s, X86DecodedInsn *decode) { gen_helper_enter_mmx(tcg_env); if (s->prefix & PREFIX_DATA) { gen_helper_cvttpd2pi(tcg_env, OP_PTR0, OP_PTR2); } else { gen_helper_cvttps2pi(tcg_env, OP_PTR0, OP_PTR2); } } static void gen_CWD(DisasContext *s, X86DecodedInsn *decode) { int shift = 8 << decode->op[0].ot; tcg_gen_sextract_tl(s->T0, s->T0, shift - 1, 1); } static void gen_DAA(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_helper_daa(tcg_env); assume_cc_op(s, CC_OP_EFLAGS); } static void gen_DAS(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_helper_das(tcg_env); assume_cc_op(s, CC_OP_EFLAGS); } static void gen_DEC(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; tcg_gen_movi_tl(s->T1, -1); if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_add_fetch_tl(s->T0, s->A0, s->T1, s->mem_index, ot | MO_LE); } else { tcg_gen_add_tl(s->T0, s->T0, s->T1); } prepare_update_cc_incdec(decode, s, CC_OP_DECB + ot); } static void gen_DIV(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; switch(ot) { case MO_8: gen_helper_divb_AL(tcg_env, s->T0); break; case MO_16: gen_helper_divw_AX(tcg_env, s->T0); break; default: case MO_32: gen_helper_divl_EAX(tcg_env, s->T0); break; #ifdef TARGET_X86_64 case MO_64: gen_helper_divq_EAX(tcg_env, s->T0); break; #endif } } static void gen_EMMS(DisasContext *s, X86DecodedInsn *decode) { gen_helper_emms(tcg_env); } static void gen_ENTER(DisasContext *s, X86DecodedInsn *decode) { gen_enter(s, decode->op[1].imm, decode->op[2].imm); } static void gen_EXTRQ_i(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 length = tcg_constant_i32(decode->immediate & 63); TCGv_i32 index = tcg_constant_i32((decode->immediate >> 8) & 63); gen_helper_extrq_i(tcg_env, OP_PTR0, index, length); } static void gen_EXTRQ_r(DisasContext *s, X86DecodedInsn *decode) { gen_helper_extrq_r(tcg_env, OP_PTR0, OP_PTR2); } static void gen_FXRSTOR(DisasContext *s, X86DecodedInsn *decode) { if ((s->flags & HF_EM_MASK) || (s->flags & HF_TS_MASK)) { gen_NM_exception(s); } else { gen_helper_fxrstor(tcg_env, s->A0); } } static void gen_FXSAVE(DisasContext *s, X86DecodedInsn *decode) { if ((s->flags & HF_EM_MASK) || (s->flags & HF_TS_MASK)) { gen_NM_exception(s); } else { gen_helper_fxsave(tcg_env, s->A0); } } static void gen_HLT(DisasContext *s, X86DecodedInsn *decode) { #ifdef CONFIG_SYSTEM_ONLY gen_update_cc_op(s); gen_update_eip_next(s); gen_helper_hlt(tcg_env); s->base.is_jmp = DISAS_NORETURN; #endif } static void gen_IDIV(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; switch(ot) { case MO_8: gen_helper_idivb_AL(tcg_env, s->T0); break; case MO_16: gen_helper_idivw_AX(tcg_env, s->T0); break; default: case MO_32: gen_helper_idivl_EAX(tcg_env, s->T0); break; #ifdef TARGET_X86_64 case MO_64: gen_helper_idivq_EAX(tcg_env, s->T0); break; #endif } } static void gen_IMUL3(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv cc_src_rhs; switch (ot) { case MO_16: /* s->T0 already sign-extended */ tcg_gen_ext16s_tl(s->T1, s->T1); tcg_gen_mul_tl(s->T0, s->T0, s->T1); /* Compare the full result to the extension of the truncated result. */ tcg_gen_ext16s_tl(s->T1, s->T0); cc_src_rhs = s->T0; break; case MO_32: #ifdef TARGET_X86_64 if (TCG_TARGET_REG_BITS == 64) { /* * This produces fewer TCG ops, and better code if flags are needed, * but it requires a 64-bit multiply even if they are not. Use it * only if the target has 64-bits registers. * * s->T0 is already sign-extended. */ tcg_gen_ext32s_tl(s->T1, s->T1); tcg_gen_mul_tl(s->T0, s->T0, s->T1); /* Compare the full result to the extension of the truncated result. */ tcg_gen_ext32s_tl(s->T1, s->T0); cc_src_rhs = s->T0; } else { /* Variant that only needs a 32-bit widening multiply. */ TCGv_i32 hi = tcg_temp_new_i32(); TCGv_i32 lo = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(lo, s->T0); tcg_gen_trunc_tl_i32(hi, s->T1); tcg_gen_muls2_i32(lo, hi, lo, hi); tcg_gen_extu_i32_tl(s->T0, lo); cc_src_rhs = tcg_temp_new(); tcg_gen_extu_i32_tl(cc_src_rhs, hi); /* Compare the high part to the sign bit of the truncated result */ tcg_gen_sari_i32(lo, lo, 31); tcg_gen_extu_i32_tl(s->T1, lo); } break; case MO_64: #endif cc_src_rhs = tcg_temp_new(); tcg_gen_muls2_tl(s->T0, cc_src_rhs, s->T0, s->T1); /* Compare the high part to the sign bit of the truncated result */ tcg_gen_sari_tl(s->T1, s->T0, TARGET_LONG_BITS - 1); break; default: g_assert_not_reached(); } tcg_gen_sub_tl(s->T1, s->T1, cc_src_rhs); prepare_update2_cc(decode, s, CC_OP_MULB + ot); } static void gen_IMUL(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; TCGv cc_src_rhs; switch (ot) { case MO_8: /* s->T0 already sign-extended */ tcg_gen_ext8s_tl(s->T1, s->T1); tcg_gen_mul_tl(s->T0, s->T0, s->T1); gen_op_mov_reg_v(s, MO_16, R_EAX, s->T0); /* Compare the full result to the extension of the truncated result. */ tcg_gen_ext8s_tl(s->T1, s->T0); cc_src_rhs = s->T0; break; case MO_16: /* s->T0 already sign-extended */ tcg_gen_ext16s_tl(s->T1, s->T1); tcg_gen_mul_tl(s->T0, s->T0, s->T1); gen_op_mov_reg_v(s, MO_16, R_EAX, s->T0); tcg_gen_shri_tl(s->T1, s->T0, 16); gen_op_mov_reg_v(s, MO_16, R_EDX, s->T1); /* Compare the full result to the extension of the truncated result. */ tcg_gen_ext16s_tl(s->T1, s->T0); cc_src_rhs = s->T0; break; case MO_32: #ifdef TARGET_X86_64 /* s->T0 already sign-extended */ tcg_gen_ext32s_tl(s->T1, s->T1); tcg_gen_mul_tl(s->T0, s->T0, s->T1); tcg_gen_ext32u_tl(cpu_regs[R_EAX], s->T0); tcg_gen_shri_tl(cpu_regs[R_EDX], s->T0, 32); /* Compare the full result to the extension of the truncated result. */ tcg_gen_ext32s_tl(s->T1, s->T0); cc_src_rhs = s->T0; break; case MO_64: #endif tcg_gen_muls2_tl(s->T0, cpu_regs[R_EDX], s->T0, s->T1); tcg_gen_mov_tl(cpu_regs[R_EAX], s->T0); /* Compare the high part to the sign bit of the truncated result */ tcg_gen_negsetcondi_tl(TCG_COND_LT, s->T1, s->T0, 0); cc_src_rhs = cpu_regs[R_EDX]; break; default: g_assert_not_reached(); } tcg_gen_sub_tl(s->T1, s->T1, cc_src_rhs); prepare_update2_cc(decode, s, CC_OP_MULB + ot); } static void gen_IN(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv_i32 port = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(port, s->T0); tcg_gen_ext16u_i32(port, port); if (!gen_check_io(s, ot, port, SVM_IOIO_TYPE_MASK)) { return; } translator_io_start(&s->base); gen_helper_in_func(ot, s->T0, port); gen_writeback(s, decode, 0, s->T0); gen_bpt_io(s, port, ot); } static void gen_INC(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; tcg_gen_movi_tl(s->T1, 1); if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_add_fetch_tl(s->T0, s->A0, s->T1, s->mem_index, ot | MO_LE); } else { tcg_gen_add_tl(s->T0, s->T0, s->T1); } prepare_update_cc_incdec(decode, s, CC_OP_INCB + ot); } static void gen_INS(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; TCGv_i32 port = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(port, s->T1); tcg_gen_ext16u_i32(port, port); if (!gen_check_io(s, ot, port, SVM_IOIO_TYPE_MASK | SVM_IOIO_STR_MASK)) { return; } translator_io_start(&s->base); if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz(s, ot, gen_ins); } else { gen_ins(s, ot); } } static void gen_INSERTQ_i(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 length = tcg_constant_i32(decode->immediate & 63); TCGv_i32 index = tcg_constant_i32((decode->immediate >> 8) & 63); gen_helper_insertq_i(tcg_env, OP_PTR0, OP_PTR1, index, length); } static void gen_INSERTQ_r(DisasContext *s, X86DecodedInsn *decode) { gen_helper_insertq_r(tcg_env, OP_PTR0, OP_PTR2); } static void gen_INT(DisasContext *s, X86DecodedInsn *decode) { gen_interrupt(s, decode->immediate); } static void gen_INT1(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_update_eip_next(s); gen_helper_icebp(tcg_env); s->base.is_jmp = DISAS_NORETURN; } static void gen_INT3(DisasContext *s, X86DecodedInsn *decode) { gen_interrupt(s, EXCP03_INT3); } static void gen_INTO(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_update_eip_cur(s); gen_helper_into(tcg_env, cur_insn_len_i32(s)); } static void gen_IRET(DisasContext *s, X86DecodedInsn *decode) { if (!PE(s) || VM86(s)) { gen_helper_iret_real(tcg_env, tcg_constant_i32(s->dflag - 1)); } else { gen_helper_iret_protected(tcg_env, tcg_constant_i32(s->dflag - 1), eip_next_i32(s)); } assume_cc_op(s, CC_OP_EFLAGS); s->base.is_jmp = DISAS_EOB_ONLY; } static void gen_Jcc(DisasContext *s, X86DecodedInsn *decode) { gen_bnd_jmp(s); gen_jcc(s, decode->b & 0xf, decode->immediate); } static void gen_JCXZ(DisasContext *s, X86DecodedInsn *decode) { TCGLabel *taken = gen_new_label(); gen_update_cc_op(s); gen_op_jz_ecx(s, taken); gen_conditional_jump_labels(s, decode->immediate, NULL, taken); } static void gen_JMP(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_jmp_rel(s, s->dflag, decode->immediate, 0); } static void gen_JMP_m(DisasContext *s, X86DecodedInsn *decode) { gen_op_jmp_v(s, s->T0); gen_bnd_jmp(s); s->base.is_jmp = DISAS_JUMP; } static void gen_JMPF(DisasContext *s, X86DecodedInsn *decode) { gen_far_jmp(s); } static void gen_JMPF_m(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; gen_op_ld_v(s, ot, s->T0, s->A0); gen_add_A0_im(s, 1 << ot); gen_op_ld_v(s, MO_16, s->T1, s->A0); gen_far_jmp(s); } static void gen_LAHF(DisasContext *s, X86DecodedInsn *decode) { if (CODE64(s) && !(s->cpuid_ext3_features & CPUID_EXT3_LAHF_LM)) { return gen_illegal_opcode(s); } gen_compute_eflags(s); /* Note: gen_compute_eflags() only gives the condition codes */ tcg_gen_ori_tl(s->T0, cpu_cc_src, 0x02); tcg_gen_deposit_tl(cpu_regs[R_EAX], cpu_regs[R_EAX], s->T0, 8, 8); } static void gen_LAR(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv result = tcg_temp_new(); TCGv dest; gen_compute_eflags(s); gen_update_cc_op(s); gen_helper_lar(result, tcg_env, s->T0); /* Perform writeback here to skip it if ZF=0. */ decode->op[0].unit = X86_OP_SKIP; dest = gen_op_deposit_reg_v(s, ot, decode->op[0].n, result, result); tcg_gen_movcond_tl(TCG_COND_TSTNE, dest, cpu_cc_src, tcg_constant_tl(CC_Z), result, dest); } static void gen_LDMXCSR(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0); gen_helper_ldmxcsr(tcg_env, s->tmp2_i32); } static void gen_lxx_seg(DisasContext *s, X86DecodedInsn *decode, int seg) { MemOp ot = decode->op[0].ot; /* Offset already in s->T0. */ gen_add_A0_im(s, 1 << ot); gen_op_ld_v(s, MO_16, s->T1, s->A0); /* load the segment here to handle exceptions properly */ gen_movl_seg(s, seg, s->T1); } static void gen_LDS(DisasContext *s, X86DecodedInsn *decode) { gen_lxx_seg(s, decode, R_DS); } static void gen_LEA(DisasContext *s, X86DecodedInsn *decode) { TCGv ea = gen_lea_modrm_1(s, decode->mem, false); gen_lea_v_seg_dest(s, s->aflag, s->T0, ea, -1, -1); } static void gen_LEAVE(DisasContext *s, X86DecodedInsn *decode) { gen_leave(s); } static void gen_LES(DisasContext *s, X86DecodedInsn *decode) { gen_lxx_seg(s, decode, R_ES); } static void gen_LFENCE(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_mb(TCG_MO_LD_LD | TCG_BAR_SC); } static void gen_LFS(DisasContext *s, X86DecodedInsn *decode) { gen_lxx_seg(s, decode, R_FS); } static void gen_LGS(DisasContext *s, X86DecodedInsn *decode) { gen_lxx_seg(s, decode, R_GS); } static void gen_LODS(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz(s, ot, gen_lods); } else { gen_lods(s, ot); } } static void gen_LOOP(DisasContext *s, X86DecodedInsn *decode) { TCGLabel *taken = gen_new_label(); gen_update_cc_op(s); gen_op_add_reg_im(s, s->aflag, R_ECX, -1); gen_op_jnz_ecx(s, taken); gen_conditional_jump_labels(s, decode->immediate, NULL, taken); } static void gen_LOOPE(DisasContext *s, X86DecodedInsn *decode) { TCGLabel *taken = gen_new_label(); TCGLabel *not_taken = gen_new_label(); gen_update_cc_op(s); gen_op_add_reg_im(s, s->aflag, R_ECX, -1); gen_op_jz_ecx(s, not_taken); gen_jcc1(s, (JCC_Z << 1), taken); /* jz taken */ gen_conditional_jump_labels(s, decode->immediate, not_taken, taken); } static void gen_LOOPNE(DisasContext *s, X86DecodedInsn *decode) { TCGLabel *taken = gen_new_label(); TCGLabel *not_taken = gen_new_label(); gen_update_cc_op(s); gen_op_add_reg_im(s, s->aflag, R_ECX, -1); gen_op_jz_ecx(s, not_taken); gen_jcc1(s, (JCC_Z << 1) | 1, taken); /* jnz taken */ gen_conditional_jump_labels(s, decode->immediate, not_taken, taken); } static void gen_LSL(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv result = tcg_temp_new(); TCGv dest; gen_compute_eflags(s); gen_update_cc_op(s); gen_helper_lsl(result, tcg_env, s->T0); /* Perform writeback here to skip it if ZF=0. */ decode->op[0].unit = X86_OP_SKIP; dest = gen_op_deposit_reg_v(s, ot, decode->op[0].n, result, result); tcg_gen_movcond_tl(TCG_COND_TSTNE, dest, cpu_cc_src, tcg_constant_tl(CC_Z), result, dest); } static void gen_LSS(DisasContext *s, X86DecodedInsn *decode) { gen_lxx_seg(s, decode, R_SS); } static void gen_LZCNT(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* C bit (cc_src) is defined related to the input. */ decode->cc_src = tcg_temp_new(); decode->cc_dst = s->T0; decode->cc_op = CC_OP_BMILGB + ot; tcg_gen_mov_tl(decode->cc_src, s->T0); /* * Reduce the target_ulong result by the number of zeros that * we expect to find at the top. */ tcg_gen_clzi_tl(s->T0, s->T0, TARGET_LONG_BITS); tcg_gen_subi_tl(s->T0, s->T0, TARGET_LONG_BITS - (8 << ot)); } static void gen_MFENCE(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); } static void gen_MOV(DisasContext *s, X86DecodedInsn *decode) { /* nothing to do! */ } #define gen_NOP gen_MOV static void gen_MASKMOV(DisasContext *s, X86DecodedInsn *decode) { gen_lea_v_seg(s, cpu_regs[R_EDI], R_DS, s->override); if (s->prefix & PREFIX_DATA) { gen_helper_maskmov_xmm(tcg_env, OP_PTR1, OP_PTR2, s->A0); } else { gen_helper_maskmov_mmx(tcg_env, OP_PTR1, OP_PTR2, s->A0); } } static void gen_MOVBE(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* M operand type does not load/store */ if (decode->e.op0 == X86_TYPE_M) { tcg_gen_qemu_st_tl(s->T0, s->A0, s->mem_index, ot | MO_BE); } else { tcg_gen_qemu_ld_tl(s->T0, s->A0, s->mem_index, ot | MO_BE); } } static void gen_MOVD_from(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; switch (ot) { case MO_32: #ifdef TARGET_X86_64 tcg_gen_ld32u_tl(s->T0, tcg_env, decode->op[2].offset); break; case MO_64: #endif tcg_gen_ld_tl(s->T0, tcg_env, decode->op[2].offset); break; default: abort(); } } static void gen_MOVD_to(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; int vec_len = vector_len(s, decode); int lo_ofs = vector_elem_offset(&decode->op[0], ot, 0); tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); switch (ot) { case MO_32: #ifdef TARGET_X86_64 tcg_gen_st32_tl(s->T1, tcg_env, lo_ofs); break; case MO_64: #endif tcg_gen_st_tl(s->T1, tcg_env, lo_ofs); break; default: g_assert_not_reached(); } } static void gen_MOVDQ(DisasContext *s, X86DecodedInsn *decode) { gen_store_sse(s, decode, decode->op[2].offset); } static void gen_MOVMSK(DisasContext *s, X86DecodedInsn *decode) { typeof(gen_helper_movmskps_ymm) *ps, *pd, *fn; ps = s->vex_l ? gen_helper_movmskps_ymm : gen_helper_movmskps_xmm; pd = s->vex_l ? gen_helper_movmskpd_ymm : gen_helper_movmskpd_xmm; fn = s->prefix & PREFIX_DATA ? pd : ps; fn(s->tmp2_i32, tcg_env, OP_PTR2); tcg_gen_extu_i32_tl(s->T0, s->tmp2_i32); } static void gen_MOVQ(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); int lo_ofs = vector_elem_offset(&decode->op[0], MO_64, 0); tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset); if (decode->op[0].has_ea) { tcg_gen_qemu_st_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ); } else { /* * tcg_gen_gvec_dup_i64(MO_64, op0.offset, 8, vec_len, s->tmp1_64) would * seem to work, but it does not on big-endian platforms; the cleared parts * are always at higher addresses, but cross-endian emulation inverts the * byte order so that the cleared parts need to be at *lower* addresses. * Because oprsz is 8, we see this here even for SSE; but more in general, * it disqualifies using oprsz < maxsz to emulate VEX128. */ tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); tcg_gen_st_i64(s->tmp1_i64, tcg_env, lo_ofs); } } static void gen_MOVq_dq(DisasContext *s, X86DecodedInsn *decode) { gen_helper_enter_mmx(tcg_env); /* Otherwise the same as any other movq. */ return gen_MOVQ(s, decode); } static void gen_MOVS(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz(s, ot, gen_movs); } else { gen_movs(s, ot); } } static void gen_MUL(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; switch (ot) { case MO_8: /* s->T0 already zero-extended */ tcg_gen_ext8u_tl(s->T1, s->T1); tcg_gen_mul_tl(s->T0, s->T0, s->T1); gen_op_mov_reg_v(s, MO_16, R_EAX, s->T0); tcg_gen_andi_tl(s->T1, s->T0, 0xff00); decode->cc_dst = s->T0; decode->cc_src = s->T1; break; case MO_16: /* s->T0 already zero-extended */ tcg_gen_ext16u_tl(s->T1, s->T1); tcg_gen_mul_tl(s->T0, s->T0, s->T1); gen_op_mov_reg_v(s, MO_16, R_EAX, s->T0); tcg_gen_shri_tl(s->T1, s->T0, 16); gen_op_mov_reg_v(s, MO_16, R_EDX, s->T1); decode->cc_dst = s->T0; decode->cc_src = s->T1; break; case MO_32: #ifdef TARGET_X86_64 /* s->T0 already zero-extended */ tcg_gen_ext32u_tl(s->T1, s->T1); tcg_gen_mul_tl(s->T0, s->T0, s->T1); tcg_gen_ext32u_tl(cpu_regs[R_EAX], s->T0); tcg_gen_shri_tl(cpu_regs[R_EDX], s->T0, 32); decode->cc_dst = cpu_regs[R_EAX]; decode->cc_src = cpu_regs[R_EDX]; break; case MO_64: #endif tcg_gen_mulu2_tl(cpu_regs[R_EAX], cpu_regs[R_EDX], s->T0, s->T1); decode->cc_dst = cpu_regs[R_EAX]; decode->cc_src = cpu_regs[R_EDX]; break; default: g_assert_not_reached(); } decode->cc_op = CC_OP_MULB + ot; } static void gen_MULX(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* low part of result in VEX.vvvv, high in MODRM */ switch (ot) { case MO_32: #ifdef TARGET_X86_64 tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0); tcg_gen_trunc_tl_i32(s->tmp3_i32, s->T1); tcg_gen_mulu2_i32(s->tmp2_i32, s->tmp3_i32, s->tmp2_i32, s->tmp3_i32); tcg_gen_extu_i32_tl(cpu_regs[s->vex_v], s->tmp2_i32); tcg_gen_extu_i32_tl(s->T0, s->tmp3_i32); break; case MO_64: #endif tcg_gen_mulu2_tl(cpu_regs[s->vex_v], s->T0, s->T0, s->T1); break; default: g_assert_not_reached(); } } static void gen_NEG(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv oldv = tcg_temp_new(); if (s->prefix & PREFIX_LOCK) { TCGv newv = tcg_temp_new(); TCGv cmpv = tcg_temp_new(); TCGLabel *label1 = gen_new_label(); gen_set_label(label1); gen_op_ld_v(s, ot, oldv, s->A0); tcg_gen_neg_tl(newv, oldv); tcg_gen_atomic_cmpxchg_tl(cmpv, s->A0, oldv, newv, s->mem_index, ot | MO_LE); tcg_gen_brcond_tl(TCG_COND_NE, oldv, cmpv, label1); } else { tcg_gen_mov_tl(oldv, s->T0); } tcg_gen_neg_tl(s->T0, oldv); decode->cc_dst = s->T0; decode->cc_src = oldv; tcg_gen_movi_tl(s->cc_srcT, 0); decode->cc_op = CC_OP_SUBB + ot; } static void gen_NOT(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; if (s->prefix & PREFIX_LOCK) { tcg_gen_movi_tl(s->T0, ~0); tcg_gen_atomic_xor_fetch_tl(s->T0, s->A0, s->T0, s->mem_index, ot | MO_LE); } else { tcg_gen_not_tl(s->T0, s->T0); } } static void gen_OR(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_or_fetch_tl(s->T0, s->A0, s->T1, s->mem_index, ot | MO_LE); } else { tcg_gen_or_tl(s->T0, s->T0, s->T1); } prepare_update1_cc(decode, s, CC_OP_LOGICB + ot); } static void gen_OUT(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; TCGv_i32 port = tcg_temp_new_i32(); TCGv_i32 value = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(port, s->T1); tcg_gen_ext16u_i32(port, port); if (!gen_check_io(s, ot, port, 0)) { return; } tcg_gen_trunc_tl_i32(value, s->T0); translator_io_start(&s->base); gen_helper_out_func(ot, port, value); gen_bpt_io(s, port, ot); } static void gen_OUTS(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; TCGv_i32 port = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(port, s->T1); tcg_gen_ext16u_i32(port, port); if (!gen_check_io(s, ot, port, SVM_IOIO_STR_MASK)) { return; } translator_io_start(&s->base); if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz(s, ot, gen_outs); } else { gen_outs(s, ot); } } static void gen_PALIGNR(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); if (!(s->prefix & PREFIX_DATA)) { gen_helper_palignr_mmx(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } else if (!s->vex_l) { gen_helper_palignr_xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } else { gen_helper_palignr_ymm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } } static void gen_PANDN(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); /* Careful, operand order is reversed! */ tcg_gen_gvec_andc(MO_64, decode->op[0].offset, decode->op[2].offset, decode->op[1].offset, vec_len, vec_len); } static void gen_PAUSE(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_update_eip_next(s); gen_helper_pause(tcg_env); s->base.is_jmp = DISAS_NORETURN; } static void gen_PCMPESTRI(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); gen_helper_pcmpestri_xmm(tcg_env, OP_PTR1, OP_PTR2, imm); assume_cc_op(s, CC_OP_EFLAGS); } static void gen_PCMPESTRM(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); gen_helper_pcmpestrm_xmm(tcg_env, OP_PTR1, OP_PTR2, imm); assume_cc_op(s, CC_OP_EFLAGS); if ((s->prefix & PREFIX_VEX) && !s->vex_l) { tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[0].ZMM_X(1)), 16, 16, 0); } } static void gen_PCMPISTRI(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); gen_helper_pcmpistri_xmm(tcg_env, OP_PTR1, OP_PTR2, imm); assume_cc_op(s, CC_OP_EFLAGS); } static void gen_PCMPISTRM(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); gen_helper_pcmpistrm_xmm(tcg_env, OP_PTR1, OP_PTR2, imm); assume_cc_op(s, CC_OP_EFLAGS); if ((s->prefix & PREFIX_VEX) && !s->vex_l) { tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[0].ZMM_X(1)), 16, 16, 0); } } static void gen_PDEP(DisasContext *s, X86DecodedInsn *decode) { gen_helper_pdep(s->T0, s->T0, s->T1); } static void gen_PEXT(DisasContext *s, X86DecodedInsn *decode) { gen_helper_pext(s->T0, s->T0, s->T1); } static inline void gen_pextr(DisasContext *s, X86DecodedInsn *decode, MemOp ot) { int vec_len = vector_len(s, decode); int mask = (vec_len >> ot) - 1; int val = decode->immediate & mask; switch (ot) { case MO_8: tcg_gen_ld8u_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val)); break; case MO_16: tcg_gen_ld16u_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val)); break; case MO_32: #ifdef TARGET_X86_64 tcg_gen_ld32u_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val)); break; case MO_64: #endif tcg_gen_ld_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val)); break; default: abort(); } } static void gen_PEXTRB(DisasContext *s, X86DecodedInsn *decode) { gen_pextr(s, decode, MO_8); } static void gen_PEXTRW(DisasContext *s, X86DecodedInsn *decode) { gen_pextr(s, decode, MO_16); } static void gen_PEXTR(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; gen_pextr(s, decode, ot); } static inline void gen_pinsr(DisasContext *s, X86DecodedInsn *decode, MemOp ot) { int vec_len = vector_len(s, decode); int mask = (vec_len >> ot) - 1; int val = decode->immediate & mask; if (decode->op[1].offset != decode->op[0].offset) { assert(vec_len == 16); gen_store_sse(s, decode, decode->op[1].offset); } switch (ot) { case MO_8: tcg_gen_st8_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val)); break; case MO_16: tcg_gen_st16_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val)); break; case MO_32: #ifdef TARGET_X86_64 tcg_gen_st32_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val)); break; case MO_64: #endif tcg_gen_st_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val)); break; default: abort(); } } static void gen_PINSRB(DisasContext *s, X86DecodedInsn *decode) { gen_pinsr(s, decode, MO_8); } static void gen_PINSRW(DisasContext *s, X86DecodedInsn *decode) { gen_pinsr(s, decode, MO_16); } static void gen_PINSR(DisasContext *s, X86DecodedInsn *decode) { gen_pinsr(s, decode, decode->op[2].ot); } static void gen_pmovmskb_i64(TCGv_i64 d, TCGv_i64 s) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andi_i64(d, s, 0x8080808080808080ull); /* * After each shift+or pair: * 0: a.......b.......c.......d.......e.......f.......g.......h....... * 7: ab......bc......cd......de......ef......fg......gh......h....... * 14: abcd....bcde....cdef....defg....efgh....fgh.....gh......h....... * 28: abcdefghbcdefgh.cdefgh..defgh...efgh....fgh.....gh......h....... * The result is left in the high bits of the word. */ tcg_gen_shli_i64(t, d, 7); tcg_gen_or_i64(d, d, t); tcg_gen_shli_i64(t, d, 14); tcg_gen_or_i64(d, d, t); tcg_gen_shli_i64(t, d, 28); tcg_gen_or_i64(d, d, t); } static void gen_pmovmskb_vec(unsigned vece, TCGv_vec d, TCGv_vec s) { TCGv_vec t = tcg_temp_new_vec_matching(d); TCGv_vec m = tcg_constant_vec_matching(d, MO_8, 0x80); /* See above */ tcg_gen_and_vec(vece, d, s, m); tcg_gen_shli_vec(vece, t, d, 7); tcg_gen_or_vec(vece, d, d, t); tcg_gen_shli_vec(vece, t, d, 14); tcg_gen_or_vec(vece, d, d, t); tcg_gen_shli_vec(vece, t, d, 28); tcg_gen_or_vec(vece, d, d, t); } static void gen_PMOVMSKB(DisasContext *s, X86DecodedInsn *decode) { static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 }; static const GVecGen2 g = { .fni8 = gen_pmovmskb_i64, .fniv = gen_pmovmskb_vec, .opt_opc = vecop_list, .vece = MO_64, .prefer_i64 = TCG_TARGET_REG_BITS == 64 }; MemOp ot = decode->op[2].ot; int vec_len = vector_len(s, decode); TCGv t = tcg_temp_new(); tcg_gen_gvec_2(offsetof(CPUX86State, xmm_t0) + xmm_offset(ot), decode->op[2].offset, vec_len, vec_len, &g); tcg_gen_ld8u_tl(s->T0, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_B(vec_len - 1))); while (vec_len > 8) { vec_len -= 8; if (TCG_TARGET_HAS_extract2_tl) { /* * Load the next byte of the result into the high byte of T. * TCG does a similar expansion of deposit to shl+extract2; by * loading the whole word, the shift left is avoided. */ #ifdef TARGET_X86_64 tcg_gen_ld_tl(t, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_Q((vec_len - 1) / 8))); #else tcg_gen_ld_tl(t, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_L((vec_len - 1) / 4))); #endif tcg_gen_extract2_tl(s->T0, t, s->T0, TARGET_LONG_BITS - 8); } else { /* * The _previous_ value is deposited into bits 8 and higher of t. Because * those bits are known to be zero after ld8u, this becomes a shift+or * if deposit is not available. */ tcg_gen_ld8u_tl(t, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_B(vec_len - 1))); tcg_gen_deposit_tl(s->T0, t, s->T0, 8, TARGET_LONG_BITS - 8); } } } static void gen_POP(DisasContext *s, X86DecodedInsn *decode) { X86DecodedOp *op = &decode->op[0]; MemOp ot = gen_pop_T0(s); assert(ot >= op->ot); if (op->has_ea || op->unit == X86_OP_SEG) { /* NOTE: order is important for MMU exceptions */ gen_writeback(s, decode, 0, s->T0); } /* NOTE: writing back registers after update is important for pop %sp */ gen_pop_update(s, ot); } static void gen_POPA(DisasContext *s, X86DecodedInsn *decode) { gen_popa(s); } static void gen_POPCNT(DisasContext *s, X86DecodedInsn *decode) { decode->cc_dst = tcg_temp_new(); decode->cc_op = CC_OP_POPCNT; tcg_gen_mov_tl(decode->cc_dst, s->T0); tcg_gen_ctpop_tl(s->T0, s->T0); } static void gen_POPF(DisasContext *s, X86DecodedInsn *decode) { MemOp ot; int mask = TF_MASK | AC_MASK | ID_MASK | NT_MASK; if (CPL(s) == 0) { mask |= IF_MASK | IOPL_MASK; } else if (CPL(s) <= IOPL(s)) { mask |= IF_MASK; } if (s->dflag == MO_16) { mask &= 0xffff; } ot = gen_pop_T0(s); gen_helper_write_eflags(tcg_env, s->T0, tcg_constant_i32(mask)); gen_pop_update(s, ot); set_cc_op(s, CC_OP_EFLAGS); /* abort translation because TF/AC flag may change */ s->base.is_jmp = DISAS_EOB_NEXT; } static void gen_PSHUFW(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); gen_helper_pshufw_mmx(OP_PTR0, OP_PTR1, imm); } static void gen_PSRLW_i(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 16) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shri(MO_16, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static void gen_PSLLW_i(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 16) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shli(MO_16, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static void gen_PSRAW_i(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 16) { decode->immediate = 15; } tcg_gen_gvec_sari(MO_16, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } static void gen_PSRLD_i(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 32) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shri(MO_32, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static void gen_PSLLD_i(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 32) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shli(MO_32, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static void gen_PSRAD_i(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 32) { decode->immediate = 31; } tcg_gen_gvec_sari(MO_32, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } static void gen_PSRLQ_i(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 64) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shri(MO_64, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static void gen_PSLLQ_i(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 64) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shli(MO_64, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static TCGv_ptr make_imm8u_xmm_vec(uint8_t imm, int vec_len) { MemOp ot = vec_len == 16 ? MO_128 : MO_256; TCGv_i32 imm_v = tcg_constant8u_i32(imm); TCGv_ptr ptr = tcg_temp_new_ptr(); tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_t0) + xmm_offset(ot), vec_len, vec_len, 0); tcg_gen_addi_ptr(ptr, tcg_env, offsetof(CPUX86State, xmm_t0)); tcg_gen_st_i32(imm_v, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_L(0))); return ptr; } static void gen_PSRLDQ_i(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); TCGv_ptr imm_vec = make_imm8u_xmm_vec(decode->immediate, vec_len); if (s->vex_l) { gen_helper_psrldq_ymm(tcg_env, OP_PTR0, OP_PTR1, imm_vec); } else { gen_helper_psrldq_xmm(tcg_env, OP_PTR0, OP_PTR1, imm_vec); } } static void gen_PSLLDQ_i(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); TCGv_ptr imm_vec = make_imm8u_xmm_vec(decode->immediate, vec_len); if (s->vex_l) { gen_helper_pslldq_ymm(tcg_env, OP_PTR0, OP_PTR1, imm_vec); } else { gen_helper_pslldq_xmm(tcg_env, OP_PTR0, OP_PTR1, imm_vec); } } static void gen_PUSH(DisasContext *s, X86DecodedInsn *decode) { gen_push_v(s, s->T0); } static void gen_PUSHA(DisasContext *s, X86DecodedInsn *decode) { gen_pusha(s); } static void gen_PUSHF(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_helper_read_eflags(s->T0, tcg_env); gen_push_v(s, s->T0); } static MemOp gen_shift_count(DisasContext *s, X86DecodedInsn *decode, bool *can_be_zero, TCGv *count, int unit) { MemOp ot = decode->op[0].ot; int mask = (ot <= MO_32 ? 0x1f : 0x3f); *can_be_zero = false; switch (unit) { case X86_OP_INT: *count = tcg_temp_new(); tcg_gen_andi_tl(*count, cpu_regs[R_ECX], mask); *can_be_zero = true; break; case X86_OP_IMM: if ((decode->immediate & mask) == 0) { *count = NULL; break; } *count = tcg_temp_new(); tcg_gen_movi_tl(*count, decode->immediate & mask); break; case X86_OP_SKIP: *count = tcg_temp_new(); tcg_gen_movi_tl(*count, 1); break; default: g_assert_not_reached(); } return ot; } /* * Compute existing flags in decode->cc_src, for gen_* functions that wants * to set the cc_op set to CC_OP_ADCOX. In particular, this allows rotate * operations to compute the carry in decode->cc_dst and the overflow in * decode->cc_src2. * * If need_flags is true, decode->cc_dst and decode->cc_src2 are preloaded * with the value of CF and OF before the instruction, so that it is possible * to keep the flags unmodified. * * Return true if carry could be made available cheaply as a 1-bit value in * decode->cc_dst (trying a bit harder if want_carry is true). If false is * returned, decode->cc_dst is uninitialized and the carry is only available * as bit 0 of decode->cc_src. */ static bool gen_eflags_adcox(DisasContext *s, X86DecodedInsn *decode, bool want_carry, bool need_flags) { bool got_cf = false; bool got_of = false; decode->cc_dst = tcg_temp_new(); decode->cc_src = tcg_temp_new(); decode->cc_src2 = tcg_temp_new(); decode->cc_op = CC_OP_ADCOX; /* A lot more cc_ops could be "optimized" to avoid the extracts at * the end (INC/DEC, BMILG, MUL), but they are all really unlikely * to be followed by rotations within the same basic block. */ switch (s->cc_op) { case CC_OP_ADCOX: /* No need to compute the full EFLAGS, CF/OF are already isolated. */ tcg_gen_mov_tl(decode->cc_src, cpu_cc_src); if (need_flags) { tcg_gen_mov_tl(decode->cc_src2, cpu_cc_src2); got_of = true; } if (want_carry || need_flags) { tcg_gen_mov_tl(decode->cc_dst, cpu_cc_dst); got_cf = true; } break; case CC_OP_LOGICB ... CC_OP_LOGICQ: /* CF and OF are zero, do it just because it's easy. */ gen_mov_eflags(s, decode->cc_src); if (need_flags) { tcg_gen_movi_tl(decode->cc_src2, 0); got_of = true; } if (want_carry || need_flags) { tcg_gen_movi_tl(decode->cc_dst, 0); got_cf = true; } break; case CC_OP_SARB ... CC_OP_SARQ: /* * SHR/RCR/SHR/RCR/... is a relatively common occurrence of RCR. * By computing CF without using eflags, the calls to cc_compute_all * can be eliminated as dead code (except for the last RCR). */ if (want_carry || need_flags) { tcg_gen_andi_tl(decode->cc_dst, cpu_cc_src, 1); got_cf = true; } gen_mov_eflags(s, decode->cc_src); break; case CC_OP_SHLB ... CC_OP_SHLQ: /* * Likewise for SHL/RCL/SHL/RCL/... but, if CF is not in the sign * bit, we might as well fish CF out of EFLAGS and save a shift. */ if (want_carry && (!need_flags || s->cc_op == CC_OP_SHLB + MO_TL)) { MemOp size = cc_op_size(s->cc_op); tcg_gen_shri_tl(decode->cc_dst, cpu_cc_src, (8 << size) - 1); got_cf = true; } gen_mov_eflags(s, decode->cc_src); break; default: gen_mov_eflags(s, decode->cc_src); break; } if (need_flags) { /* If the flags could be left unmodified, always load them. */ if (!got_of) { tcg_gen_extract_tl(decode->cc_src2, decode->cc_src, ctz32(CC_O), 1); got_of = true; } if (!got_cf) { tcg_gen_extract_tl(decode->cc_dst, decode->cc_src, ctz32(CC_C), 1); got_cf = true; } } return got_cf; } static void gen_rot_overflow(X86DecodedInsn *decode, TCGv result, TCGv old, bool can_be_zero, TCGv count) { MemOp ot = decode->op[0].ot; TCGv temp = can_be_zero ? tcg_temp_new() : decode->cc_src2; tcg_gen_xor_tl(temp, old, result); tcg_gen_extract_tl(temp, temp, (8 << ot) - 1, 1); if (can_be_zero) { tcg_gen_movcond_tl(TCG_COND_EQ, decode->cc_src2, count, tcg_constant_tl(0), decode->cc_src2, temp); } } /* * RCx operations are invariant modulo 8*operand_size+1. For 8 and 16-bit operands, * this is less than 0x1f (the mask applied by gen_shift_count) so reduce further. */ static void gen_rotc_mod(MemOp ot, TCGv count) { TCGv temp; switch (ot) { case MO_8: temp = tcg_temp_new(); tcg_gen_subi_tl(temp, count, 18); tcg_gen_movcond_tl(TCG_COND_GE, count, temp, tcg_constant_tl(0), temp, count); tcg_gen_subi_tl(temp, count, 9); tcg_gen_movcond_tl(TCG_COND_GE, count, temp, tcg_constant_tl(0), temp, count); break; case MO_16: temp = tcg_temp_new(); tcg_gen_subi_tl(temp, count, 17); tcg_gen_movcond_tl(TCG_COND_GE, count, temp, tcg_constant_tl(0), temp, count); break; default: break; } } /* * The idea here is that the bit to the right of the new bit 0 is the * new carry, and the bit to the right of the old bit 0 is the old carry. * Just like a regular rotation, the result of the rotation is composed * from a right shifted part and a left shifted part of s->T0. The new carry * is extracted from the right-shifted portion, and the old carry is * inserted at the end of the left-shifted portion. * * Because of the separate shifts involving the carry, gen_RCL and gen_RCR * mostly operate on count-1. This also comes in handy when computing * length - count, because (length-1) - (count-1) can be computed with * a XOR, and that is commutative unlike subtraction. */ static void gen_RCL(DisasContext *s, X86DecodedInsn *decode) { bool have_1bit_cin, can_be_zero; TCGv count; TCGLabel *zero_label = NULL; MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count, decode->op[2].unit); TCGv low, high, low_count; if (!count) { return; } low = tcg_temp_new(); high = tcg_temp_new(); low_count = tcg_temp_new(); gen_rotc_mod(ot, count); have_1bit_cin = gen_eflags_adcox(s, decode, true, can_be_zero); if (can_be_zero) { zero_label = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, count, 0, zero_label); } /* Compute high part, including incoming carry. */ if (!have_1bit_cin || TCG_TARGET_deposit_tl_valid(1, TARGET_LONG_BITS - 1)) { /* high = (T0 << 1) | cin */ TCGv cin = have_1bit_cin ? decode->cc_dst : decode->cc_src; tcg_gen_deposit_tl(high, cin, s->T0, 1, TARGET_LONG_BITS - 1); } else { /* Same as above but without deposit; cin in cc_dst. */ tcg_gen_add_tl(high, s->T0, decode->cc_dst); tcg_gen_add_tl(high, high, s->T0); } tcg_gen_subi_tl(count, count, 1); tcg_gen_shl_tl(high, high, count); /* Compute low part and outgoing carry, incoming s->T0 is zero extended */ tcg_gen_xori_tl(low_count, count, (8 << ot) - 1); /* LENGTH - 1 - (count - 1) */ tcg_gen_shr_tl(low, s->T0, low_count); tcg_gen_andi_tl(decode->cc_dst, low, 1); tcg_gen_shri_tl(low, low, 1); /* Compute result and outgoing overflow */ tcg_gen_mov_tl(decode->cc_src2, s->T0); tcg_gen_or_tl(s->T0, low, high); gen_rot_overflow(decode, s->T0, decode->cc_src2, false, NULL); if (zero_label) { gen_set_label(zero_label); } } static void gen_RCR(DisasContext *s, X86DecodedInsn *decode) { bool have_1bit_cin, can_be_zero; TCGv count; TCGLabel *zero_label = NULL; MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count, decode->op[2].unit); TCGv low, high, high_count; if (!count) { return; } low = tcg_temp_new(); high = tcg_temp_new(); high_count = tcg_temp_new(); gen_rotc_mod(ot, count); have_1bit_cin = gen_eflags_adcox(s, decode, true, can_be_zero); if (can_be_zero) { zero_label = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, count, 0, zero_label); } /* Save incoming carry into high, it will be shifted later. */ if (!have_1bit_cin || TCG_TARGET_deposit_tl_valid(1, TARGET_LONG_BITS - 1)) { TCGv cin = have_1bit_cin ? decode->cc_dst : decode->cc_src; tcg_gen_deposit_tl(high, cin, s->T0, 1, TARGET_LONG_BITS - 1); } else { /* Same as above but without deposit; cin in cc_dst. */ tcg_gen_add_tl(high, s->T0, decode->cc_dst); tcg_gen_add_tl(high, high, s->T0); } /* Compute low part and outgoing carry, incoming s->T0 is zero extended */ tcg_gen_subi_tl(count, count, 1); tcg_gen_shr_tl(low, s->T0, count); tcg_gen_andi_tl(decode->cc_dst, low, 1); tcg_gen_shri_tl(low, low, 1); /* Move high part to the right position */ tcg_gen_xori_tl(high_count, count, (8 << ot) - 1); /* LENGTH - 1 - (count - 1) */ tcg_gen_shl_tl(high, high, high_count); /* Compute result and outgoing overflow */ tcg_gen_mov_tl(decode->cc_src2, s->T0); tcg_gen_or_tl(s->T0, low, high); gen_rot_overflow(decode, s->T0, decode->cc_src2, false, NULL); if (zero_label) { gen_set_label(zero_label); } } #ifdef CONFIG_USER_ONLY static void gen_unreachable(DisasContext *s, X86DecodedInsn *decode) { g_assert_not_reached(); } #endif #ifndef CONFIG_USER_ONLY static void gen_RDMSR(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_update_eip_cur(s); gen_helper_rdmsr(tcg_env); } #else #define gen_RDMSR gen_unreachable #endif static void gen_RDPMC(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_update_eip_cur(s); translator_io_start(&s->base); gen_helper_rdpmc(tcg_env); s->base.is_jmp = DISAS_NORETURN; } static void gen_RDTSC(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_update_eip_cur(s); translator_io_start(&s->base); gen_helper_rdtsc(tcg_env); } static void gen_RDxxBASE(DisasContext *s, X86DecodedInsn *decode) { TCGv base = cpu_seg_base[s->modrm & 8 ? R_GS : R_FS]; /* Preserve hflags bits by testing CR4 at runtime. */ gen_helper_cr4_testbit(tcg_env, tcg_constant_i32(CR4_FSGSBASE_MASK)); tcg_gen_mov_tl(s->T0, base); } static void gen_RET(DisasContext *s, X86DecodedInsn *decode) { int16_t adjust = decode->e.op1 == X86_TYPE_I ? decode->immediate : 0; MemOp ot = gen_pop_T0(s); gen_stack_update(s, adjust + (1 << ot)); gen_op_jmp_v(s, s->T0); gen_bnd_jmp(s); s->base.is_jmp = DISAS_JUMP; } static void gen_RETF(DisasContext *s, X86DecodedInsn *decode) { int16_t adjust = decode->e.op1 == X86_TYPE_I ? decode->immediate : 0; if (!PE(s) || VM86(s)) { gen_lea_ss_ofs(s, s->A0, cpu_regs[R_ESP], 0); /* pop offset */ gen_op_ld_v(s, s->dflag, s->T0, s->A0); /* NOTE: keeping EIP updated is not a problem in case of exception */ gen_op_jmp_v(s, s->T0); /* pop selector */ gen_add_A0_im(s, 1 << s->dflag); gen_op_ld_v(s, s->dflag, s->T0, s->A0); gen_op_movl_seg_real(s, R_CS, s->T0); /* add stack offset */ gen_stack_update(s, adjust + (2 << s->dflag)); } else { gen_update_cc_op(s); gen_update_eip_cur(s); gen_helper_lret_protected(tcg_env, tcg_constant_i32(s->dflag - 1), tcg_constant_i32(adjust)); } s->base.is_jmp = DISAS_EOB_ONLY; } /* * Return non-NULL if a 32-bit rotate works, after possibly replicating the input. * The input has already been zero-extended upon operand decode. */ static TCGv_i32 gen_rot_replicate(MemOp ot, TCGv in) { TCGv_i32 temp; switch (ot) { case MO_8: temp = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(temp, in); tcg_gen_muli_i32(temp, temp, 0x01010101); return temp; case MO_16: temp = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(temp, in); tcg_gen_deposit_i32(temp, temp, temp, 16, 16); return temp; #ifdef TARGET_X86_64 case MO_32: temp = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(temp, in); return temp; #endif default: return NULL; } } static void gen_rot_carry(X86DecodedInsn *decode, TCGv result, bool can_be_zero, TCGv count, int bit) { if (!can_be_zero) { tcg_gen_extract_tl(decode->cc_dst, result, bit, 1); } else { TCGv temp = tcg_temp_new(); tcg_gen_extract_tl(temp, result, bit, 1); tcg_gen_movcond_tl(TCG_COND_EQ, decode->cc_dst, count, tcg_constant_tl(0), decode->cc_dst, temp); } } static void gen_ROL(DisasContext *s, X86DecodedInsn *decode) { bool can_be_zero; TCGv count; MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count, decode->op[2].unit); TCGv_i32 temp32, count32; TCGv old = tcg_temp_new(); if (!count) { return; } gen_eflags_adcox(s, decode, false, can_be_zero); tcg_gen_mov_tl(old, s->T0); temp32 = gen_rot_replicate(ot, s->T0); if (temp32) { count32 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(count32, count); tcg_gen_rotl_i32(temp32, temp32, count32); /* Zero extend to facilitate later optimization. */ tcg_gen_extu_i32_tl(s->T0, temp32); } else { tcg_gen_rotl_tl(s->T0, s->T0, count); } gen_rot_carry(decode, s->T0, can_be_zero, count, 0); gen_rot_overflow(decode, s->T0, old, can_be_zero, count); } static void gen_ROR(DisasContext *s, X86DecodedInsn *decode) { bool can_be_zero; TCGv count; MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count, decode->op[2].unit); TCGv_i32 temp32, count32; TCGv old = tcg_temp_new(); if (!count) { return; } gen_eflags_adcox(s, decode, false, can_be_zero); tcg_gen_mov_tl(old, s->T0); temp32 = gen_rot_replicate(ot, s->T0); if (temp32) { count32 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(count32, count); tcg_gen_rotr_i32(temp32, temp32, count32); /* Zero extend to facilitate later optimization. */ tcg_gen_extu_i32_tl(s->T0, temp32); gen_rot_carry(decode, s->T0, can_be_zero, count, 31); } else { tcg_gen_rotr_tl(s->T0, s->T0, count); gen_rot_carry(decode, s->T0, can_be_zero, count, TARGET_LONG_BITS - 1); } gen_rot_overflow(decode, s->T0, old, can_be_zero, count); } static void gen_RORX(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int mask = ot == MO_64 ? 63 : 31; int b = decode->immediate & mask; switch (ot) { case MO_32: #ifdef TARGET_X86_64 tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0); tcg_gen_rotri_i32(s->tmp2_i32, s->tmp2_i32, b); tcg_gen_extu_i32_tl(s->T0, s->tmp2_i32); break; case MO_64: #endif tcg_gen_rotri_tl(s->T0, s->T0, b); break; default: g_assert_not_reached(); } } #ifndef CONFIG_USER_ONLY static void gen_RSM(DisasContext *s, X86DecodedInsn *decode) { gen_helper_rsm(tcg_env); assume_cc_op(s, CC_OP_EFLAGS); s->base.is_jmp = DISAS_EOB_ONLY; } #else #define gen_RSM gen_UD #endif static void gen_SAHF(DisasContext *s, X86DecodedInsn *decode) { if (CODE64(s) && !(s->cpuid_ext3_features & CPUID_EXT3_LAHF_LM)) { return gen_illegal_opcode(s); } tcg_gen_shri_tl(s->T0, cpu_regs[R_EAX], 8); gen_compute_eflags(s); tcg_gen_andi_tl(cpu_cc_src, cpu_cc_src, CC_O); tcg_gen_andi_tl(s->T0, s->T0, CC_S | CC_Z | CC_A | CC_P | CC_C); tcg_gen_or_tl(cpu_cc_src, cpu_cc_src, s->T0); } static void gen_SALC(DisasContext *s, X86DecodedInsn *decode) { gen_compute_eflags_c(s, s->T0); tcg_gen_neg_tl(s->T0, s->T0); } static void gen_shift_dynamic_flags(DisasContext *s, X86DecodedInsn *decode, TCGv count, CCOp cc_op) { TCGv_i32 count32 = tcg_temp_new_i32(); TCGv_i32 old_cc_op; decode->cc_op = CC_OP_DYNAMIC; decode->cc_op_dynamic = tcg_temp_new_i32(); assert(decode->cc_dst == s->T0); if (cc_op_live(s->cc_op) & USES_CC_DST) { decode->cc_dst = tcg_temp_new(); tcg_gen_movcond_tl(TCG_COND_EQ, decode->cc_dst, count, tcg_constant_tl(0), cpu_cc_dst, s->T0); } if (cc_op_live(s->cc_op) & USES_CC_SRC) { tcg_gen_movcond_tl(TCG_COND_EQ, decode->cc_src, count, tcg_constant_tl(0), cpu_cc_src, decode->cc_src); } tcg_gen_trunc_tl_i32(count32, count); if (s->cc_op == CC_OP_DYNAMIC) { old_cc_op = cpu_cc_op; } else { old_cc_op = tcg_constant_i32(s->cc_op); } tcg_gen_movcond_i32(TCG_COND_EQ, decode->cc_op_dynamic, count32, tcg_constant_i32(0), old_cc_op, tcg_constant_i32(cc_op)); } static void gen_SAR(DisasContext *s, X86DecodedInsn *decode) { bool can_be_zero; TCGv count; MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count, decode->op[2].unit); if (!count) { return; } decode->cc_dst = s->T0; decode->cc_src = tcg_temp_new(); tcg_gen_subi_tl(decode->cc_src, count, 1); tcg_gen_sar_tl(decode->cc_src, s->T0, decode->cc_src); tcg_gen_sar_tl(s->T0, s->T0, count); if (can_be_zero) { gen_shift_dynamic_flags(s, decode, count, CC_OP_SARB + ot); } else { decode->cc_op = CC_OP_SARB + ot; } } static void gen_SARX(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int mask; mask = ot == MO_64 ? 63 : 31; tcg_gen_andi_tl(s->T1, s->T1, mask); tcg_gen_sar_tl(s->T0, s->T0, s->T1); } static void gen_SBB(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv c_in = tcg_temp_new(); gen_compute_eflags_c(s, c_in); if (s->prefix & PREFIX_LOCK) { tcg_gen_add_tl(s->T0, s->T1, c_in); tcg_gen_neg_tl(s->T0, s->T0); tcg_gen_atomic_add_fetch_tl(s->T0, s->A0, s->T0, s->mem_index, ot | MO_LE); } else { /* * TODO: SBB reg, reg could use gen_prepare_eflags_c followed by * negsetcond, and CC_OP_SUBB as the cc_op. */ tcg_gen_sub_tl(s->T0, s->T0, s->T1); tcg_gen_sub_tl(s->T0, s->T0, c_in); } prepare_update3_cc(decode, s, CC_OP_SBBB + ot, c_in); } static void gen_SCAS(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz_nz(s, ot, gen_scas); } else { gen_scas(s, ot); } } static void gen_SETcc(DisasContext *s, X86DecodedInsn *decode) { gen_setcc1(s, decode->b & 0xf, s->T0); } static void gen_SFENCE(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_mb(TCG_MO_ST_ST | TCG_BAR_SC); } static void gen_SHA1NEXTE(DisasContext *s, X86DecodedInsn *decode) { gen_helper_sha1nexte(OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_SHA1MSG1(DisasContext *s, X86DecodedInsn *decode) { gen_helper_sha1msg1(OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_SHA1MSG2(DisasContext *s, X86DecodedInsn *decode) { gen_helper_sha1msg2(OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_SHA1RNDS4(DisasContext *s, X86DecodedInsn *decode) { switch(decode->immediate & 3) { case 0: gen_helper_sha1rnds4_f0(OP_PTR0, OP_PTR0, OP_PTR1); break; case 1: gen_helper_sha1rnds4_f1(OP_PTR0, OP_PTR0, OP_PTR1); break; case 2: gen_helper_sha1rnds4_f2(OP_PTR0, OP_PTR0, OP_PTR1); break; case 3: gen_helper_sha1rnds4_f3(OP_PTR0, OP_PTR0, OP_PTR1); break; } } static void gen_SHA256MSG1(DisasContext *s, X86DecodedInsn *decode) { gen_helper_sha256msg1(OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_SHA256MSG2(DisasContext *s, X86DecodedInsn *decode) { gen_helper_sha256msg2(OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_SHA256RNDS2(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 wk0 = tcg_temp_new_i32(); TCGv_i32 wk1 = tcg_temp_new_i32(); tcg_gen_ld_i32(wk0, tcg_env, ZMM_OFFSET(0) + offsetof(ZMMReg, ZMM_L(0))); tcg_gen_ld_i32(wk1, tcg_env, ZMM_OFFSET(0) + offsetof(ZMMReg, ZMM_L(1))); gen_helper_sha256rnds2(OP_PTR0, OP_PTR1, OP_PTR2, wk0, wk1); } static void gen_SHL(DisasContext *s, X86DecodedInsn *decode) { bool can_be_zero; TCGv count; MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count, decode->op[2].unit); if (!count) { return; } decode->cc_dst = s->T0; decode->cc_src = tcg_temp_new(); tcg_gen_subi_tl(decode->cc_src, count, 1); tcg_gen_shl_tl(decode->cc_src, s->T0, decode->cc_src); tcg_gen_shl_tl(s->T0, s->T0, count); if (can_be_zero) { gen_shift_dynamic_flags(s, decode, count, CC_OP_SHLB + ot); } else { decode->cc_op = CC_OP_SHLB + ot; } } static void gen_SHLD(DisasContext *s, X86DecodedInsn *decode) { bool can_be_zero; TCGv count; int unit = decode->e.op3 == X86_TYPE_I ? X86_OP_IMM : X86_OP_INT; MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count, unit); if (!count) { return; } decode->cc_dst = s->T0; decode->cc_src = s->tmp0; gen_shiftd_rm_T1(s, ot, false, count); if (can_be_zero) { gen_shift_dynamic_flags(s, decode, count, CC_OP_SHLB + ot); } else { decode->cc_op = CC_OP_SHLB + ot; } } static void gen_SHLX(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int mask; mask = ot == MO_64 ? 63 : 31; tcg_gen_andi_tl(s->T1, s->T1, mask); tcg_gen_shl_tl(s->T0, s->T0, s->T1); } static void gen_SHR(DisasContext *s, X86DecodedInsn *decode) { bool can_be_zero; TCGv count; MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count, decode->op[2].unit); if (!count) { return; } decode->cc_dst = s->T0; decode->cc_src = tcg_temp_new(); tcg_gen_subi_tl(decode->cc_src, count, 1); tcg_gen_shr_tl(decode->cc_src, s->T0, decode->cc_src); tcg_gen_shr_tl(s->T0, s->T0, count); if (can_be_zero) { gen_shift_dynamic_flags(s, decode, count, CC_OP_SARB + ot); } else { decode->cc_op = CC_OP_SARB + ot; } } static void gen_SHRD(DisasContext *s, X86DecodedInsn *decode) { bool can_be_zero; TCGv count; int unit = decode->e.op3 == X86_TYPE_I ? X86_OP_IMM : X86_OP_INT; MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count, unit); if (!count) { return; } decode->cc_dst = s->T0; decode->cc_src = s->tmp0; gen_shiftd_rm_T1(s, ot, true, count); if (can_be_zero) { gen_shift_dynamic_flags(s, decode, count, CC_OP_SARB + ot); } else { decode->cc_op = CC_OP_SARB + ot; } } static void gen_SHRX(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int mask; mask = ot == MO_64 ? 63 : 31; tcg_gen_andi_tl(s->T1, s->T1, mask); tcg_gen_shr_tl(s->T0, s->T0, s->T1); } static void gen_STC(DisasContext *s, X86DecodedInsn *decode) { gen_compute_eflags(s); tcg_gen_ori_tl(cpu_cc_src, cpu_cc_src, CC_C); } static void gen_STD(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_st_i32(tcg_constant_i32(-1), tcg_env, offsetof(CPUX86State, df)); } static void gen_STI(DisasContext *s, X86DecodedInsn *decode) { gen_set_eflags(s, IF_MASK); s->base.is_jmp = DISAS_EOB_INHIBIT_IRQ; } static void gen_VAESKEYGEN(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); assert(!s->vex_l); gen_helper_aeskeygenassist_xmm(tcg_env, OP_PTR0, OP_PTR1, imm); } static void gen_STMXCSR(DisasContext *s, X86DecodedInsn *decode) { gen_helper_update_mxcsr(tcg_env); tcg_gen_ld32u_tl(s->T0, tcg_env, offsetof(CPUX86State, mxcsr)); } static void gen_STOS(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz(s, ot, gen_stos); } else { gen_stos(s, ot); } } static void gen_SUB(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; if (s->prefix & PREFIX_LOCK) { tcg_gen_neg_tl(s->T0, s->T1); tcg_gen_atomic_fetch_add_tl(s->cc_srcT, s->A0, s->T0, s->mem_index, ot | MO_LE); tcg_gen_sub_tl(s->T0, s->cc_srcT, s->T1); } else { tcg_gen_mov_tl(s->cc_srcT, s->T0); tcg_gen_sub_tl(s->T0, s->T0, s->T1); } prepare_update2_cc(decode, s, CC_OP_SUBB + ot); } static void gen_SYSCALL(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_update_eip_cur(s); gen_helper_syscall(tcg_env, cur_insn_len_i32(s)); if (LMA(s)) { assume_cc_op(s, CC_OP_EFLAGS); } /* * TF handling for the syscall insn is different. The TF bit is checked * after the syscall insn completes. This allows #DB to not be * generated after one has entered CPL0 if TF is set in FMASK. */ s->base.is_jmp = DISAS_EOB_RECHECK_TF; } static void gen_SYSENTER(DisasContext *s, X86DecodedInsn *decode) { gen_helper_sysenter(tcg_env); s->base.is_jmp = DISAS_EOB_ONLY; } static void gen_SYSEXIT(DisasContext *s, X86DecodedInsn *decode) { gen_helper_sysexit(tcg_env, tcg_constant_i32(s->dflag - 1)); s->base.is_jmp = DISAS_EOB_ONLY; } static void gen_SYSRET(DisasContext *s, X86DecodedInsn *decode) { gen_helper_sysret(tcg_env, tcg_constant_i32(s->dflag - 1)); if (LMA(s)) { assume_cc_op(s, CC_OP_EFLAGS); } /* * TF handling for the sysret insn is different. The TF bit is checked * after the sysret insn completes. This allows #DB to be * generated "as if" the syscall insn in userspace has just * completed. */ s->base.is_jmp = DISAS_EOB_RECHECK_TF; } static void gen_TZCNT(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* C bit (cc_src) is defined related to the input. */ decode->cc_src = tcg_temp_new(); decode->cc_dst = s->T0; decode->cc_op = CC_OP_BMILGB + ot; tcg_gen_mov_tl(decode->cc_src, s->T0); /* A zero input returns the operand size. */ tcg_gen_ctzi_tl(s->T0, s->T0, 8 << ot); } static void gen_UD(DisasContext *s, X86DecodedInsn *decode) { gen_illegal_opcode(s); } static void gen_VAESIMC(DisasContext *s, X86DecodedInsn *decode) { assert(!s->vex_l); gen_helper_aesimc_xmm(tcg_env, OP_PTR0, OP_PTR2); } /* * 00 = v*ps Vps, Hps, Wpd * 66 = v*pd Vpd, Hpd, Wps * f3 = v*ss Vss, Hss, Wps * f2 = v*sd Vsd, Hsd, Wps */ #define SSE_CMP(x) { \ gen_helper_ ## x ## ps ## _xmm, gen_helper_ ## x ## pd ## _xmm, \ gen_helper_ ## x ## ss, gen_helper_ ## x ## sd, \ gen_helper_ ## x ## ps ## _ymm, gen_helper_ ## x ## pd ## _ymm} static const SSEFunc_0_eppp gen_helper_cmp_funcs[32][6] = { SSE_CMP(cmpeq), SSE_CMP(cmplt), SSE_CMP(cmple), SSE_CMP(cmpunord), SSE_CMP(cmpneq), SSE_CMP(cmpnlt), SSE_CMP(cmpnle), SSE_CMP(cmpord), SSE_CMP(cmpequ), SSE_CMP(cmpnge), SSE_CMP(cmpngt), SSE_CMP(cmpfalse), SSE_CMP(cmpnequ), SSE_CMP(cmpge), SSE_CMP(cmpgt), SSE_CMP(cmptrue), SSE_CMP(cmpeqs), SSE_CMP(cmpltq), SSE_CMP(cmpleq), SSE_CMP(cmpunords), SSE_CMP(cmpneqq), SSE_CMP(cmpnltq), SSE_CMP(cmpnleq), SSE_CMP(cmpords), SSE_CMP(cmpequs), SSE_CMP(cmpngeq), SSE_CMP(cmpngtq), SSE_CMP(cmpfalses), SSE_CMP(cmpnequs), SSE_CMP(cmpgeq), SSE_CMP(cmpgtq), SSE_CMP(cmptrues), }; #undef SSE_CMP static void gen_VCMP(DisasContext *s, X86DecodedInsn *decode) { int index = decode->immediate & (s->prefix & PREFIX_VEX ? 31 : 7); int b = s->prefix & PREFIX_REPZ ? 2 /* ss */ : s->prefix & PREFIX_REPNZ ? 3 /* sd */ : !!(s->prefix & PREFIX_DATA) /* pd */ + (s->vex_l << 2); gen_helper_cmp_funcs[index][b](tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_VCOMI(DisasContext *s, X86DecodedInsn *decode) { SSEFunc_0_epp fn; fn = s->prefix & PREFIX_DATA ? gen_helper_comisd : gen_helper_comiss; fn(tcg_env, OP_PTR1, OP_PTR2); assume_cc_op(s, CC_OP_EFLAGS); } static void gen_VCVTPD2PS(DisasContext *s, X86DecodedInsn *decode) { if (s->vex_l) { gen_helper_cvtpd2ps_ymm(tcg_env, OP_PTR0, OP_PTR2); } else { gen_helper_cvtpd2ps_xmm(tcg_env, OP_PTR0, OP_PTR2); } } static void gen_VCVTPS2PD(DisasContext *s, X86DecodedInsn *decode) { if (s->vex_l) { gen_helper_cvtps2pd_ymm(tcg_env, OP_PTR0, OP_PTR2); } else { gen_helper_cvtps2pd_xmm(tcg_env, OP_PTR0, OP_PTR2); } } static void gen_VCVTPS2PH(DisasContext *s, X86DecodedInsn *decode) { gen_unary_imm_fp_sse(s, decode, gen_helper_cvtps2ph_xmm, gen_helper_cvtps2ph_ymm); /* * VCVTPS2PH is the only instruction that performs an operation on a * register source and then *stores* into memory. */ if (decode->op[0].has_ea) { gen_store_sse(s, decode, decode->op[0].offset); } } static void gen_VCVTSD2SS(DisasContext *s, X86DecodedInsn *decode) { gen_helper_cvtsd2ss(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_VCVTSS2SD(DisasContext *s, X86DecodedInsn *decode) { gen_helper_cvtss2sd(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_VCVTSI2Sx(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); TCGv_i32 in; tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len); #ifdef TARGET_X86_64 MemOp ot = decode->op[2].ot; if (ot == MO_64) { if (s->prefix & PREFIX_REPNZ) { gen_helper_cvtsq2sd(tcg_env, OP_PTR0, s->T1); } else { gen_helper_cvtsq2ss(tcg_env, OP_PTR0, s->T1); } return; } in = s->tmp2_i32; tcg_gen_trunc_tl_i32(in, s->T1); #else in = s->T1; #endif if (s->prefix & PREFIX_REPNZ) { gen_helper_cvtsi2sd(tcg_env, OP_PTR0, in); } else { gen_helper_cvtsi2ss(tcg_env, OP_PTR0, in); } } static inline void gen_VCVTtSx2SI(DisasContext *s, X86DecodedInsn *decode, SSEFunc_i_ep ss2si, SSEFunc_l_ep ss2sq, SSEFunc_i_ep sd2si, SSEFunc_l_ep sd2sq) { TCGv_i32 out; #ifdef TARGET_X86_64 MemOp ot = decode->op[0].ot; if (ot == MO_64) { if (s->prefix & PREFIX_REPNZ) { sd2sq(s->T0, tcg_env, OP_PTR2); } else { ss2sq(s->T0, tcg_env, OP_PTR2); } return; } out = s->tmp2_i32; #else out = s->T0; #endif if (s->prefix & PREFIX_REPNZ) { sd2si(out, tcg_env, OP_PTR2); } else { ss2si(out, tcg_env, OP_PTR2); } #ifdef TARGET_X86_64 tcg_gen_extu_i32_tl(s->T0, out); #endif } #ifndef TARGET_X86_64 #define gen_helper_cvtss2sq NULL #define gen_helper_cvtsd2sq NULL #define gen_helper_cvttss2sq NULL #define gen_helper_cvttsd2sq NULL #endif static void gen_VCVTSx2SI(DisasContext *s, X86DecodedInsn *decode) { gen_VCVTtSx2SI(s, decode, gen_helper_cvtss2si, gen_helper_cvtss2sq, gen_helper_cvtsd2si, gen_helper_cvtsd2sq); } static void gen_VCVTTSx2SI(DisasContext *s, X86DecodedInsn *decode) { gen_VCVTtSx2SI(s, decode, gen_helper_cvttss2si, gen_helper_cvttss2sq, gen_helper_cvttsd2si, gen_helper_cvttsd2sq); } static void gen_VEXTRACTx128(DisasContext *s, X86DecodedInsn *decode) { int mask = decode->immediate & 1; int src_ofs = vector_elem_offset(&decode->op[1], MO_128, mask); if (decode->op[0].has_ea) { /* VEX-only instruction, no alignment requirements. */ gen_sto_env_A0(s, src_ofs, false); } else { tcg_gen_gvec_mov(MO_64, decode->op[0].offset, src_ofs, 16, 16); } } static void gen_VEXTRACTPS(DisasContext *s, X86DecodedInsn *decode) { gen_pextr(s, decode, MO_32); } static void gen_vinsertps(DisasContext *s, X86DecodedInsn *decode) { int val = decode->immediate; int dest_word = (val >> 4) & 3; int new_mask = (val & 15) | (1 << dest_word); int vec_len = 16; assert(!s->vex_l); if (new_mask == 15) { /* All zeroes except possibly for the inserted element */ tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else if (decode->op[1].offset != decode->op[0].offset) { gen_store_sse(s, decode, decode->op[1].offset); } if (new_mask != (val & 15)) { tcg_gen_st_i32(s->tmp2_i32, tcg_env, vector_elem_offset(&decode->op[0], MO_32, dest_word)); } if (new_mask != 15) { TCGv_i32 zero = tcg_constant_i32(0); /* float32_zero */ int i; for (i = 0; i < 4; i++) { if ((val >> i) & 1) { tcg_gen_st_i32(zero, tcg_env, vector_elem_offset(&decode->op[0], MO_32, i)); } } } } static void gen_VINSERTPS_r(DisasContext *s, X86DecodedInsn *decode) { int val = decode->immediate; tcg_gen_ld_i32(s->tmp2_i32, tcg_env, vector_elem_offset(&decode->op[2], MO_32, (val >> 6) & 3)); gen_vinsertps(s, decode); } static void gen_VINSERTPS_m(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_qemu_ld_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL); gen_vinsertps(s, decode); } static void gen_VINSERTx128(DisasContext *s, X86DecodedInsn *decode) { int mask = decode->immediate & 1; tcg_gen_gvec_mov(MO_64, decode->op[0].offset + offsetof(YMMReg, YMM_X(mask)), decode->op[2].offset + offsetof(YMMReg, YMM_X(0)), 16, 16); tcg_gen_gvec_mov(MO_64, decode->op[0].offset + offsetof(YMMReg, YMM_X(!mask)), decode->op[1].offset + offsetof(YMMReg, YMM_X(!mask)), 16, 16); } static inline void gen_maskmov(DisasContext *s, X86DecodedInsn *decode, SSEFunc_0_eppt xmm, SSEFunc_0_eppt ymm) { if (!s->vex_l) { xmm(tcg_env, OP_PTR2, OP_PTR1, s->A0); } else { ymm(tcg_env, OP_PTR2, OP_PTR1, s->A0); } } static void gen_VMASKMOVPD_st(DisasContext *s, X86DecodedInsn *decode) { gen_maskmov(s, decode, gen_helper_vpmaskmovq_st_xmm, gen_helper_vpmaskmovq_st_ymm); } static void gen_VMASKMOVPS_st(DisasContext *s, X86DecodedInsn *decode) { gen_maskmov(s, decode, gen_helper_vpmaskmovd_st_xmm, gen_helper_vpmaskmovd_st_ymm); } static void gen_VMOVHPx_ld(DisasContext *s, X86DecodedInsn *decode) { gen_ldq_env_A0(s, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1))); if (decode->op[0].offset != decode->op[1].offset) { tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0))); tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0))); } } static void gen_VMOVHPx_st(DisasContext *s, X86DecodedInsn *decode) { gen_stq_env_A0(s, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1))); } static void gen_VMOVHPx(DisasContext *s, X86DecodedInsn *decode) { if (decode->op[0].offset != decode->op[2].offset) { tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1))); tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1))); } if (decode->op[0].offset != decode->op[1].offset) { tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0))); tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0))); } } static void gen_VMOVHLPS(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1))); tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0))); if (decode->op[0].offset != decode->op[1].offset) { tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(1))); tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1))); } } static void gen_VMOVLHPS(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset); tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1))); if (decode->op[0].offset != decode->op[1].offset) { tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0))); tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0))); } } /* * Note that MOVLPx supports 256-bit operation unlike MOVHLPx, MOVLHPx, MOXHPx. * Use a gvec move to move everything above the bottom 64 bits. */ static void gen_VMOVLPx(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(0))); tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len); tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0))); } static void gen_VMOVLPx_ld(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); tcg_gen_qemu_ld_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ); tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len); tcg_gen_st_i64(s->tmp1_i64, OP_PTR0, offsetof(ZMMReg, ZMM_Q(0))); } static void gen_VMOVLPx_st(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_ld_i64(s->tmp1_i64, OP_PTR2, offsetof(ZMMReg, ZMM_Q(0))); tcg_gen_qemu_st_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ); } static void gen_VMOVSD_ld(DisasContext *s, X86DecodedInsn *decode) { TCGv_i64 zero = tcg_constant_i64(0); tcg_gen_qemu_ld_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ); tcg_gen_st_i64(zero, OP_PTR0, offsetof(ZMMReg, ZMM_Q(1))); tcg_gen_st_i64(s->tmp1_i64, OP_PTR0, offsetof(ZMMReg, ZMM_Q(0))); } static void gen_VMOVSS(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); tcg_gen_ld_i32(s->tmp2_i32, OP_PTR2, offsetof(ZMMReg, ZMM_L(0))); tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len); tcg_gen_st_i32(s->tmp2_i32, OP_PTR0, offsetof(ZMMReg, ZMM_L(0))); } static void gen_VMOVSS_ld(DisasContext *s, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); tcg_gen_qemu_ld_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL); tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); tcg_gen_st_i32(s->tmp2_i32, OP_PTR0, offsetof(ZMMReg, ZMM_L(0))); } static void gen_VMOVSS_st(DisasContext *s, X86DecodedInsn *decode) { tcg_gen_ld_i32(s->tmp2_i32, OP_PTR2, offsetof(ZMMReg, ZMM_L(0))); tcg_gen_qemu_st_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL); } static void gen_VPMASKMOV_st(DisasContext *s, X86DecodedInsn *decode) { if (s->vex_w) { gen_VMASKMOVPD_st(s, decode); } else { gen_VMASKMOVPS_st(s, decode); } } static void gen_VPERMD(DisasContext *s, X86DecodedInsn *decode) { assert(s->vex_l); gen_helper_vpermd_ymm(OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_VPERM2x128(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); assert(s->vex_l); gen_helper_vpermdq_ymm(OP_PTR0, OP_PTR1, OP_PTR2, imm); } static void gen_VPHMINPOSUW(DisasContext *s, X86DecodedInsn *decode) { assert(!s->vex_l); gen_helper_phminposuw_xmm(tcg_env, OP_PTR0, OP_PTR2); } static void gen_VROUNDSD(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); assert(!s->vex_l); gen_helper_roundsd_xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } static void gen_VROUNDSS(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); assert(!s->vex_l); gen_helper_roundss_xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } static void gen_VSHUF(DisasContext *s, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant_i32(decode->immediate); SSEFunc_0_pppi ps, pd, fn; ps = s->vex_l ? gen_helper_shufps_ymm : gen_helper_shufps_xmm; pd = s->vex_l ? gen_helper_shufpd_ymm : gen_helper_shufpd_xmm; fn = s->prefix & PREFIX_DATA ? pd : ps; fn(OP_PTR0, OP_PTR1, OP_PTR2, imm); } static void gen_VUCOMI(DisasContext *s, X86DecodedInsn *decode) { SSEFunc_0_epp fn; fn = s->prefix & PREFIX_DATA ? gen_helper_ucomisd : gen_helper_ucomiss; fn(tcg_env, OP_PTR1, OP_PTR2); assume_cc_op(s, CC_OP_EFLAGS); } static void gen_VZEROALL(DisasContext *s, X86DecodedInsn *decode) { TCGv_ptr ptr = tcg_temp_new_ptr(); tcg_gen_addi_ptr(ptr, tcg_env, offsetof(CPUX86State, xmm_regs)); gen_helper_memset(ptr, ptr, tcg_constant_i32(0), tcg_constant_ptr(CPU_NB_REGS * sizeof(ZMMReg))); } static void gen_VZEROUPPER(DisasContext *s, X86DecodedInsn *decode) { int i; for (i = 0; i < CPU_NB_REGS; i++) { int offset = offsetof(CPUX86State, xmm_regs[i].ZMM_X(1)); tcg_gen_gvec_dup_imm(MO_64, offset, 16, 16, 0); } } static void gen_WAIT(DisasContext *s, X86DecodedInsn *decode) { if ((s->flags & (HF_MP_MASK | HF_TS_MASK)) == (HF_MP_MASK | HF_TS_MASK)) { gen_NM_exception(s); } else { /* needs to be treated as I/O because of ferr_irq */ translator_io_start(&s->base); gen_helper_fwait(tcg_env); } } #ifndef CONFIG_USER_ONLY static void gen_WRMSR(DisasContext *s, X86DecodedInsn *decode) { gen_update_cc_op(s); gen_update_eip_cur(s); gen_helper_wrmsr(tcg_env); s->base.is_jmp = DISAS_EOB_NEXT; } #else #define gen_WRMSR gen_unreachable #endif static void gen_WRxxBASE(DisasContext *s, X86DecodedInsn *decode) { TCGv base = cpu_seg_base[s->modrm & 8 ? R_GS : R_FS]; /* Preserve hflags bits by testing CR4 at runtime. */ gen_helper_cr4_testbit(tcg_env, tcg_constant_i32(CR4_FSGSBASE_MASK)); tcg_gen_mov_tl(base, s->T0); } static void gen_XADD(DisasContext *s, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; decode->cc_dst = tcg_temp_new(); decode->cc_src = s->T1; decode->cc_op = CC_OP_ADDB + ot; if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_fetch_add_tl(s->T0, s->A0, s->T1, s->mem_index, ot | MO_LE); tcg_gen_add_tl(decode->cc_dst, s->T0, s->T1); } else { tcg_gen_add_tl(decode->cc_dst, s->T0, s->T1); /* * NOTE: writing memory first is important for MMU exceptions, * but "new result" wins for XADD AX, AX. */ gen_writeback(s, decode, 0, decode->cc_dst); } if (decode->op[0].has_ea || decode->op[2].n != decode->op[0].n) { gen_writeback(s, decode, 2, s->T0); } } static void gen_XCHG(DisasContext *s, X86DecodedInsn *decode) { if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_xchg_tl(s->T0, s->A0, s->T1, s->mem_index, decode->op[0].ot | MO_LE); /* now store old value into register operand */ gen_op_mov_reg_v(s, decode->op[2].ot, decode->op[2].n, s->T0); } else { /* move destination value into source operand, source preserved in T1 */ gen_op_mov_reg_v(s, decode->op[2].ot, decode->op[2].n, s->T0); tcg_gen_mov_tl(s->T0, s->T1); } } static void gen_XLAT(DisasContext *s, X86DecodedInsn *decode) { /* AL is already zero-extended into s->T0. */ tcg_gen_add_tl(s->A0, cpu_regs[R_EBX], s->T0); gen_lea_v_seg(s, s->A0, R_DS, s->override); gen_op_ld_v(s, MO_8, s->T0, s->A0); } static void gen_XOR(DisasContext *s, X86DecodedInsn *decode) { /* special case XOR reg, reg */ if (decode->op[1].unit == X86_OP_INT && decode->op[2].unit == X86_OP_INT && decode->op[1].n == decode->op[2].n) { tcg_gen_movi_tl(s->T0, 0); decode->cc_op = CC_OP_EFLAGS; decode->cc_src = tcg_constant_tl(CC_Z | CC_P); } else { MemOp ot = decode->op[1].ot; if (s->prefix & PREFIX_LOCK) { tcg_gen_atomic_xor_fetch_tl(s->T0, s->A0, s->T1, s->mem_index, ot | MO_LE); } else { tcg_gen_xor_tl(s->T0, s->T0, s->T1); } prepare_update1_cc(decode, s, CC_OP_LOGICB + ot); } } static void gen_XRSTOR(DisasContext *s, X86DecodedInsn *decode) { TCGv_i64 features = tcg_temp_new_i64(); tcg_gen_concat_tl_i64(features, cpu_regs[R_EAX], cpu_regs[R_EDX]); gen_helper_xrstor(tcg_env, s->A0, features); if (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_MPX) { /* * XRSTOR is how MPX is enabled, which changes how * we translate. Thus we need to end the TB. */ s->base.is_jmp = DISAS_EOB_NEXT; } } static void gen_XSAVE(DisasContext *s, X86DecodedInsn *decode) { TCGv_i64 features = tcg_temp_new_i64(); tcg_gen_concat_tl_i64(features, cpu_regs[R_EAX], cpu_regs[R_EDX]); gen_helper_xsave(tcg_env, s->A0, features); } static void gen_XSAVEOPT(DisasContext *s, X86DecodedInsn *decode) { TCGv_i64 features = tcg_temp_new_i64(); tcg_gen_concat_tl_i64(features, cpu_regs[R_EAX], cpu_regs[R_EDX]); gen_helper_xsave(tcg_env, s->A0, features); }