/* * New-style decoder for i386 instructions * * Copyright (c) 2022 Red Hat, Inc. * * Author: Paolo Bonzini * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * The decoder is mostly based on tables copied from the Intel SDM. As * a result, most operand load and writeback is done entirely in common * table-driven code using the same operand type (X86_TYPE_*) and * size (X86_SIZE_*) codes used in the manual. There are a few differences * though. * * Operand sizes * ------------- * * The manual lists d64 ("cannot encode 32-bit size in 64-bit mode") and f64 * ("cannot encode 16-bit or 32-bit size in 64-bit mode") as modifiers of the * "v" or "z" sizes. The decoder simply makes them separate operand sizes. * * The manual lists immediate far destinations as Ap (technically an implicit * argument). The decoder splits them into two immediates, using "Ip" for * the offset part (that comes first in the instruction stream) and "Iw" for * the segment/selector part. The size of the offset is given by s->dflag * and the instructions are illegal in 64-bit mode, so the choice of "Ip" * is somewhat arbitrary; "Iv" or "Iz" would work just as well. * * Operand types * ------------- * * For memory-only operands, if the emitter functions wants to rely on * generic load and writeback, the decoder needs to know the type of the * operand. Therefore, M is often replaced by the more specific EM and WM * (respectively selecting an ALU operand, like the operand type E, or a * vector operand like the operand type W). * * Immediates are almost always signed or masked away in helpers. Two * common exceptions are IN/OUT and absolute jumps. For these, there is * an additional custom operand type "I_unsigned". Alternatively, the * mask could be applied (and the original sign-extended value would be * optimized away by TCG) in the emitter function. * * Finally, a "nop" operand type is used for multi-byte NOPs. It accepts * any value of mod including 11b (unlike M) but it does not try to * interpret the operand (like M). * * Vector operands * --------------- * * The main difference is that the V, U and W types are extended to * cover MMX as well; if an instruction is like * * por Pq, Qq * 66 por Vx, Hx, Wx * * only the second row is included and the instruction is marked as a * valid MMX instruction. The MMX flag directs the decoder to rewrite * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing * "x" to "q" if there is no prefix. * * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x" * if the difference is expressed via prefixes. Individual instructions * are separated by prefix in the generator functions. * * There is a custom size "xh" used to address half of a SSE/AVX operand. * This points to a 64-bit operand for SSE operations, 128-bit operand * for 256-bit AVX operands, etc. It is used for conversion operations * such as VCVTPH2PS or VCVTSS2SD. * * There are a couple cases in which instructions (e.g. MOVD) write the * whole XMM or MM register but are established incorrectly in the manual * as "d" or "q". These have to be fixed for the decoder to work correctly. * * VEX exception classes * --------------------- * * Speaking about imprecisions in the manual, the decoder treats all * exception-class 4 instructions as having an optional VEX prefix, and * all exception-class 6 instructions as having a mandatory VEX prefix. * This is true except for a dozen instructions; these are in exception * class 4 but do not ignore the VEX.W bit (which does not even exist * without a VEX prefix). These instructions are mostly listed in Intel's * table 2-16, but with a few exceptions. * * The AMD manual has more precise subclasses for exceptions, and unlike Intel * they list the VEX.W requirements in the exception classes as well (except * when they don't). AMD describes class 6 as "AVX Mixed Memory Argument" * without defining what a mixed memory argument is, but still use 4 as the * primary exception class... except when they don't. * * The summary is: * Intel AMD VEX.W note * ------------------------------------------------------------------- * vpblendd 4 4J 0 * vpblendvb 4 4E-X 0 (*) * vpbroadcastq 6 6D 0 (+) * vpermd/vpermps 4 4H 0 (§) * vpermq/vpermpd 4 4H-1 1 (§) * vpermilpd/vpermilps 4 6E 0 (^) * vpmaskmovd 6 4K significant (^) * vpsllv 4 4K significant * vpsrav 4 4J 0 * vpsrlv 4 4K significant * vtestps/vtestpd 4 4G 0 * * (*) AMD lists VPBLENDVB as related to SSE4.1 PBLENDVB, which may * explain why it is considered exception class 4. However, * Intel says that VEX-only instructions should be in class 6... * * (+) Not found in Intel's table 2-16 * * (§) 4H and 4H-1 do not mention VEX.W requirements, which are * however present in the description of the instruction * * (^) these are the two cases in which Intel and AMD disagree on the * primary exception class */ #define X86_OP_NONE { 0 }, #define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ .decode = glue(decode_, op), \ .op0 = glue(X86_TYPE_, op0_), \ .s0 = glue(X86_SIZE_, s0_), \ .op1 = glue(X86_TYPE_, op1_), \ .s1 = glue(X86_SIZE_, s1_), \ .op2 = glue(X86_TYPE_, op2_), \ .s2 = glue(X86_SIZE_, s2_), \ .is_decode = true, \ ## __VA_ARGS__ \ } #define X86_OP_GROUP1(op, op0, s0, ...) \ X86_OP_GROUP3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__) #define X86_OP_GROUP2(op, op0, s0, op1, s1, ...) \ X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) #define X86_OP_GROUPw(op, op0, s0, ...) \ X86_OP_GROUP3(op, op0, s0, None, None, None, None, ## __VA_ARGS__) #define X86_OP_GROUPwr(op, op0, s0, op1, s1, ...) \ X86_OP_GROUP3(op, op0, s0, op1, s1, None, None, ## __VA_ARGS__) #define X86_OP_GROUP0(op, ...) \ X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__) #define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ .gen = glue(gen_, op), \ .op0 = glue(X86_TYPE_, op0_), \ .s0 = glue(X86_SIZE_, s0_), \ .op1 = glue(X86_TYPE_, op1_), \ .s1 = glue(X86_SIZE_, s1_), \ .op2 = glue(X86_TYPE_, op2_), \ .s2 = glue(X86_SIZE_, s2_), \ ## __VA_ARGS__ \ } #define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) \ X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, \ .op3 = X86_TYPE_I, .s3 = X86_SIZE_b, \ ## __VA_ARGS__) /* * Short forms that are mostly useful for ALU opcodes and other * one-byte opcodes. For vector instructions it is usually * clearer to write all three operands explicitly, because the * corresponding gen_* function will use OP_PTRn rather than s->T0 * and s->T1. */ #define X86_OP_ENTRYrr(op, op0, s0, op1, s1, ...) \ X86_OP_ENTRY3(op, None, None, op0, s0, op1, s1, ## __VA_ARGS__) #define X86_OP_ENTRYwr(op, op0, s0, op1, s1, ...) \ X86_OP_ENTRY3(op, op0, s0, op1, s1, None, None, ## __VA_ARGS__) #define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...) \ X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) #define X86_OP_ENTRYw(op, op0, s0, ...) \ X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__) #define X86_OP_ENTRYr(op, op0, s0, ...) \ X86_OP_ENTRY3(op, None, None, op0, s0, None, None, ## __VA_ARGS__) #define X86_OP_ENTRY1(op, op0, s0, ...) \ X86_OP_ENTRY3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__) #define X86_OP_ENTRY0(op, ...) \ X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__) #define cpuid(feat) .cpuid = X86_FEAT_##feat, #define nolea .special = X86_SPECIAL_NoLoadEA, #define xchg .special = X86_SPECIAL_Locked, #define lock .special = X86_SPECIAL_HasLock, #define mmx .special = X86_SPECIAL_MMX, #define op0_Rd .special = X86_SPECIAL_Op0_Rd, #define op2_Ry .special = X86_SPECIAL_Op2_Ry, #define avx_movx .special = X86_SPECIAL_AVXExtMov, #define sextT0 .special = X86_SPECIAL_SExtT0, #define zextT0 .special = X86_SPECIAL_ZExtT0, #define op0_Mw .special = X86_SPECIAL_Op0_Mw, #define vex1 .vex_class = 1, #define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar, #define vex2 .vex_class = 2, #define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar, #define vex3 .vex_class = 3, #define vex4 .vex_class = 4, #define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned, #define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar, #define vex5 .vex_class = 5, #define vex6 .vex_class = 6, #define vex7 .vex_class = 7, #define vex8 .vex_class = 8, #define vex11 .vex_class = 11, #define vex12 .vex_class = 12, #define vex13 .vex_class = 13, #define chk(a) .check = X86_CHECK_##a, #define chk2(a, b) .check = X86_CHECK_##a | X86_CHECK_##b, #define chk3(a, b, c) .check = X86_CHECK_##a | X86_CHECK_##b | X86_CHECK_##c, #define svm(a) .intercept = SVM_EXIT_##a, .has_intercept = true, #define avx2_256 .vex_special = X86_VEX_AVX2_256, #define P_00 1 #define P_66 (1 << PREFIX_DATA) #define P_F3 (1 << PREFIX_REPZ) #define P_F2 (1 << PREFIX_REPNZ) #define p_00 .valid_prefix = P_00, #define p_66 .valid_prefix = P_66, #define p_f3 .valid_prefix = P_F3, #define p_f2 .valid_prefix = P_F2, #define p_00_66 .valid_prefix = P_00 | P_66, #define p_00_f3 .valid_prefix = P_00 | P_F3, #define p_66_f2 .valid_prefix = P_66 | P_F2, #define p_00_66_f3 .valid_prefix = P_00 | P_66 | P_F3, #define p_66_f3_f2 .valid_prefix = P_66 | P_F3 | P_F2, #define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2, #define UNKNOWN_OPCODE ((X86OpEntry) {}) static uint8_t get_modrm(DisasContext *s, CPUX86State *env) { if (!s->has_modrm) { s->modrm = x86_ldub_code(env, s); s->has_modrm = true; } return s->modrm; } static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4]) { if (s->prefix & PREFIX_REPNZ) { return &entries[3]; } else if (s->prefix & PREFIX_REPZ) { return &entries[2]; } else if (s->prefix & PREFIX_DATA) { return &entries[1]; } else { return &entries[0]; } } static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry group15_reg[8] = { [0] = X86_OP_ENTRYw(RDxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3), [1] = X86_OP_ENTRYw(RDxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3), [2] = X86_OP_ENTRYr(WRxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3 zextT0), [3] = X86_OP_ENTRYr(WRxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3 zextT0), [5] = X86_OP_ENTRY0(LFENCE, cpuid(SSE2) p_00), [6] = X86_OP_ENTRY0(MFENCE, cpuid(SSE2) p_00), [7] = X86_OP_ENTRY0(SFENCE, cpuid(SSE2) p_00), }; static const X86OpEntry group15_mem[8] = { [0] = X86_OP_ENTRYw(FXSAVE, M,y, cpuid(FXSR) p_00), [1] = X86_OP_ENTRYr(FXRSTOR, M,y, cpuid(FXSR) p_00), [2] = X86_OP_ENTRYr(LDMXCSR, E,d, vex5 chk(VEX128) p_00), [3] = X86_OP_ENTRYw(STMXCSR, E,d, vex5 chk(VEX128) p_00), [4] = X86_OP_ENTRYw(XSAVE, M,y, cpuid(XSAVE) p_00), [5] = X86_OP_ENTRYr(XRSTOR, M,y, cpuid(XSAVE) p_00), [6] = X86_OP_ENTRYw(XSAVEOPT, M,b, cpuid(XSAVEOPT) p_00), [7] = X86_OP_ENTRYw(NOP, M,b, cpuid(CLFLUSH) p_00), }; static const X86OpEntry group15_mem_66[8] = { [6] = X86_OP_ENTRYw(NOP, M,b, cpuid(CLWB)), [7] = X86_OP_ENTRYw(NOP, M,b, cpuid(CLFLUSHOPT)), }; uint8_t modrm = get_modrm(s, env); int op = (modrm >> 3) & 7; if ((modrm >> 6) == 3) { *entry = group15_reg[op]; } else if (s->prefix & PREFIX_DATA) { *entry = group15_mem_66[op]; } else { *entry = group15_mem[op]; } } static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86GenFunc group17_gen[8] = { NULL, gen_BLSR, gen_BLSMSK, gen_BLSI, }; int op = (get_modrm(s, env) >> 3) & 7; entry->gen = group17_gen[op]; } static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_group12[8] = { {}, {}, X86_OP_ENTRY3(PSRLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, X86_OP_ENTRY3(PSRAW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, X86_OP_ENTRY3(PSLLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, }; int op = (get_modrm(s, env) >> 3) & 7; *entry = opcodes_group12[op]; } static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_group13[8] = { {}, {}, X86_OP_ENTRY3(PSRLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, X86_OP_ENTRY3(PSRAD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, X86_OP_ENTRY3(PSLLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, }; int op = (get_modrm(s, env) >> 3) & 7; *entry = opcodes_group13[op]; } static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_group14[8] = { /* grp14 */ {}, {}, X86_OP_ENTRY3(PSRLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), {}, {}, X86_OP_ENTRY3(PSLLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), }; int op = (get_modrm(s, env) >> 3) & 7; *entry = opcodes_group14[op]; } static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F6F[4] = { X86_OP_ENTRY3(MOVDQ, P,q, None,None, Q,q, vex5 mmx), /* movq */ X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1), /* movdqa */ X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* movdqu */ {}, }; *entry = *decode_by_prefix(s, opcodes_0F6F); } static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry pshufw[4] = { X86_OP_ENTRY3(PSHUFW, P,q, Q,q, I,b, vex4 mmx), X86_OP_ENTRY3(PSHUFD, V,x, W,x, I,b, vex4 avx2_256), X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256), X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256), }; *entry = *decode_by_prefix(s, pshufw); } static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { if (!(s->prefix & PREFIX_VEX)) { entry->gen = gen_EMMS; } else if (!s->vex_l) { entry->gen = gen_VZEROUPPER; entry->vex_class = 8; } else { entry->gen = gen_VZEROALL; entry->vex_class = 8; } } static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F78[4] = { {}, X86_OP_ENTRY3(EXTRQ_i, V,x, None,None, I,w, cpuid(SSE4A)), /* AMD extension */ {}, X86_OP_ENTRY3(INSERTQ_i, V,x, U,x, I,w, cpuid(SSE4A)), /* AMD extension */ }; *entry = *decode_by_prefix(s, opcodes_0F78); } static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { if (s->prefix & PREFIX_REPNZ) { entry->gen = gen_INSERTQ_r; /* AMD extension */ } else if (s->prefix & PREFIX_DATA) { entry->gen = gen_EXTRQ_r; /* AMD extension */ } else { entry->gen = NULL; }; } static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F7E[4] = { X86_OP_ENTRY3(MOVD_from, E,y, None,None, P,y, vex5 mmx), X86_OP_ENTRY3(MOVD_from, E,y, None,None, V,y, vex5), X86_OP_ENTRY3(MOVQ, V,x, None,None, W,q, vex5), /* wrong dest Vy on SDM! */ {}, }; *entry = *decode_by_prefix(s, opcodes_0F7E); } static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F7F[4] = { X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex5 mmx), /* movq */ X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1), /* movdqa */ X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4_unal), /* movdqu */ {}, }; *entry = *decode_by_prefix(s, opcodes_0F7F); } static void decode_0FB8(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry popcnt = X86_OP_ENTRYwr(POPCNT, G,v, E,v, cpuid(POPCNT) zextT0); if (s->prefix & PREFIX_REPZ) { *entry = popcnt; } else { memset(entry, 0, sizeof(*entry)); } } static void decode_0FBC(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { /* For BSF, pass 2op as the third operand so that we can use zextT0 */ static const X86OpEntry opcodes_0FBC[4] = { X86_OP_ENTRY3(BSF, G,v, E,v, 2op,v, zextT0), X86_OP_ENTRY3(BSF, G,v, E,v, 2op,v, zextT0), /* 0x66 */ X86_OP_ENTRYwr(TZCNT, G,v, E,v, zextT0), /* 0xf3 */ X86_OP_ENTRY3(BSF, G,v, E,v, 2op,v, zextT0), /* 0xf2 */ }; if (!(s->cpuid_ext3_features & CPUID_EXT3_ABM)) { *entry = opcodes_0FBC[0]; } else { *entry = *decode_by_prefix(s, opcodes_0FBC); } } static void decode_0FBD(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { /* For BSR, pass 2op as the third operand so that we can use zextT0 */ static const X86OpEntry opcodes_0FBD[4] = { X86_OP_ENTRY3(BSR, G,v, E,v, 2op,v, zextT0), X86_OP_ENTRY3(BSR, G,v, E,v, 2op,v, zextT0), /* 0x66 */ X86_OP_ENTRYwr(LZCNT, G,v, E,v, zextT0), /* 0xf3 */ X86_OP_ENTRY3(BSR, G,v, E,v, 2op,v, zextT0), /* 0xf2 */ }; if (!(s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1)) { *entry = opcodes_0FBD[0]; } else { *entry = *decode_by_prefix(s, opcodes_0FBD); } } static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry movq[4] = { {}, X86_OP_ENTRY3(MOVQ, W,x, None, None, V,q, vex5), X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q), X86_OP_ENTRY3(MOVq_dq, P,q, None, None, U,q), }; *entry = *decode_by_prefix(s, movq); } static const X86OpEntry opcodes_0F38_00toEF[240] = { [0x00] = X86_OP_ENTRY3(PSHUFB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x01] = X86_OP_ENTRY3(PHADDW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x02] = X86_OP_ENTRY3(PHADDD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x03] = X86_OP_ENTRY3(PHADDSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x05] = X86_OP_ENTRY3(PHSUBW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x06] = X86_OP_ENTRY3(PHSUBD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x07] = X86_OP_ENTRY3(PHSUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x10] = X86_OP_ENTRY2(PBLENDVB, V,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x, W,xh, vex11 chk(W0) cpuid(F16C) p_66), [0x14] = X86_OP_ENTRY2(BLENDVPS, V,x, W,x, vex4 cpuid(SSE41) p_66), [0x15] = X86_OP_ENTRY2(BLENDVPD, V,x, W,x, vex4 cpuid(SSE41) p_66), /* Listed incorrectly as type 4 */ [0x16] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), /* vpermps */ [0x17] = X86_OP_ENTRY3(VPTEST, None,None, V,x, W,x, vex4 cpuid(SSE41) p_66), /* * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed * as 128-bit only in 2-17. */ [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), /* Same as PMOVSX. */ [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x36] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), [0x37] = X86_OP_ENTRY3(PCMPGTQ, V,x, H,x, W,x, vex4 cpuid(SSE42) avx2_256 p_66), [0x40] = X86_OP_ENTRY3(PMULLD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66), /* Listed incorrectly as type 4 */ [0x45] = X86_OP_ENTRY3(VPSRLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), [0x46] = X86_OP_ENTRY3(VPSRAV, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX2) p_66), [0x47] = X86_OP_ENTRY3(VPSLLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */ [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */ [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vgatherdps/d */ [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vgatherqps/d */ /* Should be exception type 2 but they do not have legacy SSE equivalents? */ [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x08] = X86_OP_ENTRY3(PSIGNB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x09] = X86_OP_ENTRY3(PSIGNW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x0a] = X86_OP_ENTRY3(PSIGND, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x0b] = X86_OP_ENTRY3(PMULHRSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), /* Listed incorrectly as type 4 */ [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_00_66), [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), [0x0e] = X86_OP_ENTRY3(VTESTPS, None,None, V,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), [0x0f] = X86_OP_ENTRY3(VTESTPD, None,None, V,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), [0x18] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastss */ [0x19] = X86_OP_ENTRY3(VPBROADCASTQ, V,qq, None,None, W,q, vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastsd */ [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX) p_66), [0x1c] = X86_OP_ENTRY3(PABSB, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x1d] = X86_OP_ENTRY3(PABSW, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x1e] = X86_OP_ENTRY3(PABSD, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x28] = X86_OP_ENTRY3(PMULDQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x29] = X86_OP_ENTRY3(PCMPEQQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x2a] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */ [0x2b] = X86_OP_ENTRY3(VPACKUSDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x2c] = X86_OP_ENTRY3(VMASKMOVPS, V,x, H,x, WM,x, vex6 chk(W0) cpuid(AVX) p_66), [0x2d] = X86_OP_ENTRY3(VMASKMOVPD, V,x, H,x, WM,x, vex6 chk(W0) cpuid(AVX) p_66), /* Incorrectly listed as Mx,Hx,Vx in the manual */ [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x, H,x, vex6 chk(W0) cpuid(AVX) p_66), [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x, H,x, vex6 chk(W0) cpuid(AVX) p_66), [0x38] = X86_OP_ENTRY3(PMINSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x39] = X86_OP_ENTRY3(PMINSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3a] = X86_OP_ENTRY3(PMINUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3b] = X86_OP_ENTRY3(PMINUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3c] = X86_OP_ENTRY3(PMAXSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3d] = X86_OP_ENTRY3(PMAXSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3e] = X86_OP_ENTRY3(PMAXUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3f] = X86_OP_ENTRY3(PMAXUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), /* VPBROADCASTQ not listed as W0 in table 2-16 */ [0x58] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 chk(W0) cpuid(AVX2) p_66), [0x59] = X86_OP_ENTRY3(VPBROADCASTQ, V,x, None,None, W,q, vex6 chk(W0) cpuid(AVX2) p_66), [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX2) p_66), [0x78] = X86_OP_ENTRY3(VPBROADCASTB, V,x, None,None, W,b, vex6 chk(W0) cpuid(AVX2) p_66), [0x79] = X86_OP_ENTRY3(VPBROADCASTW, V,x, None,None, W,w, vex6 chk(W0) cpuid(AVX2) p_66), [0x8c] = X86_OP_ENTRY3(VPMASKMOV, V,x, H,x, WM,x, vex6 cpuid(AVX2) p_66), [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x, V,x, H,x, vex6 cpuid(AVX2) p_66), /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */ [0x98] = X86_OP_ENTRY3(VFMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x99] = X86_OP_ENTRY3(VFMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9a] = X86_OP_ENTRY3(VFMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xa8] = X86_OP_ENTRY3(VFMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xa9] = X86_OP_ENTRY3(VFMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xaa] = X86_OP_ENTRY3(VFMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xab] = X86_OP_ENTRY3(VFMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xb8] = X86_OP_ENTRY3(VFMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xb9] = X86_OP_ENTRY3(VFMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xba] = X86_OP_ENTRY3(VFMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xc8] = X86_OP_ENTRY2(SHA1NEXTE, V,dq, W,dq, cpuid(SHA_NI)), [0xc9] = X86_OP_ENTRY2(SHA1MSG1, V,dq, W,dq, cpuid(SHA_NI)), [0xca] = X86_OP_ENTRY2(SHA1MSG2, V,dq, W,dq, cpuid(SHA_NI)), [0xcb] = X86_OP_ENTRY2(SHA256RNDS2, V,dq, W,dq, cpuid(SHA_NI)), [0xcc] = X86_OP_ENTRY2(SHA256MSG1, V,dq, W,dq, cpuid(SHA_NI)), [0xcd] = X86_OP_ENTRY2(SHA256MSG2, V,dq, W,dq, cpuid(SHA_NI)), [0xdb] = X86_OP_ENTRY3(VAESIMC, V,dq, None,None, W,dq, vex4 cpuid(AES) p_66), [0xdc] = X86_OP_ENTRY3(VAESENC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), [0xde] = X86_OP_ENTRY3(VAESDEC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), /* * REG selects srcdest2 operand, VEX.vvvv selects src3. VEX class not found * in manual, assumed to be 13 from the VEX.L0 constraint. */ [0xe0] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xe1] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xe2] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xe3] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xe4] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xe5] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xe6] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xe7] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xe8] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xe9] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xea] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xeb] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xec] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xed] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xee] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), [0xef] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), }; /* five rows for no prefix, 66, F3, F2, 66+F2 */ static const X86OpEntry opcodes_0F38_F0toFF[16][5] = { [0] = { X86_OP_ENTRYwr(MOVBE, G,y, M,y, cpuid(MOVBE)), X86_OP_ENTRYwr(MOVBE, G,w, M,w, cpuid(MOVBE)), {}, X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), }, [1] = { X86_OP_ENTRYwr(MOVBE, M,y, G,y, cpuid(MOVBE)), X86_OP_ENTRYwr(MOVBE, M,w, G,w, cpuid(MOVBE)), {}, X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)), X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)), }, [2] = { X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)), {}, {}, {}, {}, }, [3] = { X86_OP_GROUP3(group17, B,y, None,None, E,y, vex13 cpuid(BMI1)), {}, {}, {}, {}, }, [5] = { X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)), {}, X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)), X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)), {}, }, [6] = { {}, X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)), X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)), X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)), {}, }, [7] = { X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)), X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)), X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 sextT0 cpuid(BMI1)), X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)), {}, }, }; static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { *b = x86_ldub_code(env, s); if (*b < 0xf0) { *entry = opcodes_0F38_00toEF[*b]; } else { int row = 0; if (s->prefix & PREFIX_REPZ) { /* The REPZ (F3) prefix has priority over 66 */ row = 2; } else { row += s->prefix & PREFIX_REPNZ ? 3 : 0; row += s->prefix & PREFIX_DATA ? 1 : 0; } *entry = opcodes_0F38_F0toFF[*b & 15][row]; } } static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66), vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d, vex5 cpuid(SSE41) p_66); int modrm = get_modrm(s, env); *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem; } static const X86OpEntry opcodes_0F3A[256] = { /* * These are VEX-only, but incorrectly listed in the manual as exception type 4. * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256 * only. */ [0x00] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 chk(W1) cpuid(AVX2) p_66), [0x01] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 chk(W1) cpuid(AVX2) p_66), /* VPERMPD */ [0x02] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX2) p_66), /* VPBLENDD */ [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x, W,x, I,b, vex6 chk(W0) cpuid(AVX) p_66), [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x, W,x, I,b, vex6 chk(W0) cpuid(AVX) p_66), [0x06] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66), [0x14] = X86_OP_ENTRY3(PEXTRB, E,b, V,dq, I,b, vex5 cpuid(SSE41) op0_Rd p_66), [0x15] = X86_OP_ENTRY3(PEXTRW, E,w, V,dq, I,b, vex5 cpuid(SSE41) op0_Rd p_66), [0x16] = X86_OP_ENTRY3(PEXTR, E,y, V,dq, I,b, vex5 cpuid(SSE41) p_66), [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d, V,dq, I,b, vex5 cpuid(SSE41) p_66), [0x1d] = X86_OP_ENTRY3(VCVTPS2PH, W,xh, V,x, I,b, vex11 chk(W0) cpuid(F16C) p_66), [0x20] = X86_OP_ENTRY4(PINSRB, V,dq, H,dq, E,b, vex5 cpuid(SSE41) op2_Ry p_66), [0x21] = X86_OP_GROUP0(VINSERTPS), [0x22] = X86_OP_ENTRY4(PINSR, V,dq, H,dq, E,y, vex5 cpuid(SSE41) p_66), [0x40] = X86_OP_ENTRY4(VDDPS, V,x, H,x, W,x, vex2 cpuid(SSE41) p_66), [0x41] = X86_OP_ENTRY4(VDDPD, V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66), [0x42] = X86_OP_ENTRY4(VMPSADBW, V,x, H,x, W,x, vex2 cpuid(SSE41) avx2_256 p_66), [0x44] = X86_OP_ENTRY4(PCLMULQDQ, V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66), [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), [0x60] = X86_OP_ENTRY4(PCMPESTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), [0x61] = X86_OP_ENTRY4(PCMPESTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), [0x62] = X86_OP_ENTRY4(PCMPISTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), [0x63] = X86_OP_ENTRY4(PCMPISTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), [0x08] = X86_OP_ENTRY3(VROUNDPS, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), [0x09] = X86_OP_ENTRY3(VROUNDPD, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), /* * Not listed as four operand in the manual. Also writes and reads 128-bits * from the first two operands due to the V operand picking higher entries of * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect. * For other unary operations such as VSQRTSx this is hidden by the "REPScalar" * value of vex_special, because the table lists the operand types of VSQRTPx. */ [0x0a] = X86_OP_ENTRY4(VROUNDSS, V,x, H,x, W,ss, vex3 cpuid(SSE41) p_66), [0x0b] = X86_OP_ENTRY4(VROUNDSD, V,x, H,x, W,sd, vex3 cpuid(SSE41) p_66), [0x0c] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), [0x0d] = X86_OP_ENTRY4(VBLENDPD, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), [0x0e] = X86_OP_ENTRY4(VPBLENDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x0f] = X86_OP_ENTRY4(PALIGNR, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x18] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66), [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 chk(W0) cpuid(AVX) p_66), [0x38] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 chk(W0) cpuid(AVX2) p_66), /* Listed incorrectly as type 4 */ [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66 avx2_256), [0xcc] = X86_OP_ENTRY3(SHA1RNDS4, V,dq, W,dq, I,b, cpuid(SHA_NI)), [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b, vex4 cpuid(AES) p_66), [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2), }; static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { *b = x86_ldub_code(env, s); *entry = opcodes_0F3A[*b]; } /* * There are some mistakes in the operands in the manual, and the load/store/register * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and * efficiency of implementation rather than copying what the manual says. * * In particular: * * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b, * but this is not mentioned in the tables. * * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high * quadword of the V operand. */ static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F10_reg[4] = { X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ X86_OP_ENTRY3(VMOVSS, V,x, H,x, W,x, vex5), X86_OP_ENTRY3(VMOVLPx, V,x, H,x, W,x, vex5), /* MOVSD */ }; static const X86OpEntry opcodes_0F10_mem[4] = { X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ X86_OP_ENTRY3(VMOVSS_ld, V,x, H,x, M,ss, vex5), X86_OP_ENTRY3(VMOVSD_ld, V,x, H,x, M,sd, vex5), }; if ((get_modrm(s, env) >> 6) == 3) { *entry = *decode_by_prefix(s, opcodes_0F10_reg); } else { *entry = *decode_by_prefix(s, opcodes_0F10_mem); } } static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F11_reg[4] = { X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */ X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */ X86_OP_ENTRY3(VMOVSS, W,x, H,x, V,x, vex5), X86_OP_ENTRY3(VMOVLPx, W,x, H,x, V,q, vex5), /* MOVSD */ }; static const X86OpEntry opcodes_0F11_mem[4] = { X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */ X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */ X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex5), X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex5), /* MOVSD */ }; if ((get_modrm(s, env) >> 6) == 3) { *entry = *decode_by_prefix(s, opcodes_0F11_reg); } else { *entry = *decode_by_prefix(s, opcodes_0F11_mem); } } static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F12_mem[4] = { /* * Use dq for operand for compatibility with gen_MOVSD and * to allow VEX128 only. */ X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPS */ X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPD */ X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, WM,q, vex5 cpuid(SSE3)), /* qq if VEX.256 */ }; static const X86OpEntry opcodes_0F12_reg[4] = { X86_OP_ENTRY3(VMOVHLPS, V,dq, H,dq, U,dq, vex7), X86_OP_ENTRY3(VMOVLPx, W,x, H,x, U,q, vex5), /* MOVLPD */ X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, U,x, vex5 cpuid(SSE3)), }; if ((get_modrm(s, env) >> 6) == 3) { *entry = *decode_by_prefix(s, opcodes_0F12_reg); } else { *entry = *decode_by_prefix(s, opcodes_0F12_mem); if ((s->prefix & PREFIX_REPNZ) && s->vex_l) { entry->s2 = X86_SIZE_qq; } } } static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F16_mem[4] = { /* * Operand 1 technically only reads the low 64 bits, but uses dq so that * it is easier to check for op0 == op1 in an endianness-neutral manner. */ X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPS */ X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPD */ X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), {}, }; static const X86OpEntry opcodes_0F16_reg[4] = { /* Same as above, operand 1 could be Hq if it wasn't for big-endian. */ X86_OP_ENTRY3(VMOVLHPS, V,dq, H,dq, U,q, vex7), X86_OP_ENTRY3(VMOVHPx, V,x, H,x, U,x, vex5), /* MOVHPD */ X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), {}, }; if ((get_modrm(s, env) >> 6) == 3) { *entry = *decode_by_prefix(s, opcodes_0F16_reg); } else { *entry = *decode_by_prefix(s, opcodes_0F16_mem); } } static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F2A[4] = { X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), }; *entry = *decode_by_prefix(s, opcodes_0F2A); } static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F2B[4] = { X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPS */ X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPD */ /* AMD extensions */ X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */ X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */ }; *entry = *decode_by_prefix(s, opcodes_0F2B); } static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F2C[4] = { /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit. */ X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,q), X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,dq), X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,ss, vex3), X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,sd, vex3), }; *entry = *decode_by_prefix(s, opcodes_0F2C); } static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F2D[4] = { /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit. */ X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,q), X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,dq), X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,ss, vex3), X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,sd, vex3), }; *entry = *decode_by_prefix(s, opcodes_0F2D); } static void decode_VxCOMISx(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { /* * VUCOMISx and VCOMISx are different and use no-prefix and 0x66 for SS and SD * respectively. Scalar values usually are associated with 0xF2 and 0xF3, for * which X86_VEX_REPScalar exists, but here it has to be decoded by hand. */ entry->s1 = entry->s2 = (s->prefix & PREFIX_DATA ? X86_SIZE_sd : X86_SIZE_ss); entry->gen = (*b == 0x2E ? gen_VUCOMI : gen_VCOMI); } static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) { entry->op1 = X86_TYPE_None; entry->s1 = X86_SIZE_None; } switch (*b) { case 0x51: entry->gen = gen_VSQRT; break; case 0x52: entry->gen = gen_VRSQRT; break; case 0x53: entry->gen = gen_VRCP; break; } } static void decode_0F5A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F5A[4] = { X86_OP_ENTRY2(VCVTPS2PD, V,x, W,xh, vex2), /* VCVTPS2PD */ X86_OP_ENTRY2(VCVTPD2PS, V,x, W,x, vex2), /* VCVTPD2PS */ X86_OP_ENTRY3(VCVTSS2SD, V,x, H,x, W,x, vex2_rep3), /* VCVTSS2SD */ X86_OP_ENTRY3(VCVTSD2SS, V,x, H,x, W,x, vex2_rep3), /* VCVTSD2SS */ }; *entry = *decode_by_prefix(s, opcodes_0F5A); } static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F5B[4] = { X86_OP_ENTRY2(VCVTDQ2PS, V,x, W,x, vex2), X86_OP_ENTRY2(VCVTPS2DQ, V,x, W,x, vex2), X86_OP_ENTRY2(VCVTTPS2DQ, V,x, W,x, vex2), {}, }; *entry = *decode_by_prefix(s, opcodes_0F5B); } static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0FE6[4] = { {}, X86_OP_ENTRY2(VCVTTPD2DQ, V,x, W,x, vex2), X86_OP_ENTRY2(VCVTDQ2PD, V,x, W,x, vex5), X86_OP_ENTRY2(VCVTPD2DQ, V,x, W,x, vex2), }; *entry = *decode_by_prefix(s, opcodes_0FE6); } /* * These ignore the mod bits (assume (modrm&0xc0)==0xc0), so group the * pre-decode tweak here for all MOVs from/to CR and DR. * * AMD documentation (24594.pdf) and testing of Intel 386 and 486 * processors all show that the mod bits are assumed to be 1's, * regardless of actual values. */ static void decode_MOV_CR_DR(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { /* */ get_modrm(s, env); s->modrm |= 0xC0; entry->gen = gen_MOV; } static const X86OpEntry opcodes_0F[256] = { [0x02] = X86_OP_ENTRYwr(LAR, G,v, E,w, chk(prot)), [0x03] = X86_OP_ENTRYwr(LSL, G,v, E,w, chk(prot)), [0x05] = X86_OP_ENTRY0(SYSCALL, chk(o64_intel)), [0x06] = X86_OP_ENTRY0(CLTS, chk(cpl0) svm(WRITE_CR0)), [0x07] = X86_OP_ENTRY0(SYSRET, chk3(o64_intel, prot, cpl0)), [0x10] = X86_OP_GROUP0(0F10), [0x11] = X86_OP_GROUP0(0F11), [0x12] = X86_OP_GROUP0(0F12), [0x13] = X86_OP_ENTRY3(VMOVLPx_st, M,q, None,None, V,q, vex5 p_00_66), [0x14] = X86_OP_ENTRY3(VUNPCKLPx, V,x, H,x, W,x, vex4 p_00_66), [0x15] = X86_OP_ENTRY3(VUNPCKHPx, V,x, H,x, W,x, vex4 p_00_66), [0x16] = X86_OP_GROUP0(0F16), /* Incorrectly listed as Mq,Vq in the manual */ [0x17] = X86_OP_ENTRY3(VMOVHPx_st, M,q, None,None, V,dq, vex5 p_00_66), /* * Incorrectly listed as using "d" operand type in the manual. In reality * there's no 16-bit version (like y) and it does not use REX.W (like d64). */ [0x20] = X86_OP_GROUPwr(MOV_CR_DR, R,y_d64, C,y_d64, chk(cpl0) svm(READ_CR0)), [0x21] = X86_OP_GROUPwr(MOV_CR_DR, R,y_d64, D,y_d64, chk(cpl0) svm(READ_DR0)), [0x22] = X86_OP_GROUPwr(MOV_CR_DR, C,y_d64, R,y_d64, zextT0 chk(cpl0) svm(WRITE_CR0)), [0x23] = X86_OP_GROUPwr(MOV_CR_DR, D,y_d64, R,y_d64, zextT0 chk(cpl0) svm(WRITE_DR0)), [0x30] = X86_OP_ENTRY0(WRMSR, chk(cpl0)), [0x31] = X86_OP_ENTRY0(RDTSC), [0x32] = X86_OP_ENTRY0(RDMSR, chk(cpl0)), [0x33] = X86_OP_ENTRY0(RDPMC), [0x34] = X86_OP_ENTRY0(SYSENTER, chk2(i64_amd, prot_or_vm86)), [0x35] = X86_OP_ENTRY0(SYSEXIT, chk3(i64_amd, prot, cpl0)), [0x40] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x41] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x42] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x43] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x44] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x45] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x46] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x47] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x50] = X86_OP_ENTRY3(MOVMSK, G,y, None,None, U,x, vex7 p_00_66), [0x51] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* sqrtps */ [0x52] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rsqrtps */ [0x53] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rcpps */ [0x54] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 p_00_66), /* vand */ [0x55] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 p_00_66), /* vandn */ [0x56] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 p_00_66), /* vor */ [0x57] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 p_00_66), /* vxor */ [0x60] = X86_OP_ENTRY3(PUNPCKLBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x61] = X86_OP_ENTRY3(PUNPCKLWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x62] = X86_OP_ENTRY3(PUNPCKLDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x63] = X86_OP_ENTRY3(PACKSSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x64] = X86_OP_ENTRY3(PCMPGTB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x65] = X86_OP_ENTRY3(PCMPGTW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x66] = X86_OP_ENTRY3(PCMPGTD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x67] = X86_OP_ENTRY3(PACKUSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x70] = X86_OP_GROUP0(0F70), [0x71] = X86_OP_GROUP0(group12), [0x72] = X86_OP_GROUP0(group13), [0x73] = X86_OP_GROUP0(group14), [0x74] = X86_OP_ENTRY3(PCMPEQB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x75] = X86_OP_ENTRY3(PCMPEQW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x76] = X86_OP_ENTRY3(PCMPEQD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x77] = X86_OP_GROUP0(0F77), [0x80] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x81] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x82] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x83] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x84] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x85] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x86] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x87] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x90] = X86_OP_ENTRYw(SETcc, E,b), [0x91] = X86_OP_ENTRYw(SETcc, E,b), [0x92] = X86_OP_ENTRYw(SETcc, E,b), [0x93] = X86_OP_ENTRYw(SETcc, E,b), [0x94] = X86_OP_ENTRYw(SETcc, E,b), [0x95] = X86_OP_ENTRYw(SETcc, E,b), [0x96] = X86_OP_ENTRYw(SETcc, E,b), [0x97] = X86_OP_ENTRYw(SETcc, E,b), [0xa0] = X86_OP_ENTRYr(PUSH, FS, w), [0xa1] = X86_OP_ENTRYw(POP, FS, w), [0xa2] = X86_OP_ENTRY0(CPUID), [0xa4] = X86_OP_ENTRY4(SHLD, E,v, 2op,v, G,v), [0xa5] = X86_OP_ENTRY3(SHLD, E,v, 2op,v, G,v), [0xb0] = X86_OP_ENTRY2(CMPXCHG,E,b, G,b, lock), [0xb1] = X86_OP_ENTRY2(CMPXCHG,E,v, G,v, lock), [0xb2] = X86_OP_ENTRY3(LSS, G,v, EM,p, None, None), [0xb4] = X86_OP_ENTRY3(LFS, G,v, EM,p, None, None), [0xb5] = X86_OP_ENTRY3(LGS, G,v, EM,p, None, None), [0xb6] = X86_OP_ENTRY3(MOV, G,v, E,b, None, None, zextT0), /* MOVZX */ [0xb7] = X86_OP_ENTRY3(MOV, G,v, E,w, None, None, zextT0), /* MOVZX */ [0xc0] = X86_OP_ENTRY2(XADD, E,b, G,b, lock), [0xc1] = X86_OP_ENTRY2(XADD, E,v, G,v, lock), [0xc2] = X86_OP_ENTRY4(VCMP, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0xc3] = X86_OP_ENTRY3(MOV, EM,y,G,y, None,None, cpuid(SSE2)), /* MOVNTI */ [0xc4] = X86_OP_ENTRY4(PINSRW, V,dq,H,dq,E,w, vex5 mmx p_00_66), [0xc5] = X86_OP_ENTRY3(PEXTRW, G,d, U,dq,I,b, vex5 mmx p_00_66), [0xc6] = X86_OP_ENTRY4(VSHUF, V,x, H,x, W,x, vex4 p_00_66), [0xd0] = X86_OP_ENTRY3(VADDSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), [0xd1] = X86_OP_ENTRY3(PSRLW_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd2] = X86_OP_ENTRY3(PSRLD_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd3] = X86_OP_ENTRY3(PSRLQ_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd4] = X86_OP_ENTRY3(PADDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd5] = X86_OP_ENTRY3(PMULLW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd6] = X86_OP_GROUP0(0FD6), [0xd7] = X86_OP_ENTRY3(PMOVMSKB, G,d, None,None, U,x, vex7 mmx avx2_256 p_00_66), [0xe0] = X86_OP_ENTRY3(PAVGB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe1] = X86_OP_ENTRY3(PSRAW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), [0xe2] = X86_OP_ENTRY3(PSRAD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), [0xe3] = X86_OP_ENTRY3(PAVGW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe4] = X86_OP_ENTRY3(PMULHUW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe5] = X86_OP_ENTRY3(PMULHW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe6] = X86_OP_GROUP0(0FE6), [0xe7] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */ [0xf0] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex4_unal cpuid(SSE3) p_f2), /* LDDQU */ [0xf1] = X86_OP_ENTRY3(PSLLW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), [0xf2] = X86_OP_ENTRY3(PSLLD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), [0xf3] = X86_OP_ENTRY3(PSLLQ_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), [0xf4] = X86_OP_ENTRY3(PMULUDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xf5] = X86_OP_ENTRY3(PMADDWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xf6] = X86_OP_ENTRY3(PSADBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xf7] = X86_OP_ENTRY3(MASKMOV, None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66), [0x08] = X86_OP_ENTRY0(NOP, svm(INVD)), [0x09] = X86_OP_ENTRY0(NOP, svm(WBINVD)), [0x0b] = X86_OP_ENTRY0(UD), /* UD2 */ [0x0d] = X86_OP_ENTRY1(NOP, M,v), /* 3DNow! prefetch */ [0x0e] = X86_OP_ENTRY0(EMMS, cpuid(3DNOW)), /* femms */ /* * 3DNow!'s opcode byte comes *after* modrm and displacements, making it * more like an Ib operand. Dispatch to the right helper in a single gen_* * function. */ [0x0f] = X86_OP_ENTRY3(3dnow, P,q, Q,q, I,b, cpuid(3DNOW)), [0x18] = X86_OP_ENTRY1(NOP, nop,v), /* prefetch/reserved NOP */ [0x19] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ [0x1c] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ [0x1d] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ [0x1e] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ [0x1f] = X86_OP_ENTRY1(NOP, nop,v), /* NOP/reserved NOP */ [0x28] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1 p_00_66), /* MOVAPS */ [0x29] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 p_00_66), /* MOVAPS */ [0x2A] = X86_OP_GROUP0(0F2A), [0x2B] = X86_OP_GROUP0(0F2B), [0x2C] = X86_OP_GROUP0(0F2C), [0x2D] = X86_OP_GROUP0(0F2D), [0x2E] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VUCOMISS/SD */ [0x2F] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VCOMISS/SD */ [0x38] = X86_OP_GROUP0(0F38), [0x3a] = X86_OP_GROUP0(0F3A), [0x48] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x49] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x4a] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x4b] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x4c] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x4d] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x4e] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x4f] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), [0x58] = X86_OP_ENTRY3(VADD, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x59] = X86_OP_ENTRY3(VMUL, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x5a] = X86_OP_GROUP0(0F5A), [0x5b] = X86_OP_GROUP0(0F5B), [0x5c] = X86_OP_ENTRY3(VSUB, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x5d] = X86_OP_ENTRY3(VMIN, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x5e] = X86_OP_ENTRY3(VDIV, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x5f] = X86_OP_ENTRY3(VMAX, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x68] = X86_OP_ENTRY3(PUNPCKHBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x69] = X86_OP_ENTRY3(PUNPCKHWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x6b] = X86_OP_ENTRY3(PACKSSDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), [0x6e] = X86_OP_ENTRY3(MOVD_to, V,x, None,None, E,y, vex5 mmx p_00_66), /* wrong dest Vy on SDM! */ [0x6f] = X86_OP_GROUP0(0F6F), [0x78] = X86_OP_GROUP0(0F78), [0x79] = X86_OP_GROUP2(0F79, V,x, U,x, cpuid(SSE4A)), [0x7c] = X86_OP_ENTRY3(VHADD, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), [0x7d] = X86_OP_ENTRY3(VHSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), [0x7e] = X86_OP_GROUP0(0F7E), [0x7f] = X86_OP_GROUP0(0F7F), [0x88] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x89] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x8a] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x8b] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x8c] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x8d] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x8e] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x8f] = X86_OP_ENTRYr(Jcc, J,z_f64), [0x98] = X86_OP_ENTRYw(SETcc, E,b), [0x99] = X86_OP_ENTRYw(SETcc, E,b), [0x9a] = X86_OP_ENTRYw(SETcc, E,b), [0x9b] = X86_OP_ENTRYw(SETcc, E,b), [0x9c] = X86_OP_ENTRYw(SETcc, E,b), [0x9d] = X86_OP_ENTRYw(SETcc, E,b), [0x9e] = X86_OP_ENTRYw(SETcc, E,b), [0x9f] = X86_OP_ENTRYw(SETcc, E,b), [0xa8] = X86_OP_ENTRYr(PUSH, GS, w), [0xa9] = X86_OP_ENTRYw(POP, GS, w), [0xaa] = X86_OP_ENTRY0(RSM, chk(smm) svm(RSM)), [0xac] = X86_OP_ENTRY4(SHRD, E,v, 2op,v, G,v), [0xad] = X86_OP_ENTRY3(SHRD, E,v, 2op,v, G,v), [0xae] = X86_OP_GROUP0(group15), /* * It's slightly more efficient to put Ev operand in T0 and allow gen_IMUL3 * to assume sextT0. Multiplication is commutative anyway. */ [0xaf] = X86_OP_ENTRY3(IMUL3, G,v, E,v, 2op,v, sextT0), [0xb8] = X86_OP_GROUP0(0FB8), /* decoded as modrm, which is visible as a difference between page fault and #UD */ [0xb9] = X86_OP_ENTRYr(UD, nop,v), /* UD1 */ [0xbc] = X86_OP_GROUP0(0FBC), [0xbd] = X86_OP_GROUP0(0FBD), [0xbe] = X86_OP_ENTRY3(MOV, G,v, E,b, None, None, sextT0), /* MOVSX */ [0xbf] = X86_OP_ENTRY3(MOV, G,v, E,w, None, None, sextT0), /* MOVSX */ [0xc8] = X86_OP_ENTRY1(BSWAP, LoBits,y), [0xc9] = X86_OP_ENTRY1(BSWAP, LoBits,y), [0xca] = X86_OP_ENTRY1(BSWAP, LoBits,y), [0xcb] = X86_OP_ENTRY1(BSWAP, LoBits,y), [0xcc] = X86_OP_ENTRY1(BSWAP, LoBits,y), [0xcd] = X86_OP_ENTRY1(BSWAP, LoBits,y), [0xce] = X86_OP_ENTRY1(BSWAP, LoBits,y), [0xcf] = X86_OP_ENTRY1(BSWAP, LoBits,y), /* Incorrectly missing from 2-17 */ [0xd8] = X86_OP_ENTRY3(PSUBUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd9] = X86_OP_ENTRY3(PSUBUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xda] = X86_OP_ENTRY3(PMINUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xdb] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xdc] = X86_OP_ENTRY3(PADDUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xdd] = X86_OP_ENTRY3(PADDUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xde] = X86_OP_ENTRY3(PMAXUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xdf] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe8] = X86_OP_ENTRY3(PSUBSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe9] = X86_OP_ENTRY3(PSUBSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xea] = X86_OP_ENTRY3(PMINSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xeb] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xec] = X86_OP_ENTRY3(PADDSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xed] = X86_OP_ENTRY3(PADDSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xee] = X86_OP_ENTRY3(PMAXSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xef] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xf8] = X86_OP_ENTRY3(PSUBB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xf9] = X86_OP_ENTRY3(PSUBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xfa] = X86_OP_ENTRY3(PSUBD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xfb] = X86_OP_ENTRY3(PSUBQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xfc] = X86_OP_ENTRY3(PADDB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xfd] = X86_OP_ENTRY3(PADDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xfe] = X86_OP_ENTRY3(PADDD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xff] = X86_OP_ENTRYr(UD, nop,v), /* UD0 */ }; static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { *entry = opcodes_0F[*b]; } static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { *b = x86_ldub_code(env, s); do_decode_0F(s, env, entry, b); } static void decode_63(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry arpl = X86_OP_ENTRY2(ARPL, E,w, G,w, chk(prot)); static const X86OpEntry mov = X86_OP_ENTRY3(MOV, G,v, E,v, None, None); static const X86OpEntry movsxd = X86_OP_ENTRY3(MOV, G,v, E,d, None, None, sextT0); if (!CODE64(s)) { *entry = arpl; } else if (REX_W(s)) { *entry = movsxd; } else { *entry = mov; } } static void decode_group1(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86GenFunc group1_gen[8] = { gen_ADD, gen_OR, gen_ADC, gen_SBB, gen_AND, gen_SUB, gen_XOR, gen_SUB, }; int op = (get_modrm(s, env) >> 3) & 7; entry->gen = group1_gen[op]; if (op == 7) { /* prevent writeback for CMP */ entry->op1 = entry->op0; entry->op0 = X86_TYPE_None; entry->s0 = X86_SIZE_None; } else { entry->special = X86_SPECIAL_HasLock; } } static void decode_group1A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { int op = (get_modrm(s, env) >> 3) & 7; if (op != 0) { /* could be XOP prefix too */ *entry = UNKNOWN_OPCODE; } else { entry->gen = gen_POP; /* The address must use the value of ESP after the pop. */ s->popl_esp_hack = 1 << mo_pushpop(s, s->dflag); } } static void decode_group2(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86GenFunc group2_gen[8] = { gen_ROL, gen_ROR, gen_RCL, gen_RCR, gen_SHL, gen_SHR, gen_SHL /* SAL, undocumented */, gen_SAR, }; int op = (get_modrm(s, env) >> 3) & 7; entry->gen = group2_gen[op]; if (op == 7) { entry->special = X86_SPECIAL_SExtT0; } else { entry->special = X86_SPECIAL_ZExtT0; } } static void decode_group3(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_grp3[16] = { /* 0xf6 */ [0x00] = X86_OP_ENTRYrr(AND, E,b, I,b), [0x02] = X86_OP_ENTRY1(NOT, E,b, lock), [0x03] = X86_OP_ENTRY1(NEG, E,b, lock), [0x04] = X86_OP_ENTRYrr(MUL, E,b, 0,b, zextT0), [0x05] = X86_OP_ENTRYrr(IMUL,E,b, 0,b, sextT0), [0x06] = X86_OP_ENTRYr(DIV, E,b), [0x07] = X86_OP_ENTRYr(IDIV, E,b), /* 0xf7 */ [0x08] = X86_OP_ENTRYrr(AND, E,v, I,z), [0x0a] = X86_OP_ENTRY1(NOT, E,v, lock), [0x0b] = X86_OP_ENTRY1(NEG, E,v, lock), [0x0c] = X86_OP_ENTRYrr(MUL, E,v, 0,v, zextT0), [0x0d] = X86_OP_ENTRYrr(IMUL,E,v, 0,v, sextT0), [0x0e] = X86_OP_ENTRYr(DIV, E,v), [0x0f] = X86_OP_ENTRYr(IDIV, E,v), }; int w = (*b & 1); int reg = (get_modrm(s, env) >> 3) & 7; *entry = opcodes_grp3[(w << 3) | reg]; } static void decode_group4_5(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_grp4_5[16] = { /* 0xfe */ [0x00] = X86_OP_ENTRY1(INC, E,b, lock), [0x01] = X86_OP_ENTRY1(DEC, E,b, lock), /* 0xff */ [0x08] = X86_OP_ENTRY1(INC, E,v, lock), [0x09] = X86_OP_ENTRY1(DEC, E,v, lock), [0x0a] = X86_OP_ENTRYr(CALL_m, E,f64, zextT0), [0x0b] = X86_OP_ENTRYr(CALLF_m, M,p), [0x0c] = X86_OP_ENTRYr(JMP_m, E,f64, zextT0), [0x0d] = X86_OP_ENTRYr(JMPF_m, M,p), [0x0e] = X86_OP_ENTRYr(PUSH, E,f64), }; int w = (*b & 1); int reg = (get_modrm(s, env) >> 3) & 7; *entry = opcodes_grp4_5[(w << 3) | reg]; } static void decode_group11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { int op = (get_modrm(s, env) >> 3) & 7; if (op != 0) { *entry = UNKNOWN_OPCODE; } else { entry->gen = gen_MOV; } } static void decode_90(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static X86OpEntry pause = X86_OP_ENTRY0(PAUSE, svm(PAUSE)); static X86OpEntry nop = X86_OP_ENTRY0(NOP); static X86OpEntry xchg_ax = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v); if (REX_B(s)) { *entry = xchg_ax; } else { *entry = (s->prefix & PREFIX_REPZ) ? pause : nop; } } static const X86OpEntry opcodes_root[256] = { [0x00] = X86_OP_ENTRY2(ADD, E,b, G,b, lock), [0x01] = X86_OP_ENTRY2(ADD, E,v, G,v, lock), [0x02] = X86_OP_ENTRY2(ADD, G,b, E,b, lock), [0x03] = X86_OP_ENTRY2(ADD, G,v, E,v, lock), [0x04] = X86_OP_ENTRY2(ADD, 0,b, I,b, lock), /* AL, Ib */ [0x05] = X86_OP_ENTRY2(ADD, 0,v, I,z, lock), /* rAX, Iz */ [0x06] = X86_OP_ENTRYr(PUSH, ES, w, chk(i64)), [0x07] = X86_OP_ENTRYw(POP, ES, w, chk(i64)), [0x10] = X86_OP_ENTRY2(ADC, E,b, G,b, lock), [0x11] = X86_OP_ENTRY2(ADC, E,v, G,v, lock), [0x12] = X86_OP_ENTRY2(ADC, G,b, E,b, lock), [0x13] = X86_OP_ENTRY2(ADC, G,v, E,v, lock), [0x14] = X86_OP_ENTRY2(ADC, 0,b, I,b, lock), /* AL, Ib */ [0x15] = X86_OP_ENTRY2(ADC, 0,v, I,z, lock), /* rAX, Iz */ [0x16] = X86_OP_ENTRYr(PUSH, SS, w, chk(i64)), [0x17] = X86_OP_ENTRYw(POP, SS, w, chk(i64)), [0x20] = X86_OP_ENTRY2(AND, E,b, G,b, lock), [0x21] = X86_OP_ENTRY2(AND, E,v, G,v, lock), [0x22] = X86_OP_ENTRY2(AND, G,b, E,b, lock), [0x23] = X86_OP_ENTRY2(AND, G,v, E,v, lock), [0x24] = X86_OP_ENTRY2(AND, 0,b, I,b, lock), /* AL, Ib */ [0x25] = X86_OP_ENTRY2(AND, 0,v, I,z, lock), /* rAX, Iz */ [0x26] = {}, [0x27] = X86_OP_ENTRY0(DAA, chk(i64)), [0x30] = X86_OP_ENTRY2(XOR, E,b, G,b, lock), [0x31] = X86_OP_ENTRY2(XOR, E,v, G,v, lock), [0x32] = X86_OP_ENTRY2(XOR, G,b, E,b, lock), [0x33] = X86_OP_ENTRY2(XOR, G,v, E,v, lock), [0x34] = X86_OP_ENTRY2(XOR, 0,b, I,b, lock), /* AL, Ib */ [0x35] = X86_OP_ENTRY2(XOR, 0,v, I,z, lock), /* rAX, Iz */ [0x36] = {}, [0x37] = X86_OP_ENTRY0(AAA, chk(i64)), [0x40] = X86_OP_ENTRY1(INC, 0,v, chk(i64)), [0x41] = X86_OP_ENTRY1(INC, 1,v, chk(i64)), [0x42] = X86_OP_ENTRY1(INC, 2,v, chk(i64)), [0x43] = X86_OP_ENTRY1(INC, 3,v, chk(i64)), [0x44] = X86_OP_ENTRY1(INC, 4,v, chk(i64)), [0x45] = X86_OP_ENTRY1(INC, 5,v, chk(i64)), [0x46] = X86_OP_ENTRY1(INC, 6,v, chk(i64)), [0x47] = X86_OP_ENTRY1(INC, 7,v, chk(i64)), [0x50] = X86_OP_ENTRYr(PUSH, LoBits,d64), [0x51] = X86_OP_ENTRYr(PUSH, LoBits,d64), [0x52] = X86_OP_ENTRYr(PUSH, LoBits,d64), [0x53] = X86_OP_ENTRYr(PUSH, LoBits,d64), [0x54] = X86_OP_ENTRYr(PUSH, LoBits,d64), [0x55] = X86_OP_ENTRYr(PUSH, LoBits,d64), [0x56] = X86_OP_ENTRYr(PUSH, LoBits,d64), [0x57] = X86_OP_ENTRYr(PUSH, LoBits,d64), [0x60] = X86_OP_ENTRY0(PUSHA, chk(i64)), [0x61] = X86_OP_ENTRY0(POPA, chk(i64)), [0x62] = X86_OP_ENTRYrr(BOUND, G,v, M,a, chk(i64)), [0x63] = X86_OP_GROUP0(63), [0x64] = {}, [0x65] = {}, [0x66] = {}, [0x67] = {}, [0x70] = X86_OP_ENTRYr(Jcc, J,b), [0x71] = X86_OP_ENTRYr(Jcc, J,b), [0x72] = X86_OP_ENTRYr(Jcc, J,b), [0x73] = X86_OP_ENTRYr(Jcc, J,b), [0x74] = X86_OP_ENTRYr(Jcc, J,b), [0x75] = X86_OP_ENTRYr(Jcc, J,b), [0x76] = X86_OP_ENTRYr(Jcc, J,b), [0x77] = X86_OP_ENTRYr(Jcc, J,b), [0x80] = X86_OP_GROUP2(group1, E,b, I,b), [0x81] = X86_OP_GROUP2(group1, E,v, I,z), [0x82] = X86_OP_GROUP2(group1, E,b, I,b, chk(i64)), [0x83] = X86_OP_GROUP2(group1, E,v, I,b), [0x84] = X86_OP_ENTRYrr(AND, E,b, G,b), [0x85] = X86_OP_ENTRYrr(AND, E,v, G,v), [0x86] = X86_OP_ENTRY2(XCHG, E,b, G,b, xchg), [0x87] = X86_OP_ENTRY2(XCHG, E,v, G,v, xchg), [0x90] = X86_OP_GROUP0(90), [0x91] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), [0x92] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), [0x93] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), [0x94] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), [0x95] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), [0x96] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), [0x97] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), [0xA0] = X86_OP_ENTRY3(MOV, 0,b, O,b, None, None), /* AL, Ob */ [0xA1] = X86_OP_ENTRY3(MOV, 0,v, O,v, None, None), /* rAX, Ov */ [0xA2] = X86_OP_ENTRY3(MOV, O,b, 0,b, None, None), /* Ob, AL */ [0xA3] = X86_OP_ENTRY3(MOV, O,v, 0,v, None, None), /* Ov, rAX */ [0xA4] = X86_OP_ENTRYrr(MOVS, Y,b, X,b), [0xA5] = X86_OP_ENTRYrr(MOVS, Y,v, X,v), [0xA6] = X86_OP_ENTRYrr(CMPS, Y,b, X,b), [0xA7] = X86_OP_ENTRYrr(CMPS, Y,v, X,v), [0xB0] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), [0xB1] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), [0xB2] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), [0xB3] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), [0xB4] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), [0xB5] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), [0xB6] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), [0xB7] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), [0xC0] = X86_OP_GROUP2(group2, E,b, I,b), [0xC1] = X86_OP_GROUP2(group2, E,v, I,b), [0xC2] = X86_OP_ENTRYr(RET, I,w), [0xC3] = X86_OP_ENTRY0(RET), [0xC4] = X86_OP_ENTRY3(LES, G,z, EM,p, None, None, chk(i64)), [0xC5] = X86_OP_ENTRY3(LDS, G,z, EM,p, None, None, chk(i64)), [0xC6] = X86_OP_GROUP3(group11, E,b, I,b, None, None), /* reg=000b */ [0xC7] = X86_OP_GROUP3(group11, E,v, I,z, None, None), /* reg=000b */ [0xD0] = X86_OP_GROUP1(group2, E,b), [0xD1] = X86_OP_GROUP1(group2, E,v), [0xD2] = X86_OP_GROUP2(group2, E,b, 1,b), /* CL */ [0xD3] = X86_OP_GROUP2(group2, E,v, 1,b), /* CL */ [0xD4] = X86_OP_ENTRY2(AAM, 0,w, I,b), [0xD5] = X86_OP_ENTRY2(AAD, 0,w, I,b), [0xD6] = X86_OP_ENTRYw(SALC, 0,b), [0xD7] = X86_OP_ENTRY1(XLAT, 0,b, zextT0), /* AL read/written */ [0xE0] = X86_OP_ENTRYr(LOOPNE, J,b), /* implicit: CX with aflag size */ [0xE1] = X86_OP_ENTRYr(LOOPE, J,b), /* implicit: CX with aflag size */ [0xE2] = X86_OP_ENTRYr(LOOP, J,b), /* implicit: CX with aflag size */ [0xE3] = X86_OP_ENTRYr(JCXZ, J,b), /* implicit: CX with aflag size */ [0xE4] = X86_OP_ENTRYwr(IN, 0,b, I_unsigned,b), /* AL */ [0xE5] = X86_OP_ENTRYwr(IN, 0,v, I_unsigned,b), /* AX/EAX */ [0xE6] = X86_OP_ENTRYrr(OUT, 0,b, I_unsigned,b), /* AL */ [0xE7] = X86_OP_ENTRYrr(OUT, 0,v, I_unsigned,b), /* AX/EAX */ [0xF1] = X86_OP_ENTRY0(INT1, svm(ICEBP)), [0xF4] = X86_OP_ENTRY0(HLT, chk(cpl0) svm(HLT)), [0xF5] = X86_OP_ENTRY0(CMC), [0xF6] = X86_OP_GROUP1(group3, E,b), [0xF7] = X86_OP_GROUP1(group3, E,v), [0x08] = X86_OP_ENTRY2(OR, E,b, G,b, lock), [0x09] = X86_OP_ENTRY2(OR, E,v, G,v, lock), [0x0A] = X86_OP_ENTRY2(OR, G,b, E,b, lock), [0x0B] = X86_OP_ENTRY2(OR, G,v, E,v, lock), [0x0C] = X86_OP_ENTRY2(OR, 0,b, I,b, lock), /* AL, Ib */ [0x0D] = X86_OP_ENTRY2(OR, 0,v, I,z, lock), /* rAX, Iz */ [0x0E] = X86_OP_ENTRYr(PUSH, CS, w, chk(i64)), [0x0F] = X86_OP_GROUP0(0F), [0x18] = X86_OP_ENTRY2(SBB, E,b, G,b, lock), [0x19] = X86_OP_ENTRY2(SBB, E,v, G,v, lock), [0x1A] = X86_OP_ENTRY2(SBB, G,b, E,b, lock), [0x1B] = X86_OP_ENTRY2(SBB, G,v, E,v, lock), [0x1C] = X86_OP_ENTRY2(SBB, 0,b, I,b, lock), /* AL, Ib */ [0x1D] = X86_OP_ENTRY2(SBB, 0,v, I,z, lock), /* rAX, Iz */ [0x1E] = X86_OP_ENTRYr(PUSH, DS, w, chk(i64)), [0x1F] = X86_OP_ENTRYw(POP, DS, w, chk(i64)), [0x28] = X86_OP_ENTRY2(SUB, E,b, G,b, lock), [0x29] = X86_OP_ENTRY2(SUB, E,v, G,v, lock), [0x2A] = X86_OP_ENTRY2(SUB, G,b, E,b, lock), [0x2B] = X86_OP_ENTRY2(SUB, G,v, E,v, lock), [0x2C] = X86_OP_ENTRY2(SUB, 0,b, I,b, lock), /* AL, Ib */ [0x2D] = X86_OP_ENTRY2(SUB, 0,v, I,z, lock), /* rAX, Iz */ [0x2E] = {}, [0x2F] = X86_OP_ENTRY0(DAS, chk(i64)), [0x38] = X86_OP_ENTRYrr(SUB, E,b, G,b), [0x39] = X86_OP_ENTRYrr(SUB, E,v, G,v), [0x3A] = X86_OP_ENTRYrr(SUB, G,b, E,b), [0x3B] = X86_OP_ENTRYrr(SUB, G,v, E,v), [0x3C] = X86_OP_ENTRYrr(SUB, 0,b, I,b), /* AL, Ib */ [0x3D] = X86_OP_ENTRYrr(SUB, 0,v, I,z), /* rAX, Iz */ [0x3E] = {}, [0x3F] = X86_OP_ENTRY0(AAS, chk(i64)), [0x48] = X86_OP_ENTRY1(DEC, 0,v, chk(i64)), [0x49] = X86_OP_ENTRY1(DEC, 1,v, chk(i64)), [0x4A] = X86_OP_ENTRY1(DEC, 2,v, chk(i64)), [0x4B] = X86_OP_ENTRY1(DEC, 3,v, chk(i64)), [0x4C] = X86_OP_ENTRY1(DEC, 4,v, chk(i64)), [0x4D] = X86_OP_ENTRY1(DEC, 5,v, chk(i64)), [0x4E] = X86_OP_ENTRY1(DEC, 6,v, chk(i64)), [0x4F] = X86_OP_ENTRY1(DEC, 7,v, chk(i64)), [0x58] = X86_OP_ENTRYw(POP, LoBits,d64), [0x59] = X86_OP_ENTRYw(POP, LoBits,d64), [0x5A] = X86_OP_ENTRYw(POP, LoBits,d64), [0x5B] = X86_OP_ENTRYw(POP, LoBits,d64), [0x5C] = X86_OP_ENTRYw(POP, LoBits,d64), [0x5D] = X86_OP_ENTRYw(POP, LoBits,d64), [0x5E] = X86_OP_ENTRYw(POP, LoBits,d64), [0x5F] = X86_OP_ENTRYw(POP, LoBits,d64), [0x68] = X86_OP_ENTRYr(PUSH, I,z), [0x69] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,z, sextT0), [0x6A] = X86_OP_ENTRYr(PUSH, I,b), [0x6B] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,b, sextT0), [0x6C] = X86_OP_ENTRYrr(INS, Y,b, 2,w), /* DX */ [0x6D] = X86_OP_ENTRYrr(INS, Y,z, 2,w), /* DX */ [0x6E] = X86_OP_ENTRYrr(OUTS, X,b, 2,w), /* DX */ [0x6F] = X86_OP_ENTRYrr(OUTS, X,z, 2,w), /* DX */ [0x78] = X86_OP_ENTRYr(Jcc, J,b), [0x79] = X86_OP_ENTRYr(Jcc, J,b), [0x7A] = X86_OP_ENTRYr(Jcc, J,b), [0x7B] = X86_OP_ENTRYr(Jcc, J,b), [0x7C] = X86_OP_ENTRYr(Jcc, J,b), [0x7D] = X86_OP_ENTRYr(Jcc, J,b), [0x7E] = X86_OP_ENTRYr(Jcc, J,b), [0x7F] = X86_OP_ENTRYr(Jcc, J,b), [0x88] = X86_OP_ENTRYwr(MOV, E,b, G,b), [0x89] = X86_OP_ENTRYwr(MOV, E,v, G,v), [0x8A] = X86_OP_ENTRYwr(MOV, G,b, E,b), [0x8B] = X86_OP_ENTRYwr(MOV, G,v, E,v), /* Missing in Table A-2: memory destination is always 16-bit. */ [0x8C] = X86_OP_ENTRYwr(MOV, E,v, S,w, op0_Mw), [0x8D] = X86_OP_ENTRYwr(LEA, G,v, M,v, nolea), [0x8E] = X86_OP_ENTRYwr(MOV, S,w, E,w), [0x8F] = X86_OP_GROUPw(group1A, E,d64), [0x98] = X86_OP_ENTRY1(CBW, 0,v), /* rAX */ [0x99] = X86_OP_ENTRYwr(CWD, 2,v, 0,v), /* rDX, rAX */ [0x9A] = X86_OP_ENTRYrr(CALLF, I_unsigned,p, I_unsigned,w, chk(i64)), [0x9B] = X86_OP_ENTRY0(WAIT), [0x9C] = X86_OP_ENTRY0(PUSHF, chk(vm86_iopl) svm(PUSHF)), [0x9D] = X86_OP_ENTRY0(POPF, chk(vm86_iopl) svm(POPF)), [0x9E] = X86_OP_ENTRY0(SAHF), [0x9F] = X86_OP_ENTRY0(LAHF), [0xA8] = X86_OP_ENTRYrr(AND, 0,b, I,b), /* AL, Ib */ [0xA9] = X86_OP_ENTRYrr(AND, 0,v, I,z), /* rAX, Iz */ [0xAA] = X86_OP_ENTRYwr(STOS, Y,b, 0,b), [0xAB] = X86_OP_ENTRYwr(STOS, Y,v, 0,v), /* Manual writeback because REP LODS (!) has to write EAX/RAX after every LODS. */ [0xAC] = X86_OP_ENTRYr(LODS, X,b), [0xAD] = X86_OP_ENTRYr(LODS, X,v), [0xAE] = X86_OP_ENTRYrr(SCAS, 0,b, Y,b), [0xAF] = X86_OP_ENTRYrr(SCAS, 0,v, Y,v), [0xB8] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), [0xB9] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), [0xBA] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), [0xBB] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), [0xBC] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), [0xBD] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), [0xBE] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), [0xBF] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), [0xC8] = X86_OP_ENTRYrr(ENTER, I,w, I,b), [0xC9] = X86_OP_ENTRY1(LEAVE, A,d64), [0xCA] = X86_OP_ENTRYr(RETF, I,w), [0xCB] = X86_OP_ENTRY0(RETF), [0xCC] = X86_OP_ENTRY0(INT3), [0xCD] = X86_OP_ENTRYr(INT, I,b, chk(vm86_iopl)), [0xCE] = X86_OP_ENTRY0(INTO), [0xCF] = X86_OP_ENTRY0(IRET, chk(vm86_iopl) svm(IRET)), [0xE8] = X86_OP_ENTRYr(CALL, J,z_f64), [0xE9] = X86_OP_ENTRYr(JMP, J,z_f64), [0xEA] = X86_OP_ENTRYrr(JMPF, I_unsigned,p, I_unsigned,w, chk(i64)), [0xEB] = X86_OP_ENTRYr(JMP, J,b), [0xEC] = X86_OP_ENTRYwr(IN, 0,b, 2,w), /* AL, DX */ [0xED] = X86_OP_ENTRYwr(IN, 0,v, 2,w), /* AX/EAX, DX */ [0xEE] = X86_OP_ENTRYrr(OUT, 0,b, 2,w), /* DX, AL */ [0xEF] = X86_OP_ENTRYrr(OUT, 0,v, 2,w), /* DX, AX/EAX */ [0xF8] = X86_OP_ENTRY0(CLC), [0xF9] = X86_OP_ENTRY0(STC), [0xFA] = X86_OP_ENTRY0(CLI, chk(iopl)), [0xFB] = X86_OP_ENTRY0(STI, chk(iopl)), [0xFC] = X86_OP_ENTRY0(CLD), [0xFD] = X86_OP_ENTRY0(STD), [0xFE] = X86_OP_GROUP1(group4_5, E,b), [0xFF] = X86_OP_GROUP1(group4_5, E,v), }; #undef mmx #undef vex1 #undef vex2 #undef vex3 #undef vex4 #undef vex4_unal #undef vex5 #undef vex6 #undef vex7 #undef vex8 #undef vex11 #undef vex12 #undef vex13 /* * Decode the fixed part of the opcode and place the last * in b. */ static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { *entry = opcodes_root[*b]; } static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, X86DecodedOp *op) { int modrm = get_modrm(s, env); if ((modrm >> 6) == 3) { op->n = (modrm & 7); if (op->unit != X86_OP_MMX) { op->n |= REX_B(s); } } else { op->has_ea = true; op->n = -1; decode->mem = gen_lea_modrm_0(env, s, modrm, decode->e.vex_class == 12); } return modrm; } static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot) { switch (size) { case X86_SIZE_b: /* byte */ *ot = MO_8; return true; case X86_SIZE_d: /* 32-bit */ case X86_SIZE_ss: /* SSE/AVX scalar single precision */ *ot = MO_32; return true; case X86_SIZE_p: /* Far pointer, return offset size */ case X86_SIZE_s: /* Descriptor, return offset size */ case X86_SIZE_v: /* 16/32/64-bit, based on operand size */ *ot = s->dflag; return true; case X86_SIZE_pi: /* MMX */ case X86_SIZE_q: /* 64-bit */ case X86_SIZE_sd: /* SSE/AVX scalar double precision */ *ot = MO_64; return true; case X86_SIZE_w: /* 16-bit */ *ot = MO_16; return true; case X86_SIZE_y: /* 32/64-bit, based on operand size */ *ot = s->dflag == MO_16 ? MO_32 : s->dflag; return true; case X86_SIZE_y_d64: /* Full (not 16-bit) register access */ *ot = CODE64(s) ? MO_64 : MO_32; return true; case X86_SIZE_z: /* 16-bit for 16-bit operand size, else 32-bit */ *ot = s->dflag == MO_16 ? MO_16 : MO_32; return true; case X86_SIZE_z_f64: /* 32-bit for 32-bit operand size or 64-bit mode, else 16-bit */ *ot = !CODE64(s) && s->dflag == MO_16 ? MO_16 : MO_32; return true; case X86_SIZE_dq: /* SSE/AVX 128-bit */ if (e->special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { *ot = MO_64; return true; } if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) { return false; } *ot = MO_128; return true; case X86_SIZE_qq: /* AVX 256-bit */ if (!s->vex_l) { return false; } *ot = MO_256; return true; case X86_SIZE_x: /* 128/256-bit, based on operand size */ if (e->special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { *ot = MO_64; return true; } /* fall through */ case X86_SIZE_ps: /* SSE/AVX packed single precision */ case X86_SIZE_pd: /* SSE/AVX packed double precision */ *ot = s->vex_l ? MO_256 : MO_128; return true; case X86_SIZE_xh: /* SSE/AVX packed half register */ *ot = s->vex_l ? MO_128 : MO_64; return true; case X86_SIZE_d64: /* Default to 64-bit in 64-bit mode */ *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag; return true; case X86_SIZE_f64: /* Ignore size override prefix in 64-bit mode */ *ot = CODE64(s) ? MO_64 : s->dflag; return true; default: *ot = -1; return true; } } static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, X86DecodedOp *op, X86OpType type, int b) { int modrm; switch (type) { case X86_TYPE_None: /* Implicit or absent */ case X86_TYPE_A: /* Implicit */ case X86_TYPE_F: /* EFLAGS/RFLAGS */ case X86_TYPE_X: /* string source */ case X86_TYPE_Y: /* string destination */ break; case X86_TYPE_B: /* VEX.vvvv selects a GPR */ op->unit = X86_OP_INT; op->n = s->vex_v; break; case X86_TYPE_C: /* REG in the modrm byte selects a control register */ op->unit = X86_OP_CR; op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s); if (op->n == 0 && (s->prefix & PREFIX_LOCK) && (s->cpuid_ext3_features & CPUID_EXT3_CR8LEG)) { op->n = 8; s->prefix &= ~PREFIX_LOCK; } if (op->n != 0 && op->n != 2 && op->n != 3 && op->n != 4 && op->n != 8) { return false; } if (decode->e.intercept) { decode->e.intercept += op->n; } break; case X86_TYPE_D: /* REG in the modrm byte selects a debug register */ op->unit = X86_OP_DR; op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s); if (op->n >= 8) { /* * illegal opcode. The DR4 and DR5 case is checked in the generated * code instead, to save on hflags bits. */ return false; } if (decode->e.intercept) { decode->e.intercept += op->n; } break; case X86_TYPE_G: /* REG in the modrm byte selects a GPR */ op->unit = X86_OP_INT; goto get_reg; case X86_TYPE_S: /* reg selects a segment register */ op->unit = X86_OP_SEG; goto get_reg; case X86_TYPE_P: op->unit = X86_OP_MMX; goto get_reg; case X86_TYPE_V: /* reg in the modrm byte selects an XMM/YMM register */ if (decode->e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { op->unit = X86_OP_MMX; } else { op->unit = X86_OP_SSE; } get_reg: op->n = ((get_modrm(s, env) >> 3) & 7); if (op->unit != X86_OP_MMX) { op->n |= REX_R(s); } break; case X86_TYPE_E: /* ALU modrm operand */ op->unit = X86_OP_INT; goto get_modrm; case X86_TYPE_Q: /* MMX modrm operand */ op->unit = X86_OP_MMX; goto get_modrm; case X86_TYPE_W: /* XMM/YMM modrm operand */ if (decode->e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { op->unit = X86_OP_MMX; } else { op->unit = X86_OP_SSE; } goto get_modrm; case X86_TYPE_N: /* R/M in the modrm byte selects an MMX register */ op->unit = X86_OP_MMX; goto get_modrm_reg; case X86_TYPE_U: /* R/M in the modrm byte selects an XMM/YMM register */ if (decode->e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { op->unit = X86_OP_MMX; } else { op->unit = X86_OP_SSE; } goto get_modrm_reg; case X86_TYPE_R: /* R/M in the modrm byte selects a register */ op->unit = X86_OP_INT; get_modrm_reg: modrm = get_modrm(s, env); if ((modrm >> 6) != 3) { return false; } goto get_modrm; case X86_TYPE_WM: /* modrm byte selects an XMM/YMM memory operand */ op->unit = X86_OP_SSE; goto get_modrm_mem; case X86_TYPE_EM: /* modrm byte selects an ALU memory operand */ op->unit = X86_OP_INT; /* fall through */ case X86_TYPE_M: /* modrm byte selects a memory operand */ get_modrm_mem: modrm = get_modrm(s, env); if ((modrm >> 6) == 3) { return false; } /* fall through */ case X86_TYPE_nop: /* modrm operand decoded but not fetched */ get_modrm: decode_modrm(s, env, decode, op); break; case X86_TYPE_O: /* Absolute address encoded in the instruction */ op->unit = X86_OP_INT; op->has_ea = true; op->n = -1; decode->mem = (AddressParts) { .def_seg = R_DS, .base = -1, .index = -1, .disp = insn_get_addr(env, s, s->aflag) }; break; case X86_TYPE_H: /* For AVX, VEX.vvvv selects an XMM/YMM register */ if ((s->prefix & PREFIX_VEX)) { op->unit = X86_OP_SSE; op->n = s->vex_v; break; } if (op == &decode->op[0]) { /* shifts place the destination in VEX.vvvv, use modrm */ return decode_op(s, env, decode, op, decode->e.op1, b); } else { return decode_op(s, env, decode, op, decode->e.op0, b); } case X86_TYPE_I: /* Immediate */ case X86_TYPE_J: /* Relative offset for a jump */ op->unit = X86_OP_IMM; decode->immediate = op->imm = insn_get_signed(env, s, op->ot); break; case X86_TYPE_I_unsigned: /* Immediate */ op->unit = X86_OP_IMM; decode->immediate = op->imm = insn_get(env, s, op->ot); break; case X86_TYPE_L: /* The upper 4 bits of the immediate select a 128-bit register */ op->n = insn_get(env, s, op->ot) >> 4; break; case X86_TYPE_2op: *op = decode->op[0]; break; case X86_TYPE_LoBits: op->n = (b & 7) | REX_B(s); op->unit = X86_OP_INT; break; case X86_TYPE_0 ... X86_TYPE_7: op->n = type - X86_TYPE_0; op->unit = X86_OP_INT; break; case X86_TYPE_ES ... X86_TYPE_GS: op->n = type - X86_TYPE_ES; op->unit = X86_OP_SEG; break; } return true; } static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e) { uint16_t sse_prefixes; if (!e->valid_prefix) { return true; } if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66. */ s->prefix &= ~PREFIX_DATA; } /* Now, either zero or one bit is set in sse_prefixes. */ sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA); return e->valid_prefix & (1 << sse_prefixes); } static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func, X86DecodedInsn *decode) { X86OpEntry *e = &decode->e; decode_func(s, env, e, &decode->b); while (e->is_decode) { e->is_decode = false; e->decode(s, env, e, &decode->b); } if (!validate_sse_prefix(s, e)) { return false; } /* First compute size of operands in order to initialize s->rip_offset. */ if (e->op0 != X86_TYPE_None) { if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) { return false; } if (e->op0 == X86_TYPE_I) { s->rip_offset += 1 << decode->op[0].ot; } } if (e->op1 != X86_TYPE_None) { if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) { return false; } if (e->op1 == X86_TYPE_I) { s->rip_offset += 1 << decode->op[1].ot; } } if (e->op2 != X86_TYPE_None) { if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) { return false; } if (e->op2 == X86_TYPE_I) { s->rip_offset += 1 << decode->op[2].ot; } } if (e->op3 != X86_TYPE_None) { /* * A couple instructions actually use the extra immediate byte for an Lx * register operand; those are handled in the gen_* functions as one off. */ assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b); s->rip_offset += 1; } if (e->op0 != X86_TYPE_None && !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) { return false; } if (e->op1 != X86_TYPE_None && !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) { return false; } if (e->op2 != X86_TYPE_None && !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) { return false; } if (e->op3 != X86_TYPE_None) { decode->immediate = insn_get_signed(env, s, MO_8); } return true; } static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid) { switch (cpuid) { case X86_FEAT_None: return true; case X86_FEAT_CMOV: return (s->cpuid_features & CPUID_CMOV); case X86_FEAT_CLFLUSH: return (s->cpuid_features & CPUID_CLFLUSH); case X86_FEAT_FXSR: return (s->cpuid_features & CPUID_FXSR); case X86_FEAT_F16C: return (s->cpuid_ext_features & CPUID_EXT_F16C); case X86_FEAT_FMA: return (s->cpuid_ext_features & CPUID_EXT_FMA); case X86_FEAT_MOVBE: return (s->cpuid_ext_features & CPUID_EXT_MOVBE); case X86_FEAT_PCLMULQDQ: return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ); case X86_FEAT_POPCNT: return (s->cpuid_ext_features & CPUID_EXT_POPCNT); case X86_FEAT_SSE: return (s->cpuid_features & CPUID_SSE); case X86_FEAT_SSE2: return (s->cpuid_features & CPUID_SSE2); case X86_FEAT_SSE3: return (s->cpuid_ext_features & CPUID_EXT_SSE3); case X86_FEAT_SSSE3: return (s->cpuid_ext_features & CPUID_EXT_SSSE3); case X86_FEAT_SSE41: return (s->cpuid_ext_features & CPUID_EXT_SSE41); case X86_FEAT_SSE42: return (s->cpuid_ext_features & CPUID_EXT_SSE42); case X86_FEAT_AES: if (!(s->cpuid_ext_features & CPUID_EXT_AES)) { return false; } else if (!(s->prefix & PREFIX_VEX)) { return true; } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) { return false; } else { return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES); } case X86_FEAT_AVX: return (s->cpuid_ext_features & CPUID_EXT_AVX); case X86_FEAT_XSAVE: return (s->cpuid_ext_features & CPUID_EXT_XSAVE); case X86_FEAT_3DNOW: return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW); case X86_FEAT_SSE4A: return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A); case X86_FEAT_ADX: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX); case X86_FEAT_BMI1: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1); case X86_FEAT_BMI2: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2); case X86_FEAT_AVX2: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2); case X86_FEAT_CLFLUSHOPT: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_CLFLUSHOPT); case X86_FEAT_CLWB: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_CLWB); case X86_FEAT_FSGSBASE: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_FSGSBASE); case X86_FEAT_SHA_NI: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SHA_NI); case X86_FEAT_CMPCCXADD: return (s->cpuid_7_1_eax_features & CPUID_7_1_EAX_CMPCCXADD); case X86_FEAT_XSAVEOPT: return (s->cpuid_xsave_features & CPUID_XSAVE_XSAVEOPT); } g_assert_not_reached(); } static bool validate_vex(DisasContext *s, X86DecodedInsn *decode) { X86OpEntry *e = &decode->e; switch (e->vex_special) { case X86_VEX_REPScalar: /* * Instructions which differ between 00/66 and F2/F3 in the * exception classification and the size of the memory operand. */ assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4); if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { e->vex_class = e->vex_class < 4 ? 3 : 5; if (s->vex_l) { goto illegal; } assert(decode->e.s2 == X86_SIZE_x); if (decode->op[2].has_ea) { decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64; } } break; case X86_VEX_SSEUnaligned: /* handled in sse_needs_alignment. */ break; case X86_VEX_AVX2_256: if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) { goto illegal; } } switch (e->vex_class) { case 0: if (s->prefix & PREFIX_VEX) { goto illegal; } return true; case 1: case 2: case 3: case 4: case 5: case 7: if (s->prefix & PREFIX_VEX) { if (!(s->flags & HF_AVX_EN_MASK)) { goto illegal; } } else if (e->special != X86_SPECIAL_MMX || (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { if (!(s->flags & HF_OSFXSR_MASK)) { goto illegal; } } break; case 12: /* Must have a VSIB byte and no address prefix. */ assert(s->has_modrm); if ((s->modrm & 7) != 4 || s->aflag == MO_16) { goto illegal; } /* Check no overlap between registers. */ if (!decode->op[0].has_ea && (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) { goto illegal; } assert(!decode->op[1].has_ea); if (decode->op[1].n == decode->mem.index) { goto illegal; } if (!decode->op[2].has_ea && (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) { goto illegal; } /* fall through */ case 6: case 11: if (!(s->prefix & PREFIX_VEX)) { goto illegal; } if (!(s->flags & HF_AVX_EN_MASK)) { goto illegal; } break; case 8: /* Non-VEX case handled in decode_0F77. */ assert(s->prefix & PREFIX_VEX); if (!(s->flags & HF_AVX_EN_MASK)) { goto illegal; } break; case 13: if (!(s->prefix & PREFIX_VEX)) { goto illegal; } if (s->vex_l) { goto illegal; } /* All integer instructions use VEX.vvvv, so exit. */ return true; } if (s->vex_v != 0 && e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B && e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B && e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) { goto illegal; } if (s->flags & HF_TS_MASK) { goto nm_exception; } if (s->flags & HF_EM_MASK) { goto illegal; } if (e->check) { if (e->check & X86_CHECK_VEX128) { if (s->vex_l) { goto illegal; } } if (e->check & X86_CHECK_W0) { if (s->vex_w) { goto illegal; } } if (e->check & X86_CHECK_W1) { if (!s->vex_w) { goto illegal; } } } return true; nm_exception: gen_NM_exception(s); return false; illegal: gen_illegal_opcode(s); return false; } /* * Convert one instruction. s->base.is_jmp is set if the translation must * be stopped. */ static void disas_insn(DisasContext *s, CPUState *cpu) { CPUX86State *env = cpu_env(cpu); X86DecodedInsn decode; X86DecodeFunc decode_func = decode_root; uint8_t cc_live, b; s->pc = s->base.pc_next; s->override = -1; s->popl_esp_hack = 0; #ifdef TARGET_X86_64 s->rex_r = 0; s->rex_x = 0; s->rex_b = 0; #endif s->rip_offset = 0; /* for relative ip address */ s->vex_l = 0; s->vex_v = 0; s->vex_w = false; s->has_modrm = false; s->prefix = 0; next_byte: b = x86_ldub_code(env, s); /* Collect prefixes. */ switch (b) { case 0xf3: s->prefix |= PREFIX_REPZ; s->prefix &= ~PREFIX_REPNZ; goto next_byte; case 0xf2: s->prefix |= PREFIX_REPNZ; s->prefix &= ~PREFIX_REPZ; goto next_byte; case 0xf0: s->prefix |= PREFIX_LOCK; goto next_byte; case 0x2e: s->override = R_CS; goto next_byte; case 0x36: s->override = R_SS; goto next_byte; case 0x3e: s->override = R_DS; goto next_byte; case 0x26: s->override = R_ES; goto next_byte; case 0x64: s->override = R_FS; goto next_byte; case 0x65: s->override = R_GS; goto next_byte; case 0x66: s->prefix |= PREFIX_DATA; goto next_byte; case 0x67: s->prefix |= PREFIX_ADR; goto next_byte; #ifdef TARGET_X86_64 case 0x40 ... 0x4f: if (CODE64(s)) { /* REX prefix */ s->prefix |= PREFIX_REX; s->vex_w = (b >> 3) & 1; s->rex_r = (b & 0x4) << 1; s->rex_x = (b & 0x2) << 2; s->rex_b = (b & 0x1) << 3; goto next_byte; } break; #endif case 0xc5: /* 2-byte VEX */ case 0xc4: /* 3-byte VEX */ /* * VEX prefixes cannot be used except in 32-bit mode. * Otherwise the instruction is LES or LDS. */ if (CODE32(s) && !VM86(s)) { static const int pp_prefix[4] = { 0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ }; int vex3, vex2 = x86_ldub_code(env, s); if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) { /* * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b, * otherwise the instruction is LES or LDS. */ s->pc--; /* rewind the advance_pc() x86_ldub_code() did */ break; } /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */ if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) { goto illegal_op; } #ifdef TARGET_X86_64 s->rex_r = (~vex2 >> 4) & 8; #endif if (b == 0xc5) { /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */ vex3 = vex2; decode_func = decode_0F; } else { /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */ vex3 = x86_ldub_code(env, s); #ifdef TARGET_X86_64 s->rex_x = (~vex2 >> 3) & 8; s->rex_b = (~vex2 >> 2) & 8; #endif s->vex_w = (vex3 >> 7) & 1; switch (vex2 & 0x1f) { case 0x01: /* Implied 0f leading opcode bytes. */ decode_func = decode_0F; break; case 0x02: /* Implied 0f 38 leading opcode bytes. */ decode_func = decode_0F38; break; case 0x03: /* Implied 0f 3a leading opcode bytes. */ decode_func = decode_0F3A; break; default: /* Reserved for future use. */ goto unknown_op; } } s->vex_v = (~vex3 >> 3) & 0xf; s->vex_l = (vex3 >> 2) & 1; s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX; } break; default: break; } /* Post-process prefixes. */ if (CODE64(s)) { /* * In 64-bit mode, the default data size is 32-bit. Select 64-bit * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence * over 0x66 if both are present. */ s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32); /* In 64-bit mode, 0x67 selects 32-bit addressing. */ s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64); } else { /* In 16/32-bit mode, 0x66 selects the opposite data size. */ if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) { s->dflag = MO_32; } else { s->dflag = MO_16; } /* In 16/32-bit mode, 0x67 selects the opposite addressing. */ if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) { s->aflag = MO_32; } else { s->aflag = MO_16; } } /* Go back to old decoder for unconverted opcodes. */ if (!(s->prefix & PREFIX_VEX)) { if ((b & ~7) == 0xd8) { if (!disas_insn_x87(s, cpu, b)) { goto unknown_op; } return; } if (b == 0x0f) { b = x86_ldub_code(env, s); switch (b) { case 0x00 ... 0x01: /* mostly privileged instructions */ case 0x1a ... 0x1b: /* MPX */ case 0xa3: /* bt */ case 0xab: /* bts */ case 0xb3: /* btr */ case 0xba ... 0xbb: /* grp8, btc */ case 0xc7: /* grp9 */ disas_insn_old(s, cpu, b + 0x100); return; default: decode_func = do_decode_0F; break; } } } memset(&decode, 0, sizeof(decode)); decode.cc_op = -1; decode.b = b; if (!decode_insn(s, env, decode_func, &decode)) { goto illegal_op; } if (!decode.e.gen) { goto unknown_op; } if (!has_cpuid_feature(s, decode.e.cpuid)) { goto illegal_op; } /* Checks that result in #UD come first. */ if (decode.e.check) { if (CODE64(s)) { if (decode.e.check & X86_CHECK_i64) { goto illegal_op; } if ((decode.e.check & X86_CHECK_i64_amd) && env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1) { goto illegal_op; } } else { if (decode.e.check & X86_CHECK_o64) { goto illegal_op; } if ((decode.e.check & X86_CHECK_o64_intel) && env->cpuid_vendor1 == CPUID_VENDOR_INTEL_1) { goto illegal_op; } } if (decode.e.check & X86_CHECK_prot_or_vm86) { if (!PE(s)) { goto illegal_op; } } if (decode.e.check & X86_CHECK_no_vm86) { if (VM86(s)) { goto illegal_op; } } } switch (decode.e.special) { case X86_SPECIAL_None: break; case X86_SPECIAL_Locked: if (decode.op[0].has_ea) { s->prefix |= PREFIX_LOCK; } decode.e.special = X86_SPECIAL_HasLock; /* fallthrough */ case X86_SPECIAL_HasLock: break; case X86_SPECIAL_Op0_Rd: assert(decode.op[0].unit == X86_OP_INT); if (!decode.op[0].has_ea) { decode.op[0].ot = MO_32; } break; case X86_SPECIAL_Op2_Ry: assert(decode.op[2].unit == X86_OP_INT); if (!decode.op[2].has_ea) { decode.op[2].ot = s->dflag == MO_16 ? MO_32 : s->dflag; } break; case X86_SPECIAL_AVXExtMov: if (!decode.op[2].has_ea) { decode.op[2].ot = s->vex_l ? MO_256 : MO_128; } else if (s->vex_l) { decode.op[2].ot++; } break; case X86_SPECIAL_SExtT0: case X86_SPECIAL_ZExtT0: /* Handled in gen_load. */ assert(decode.op[1].unit == X86_OP_INT); break; case X86_SPECIAL_Op0_Mw: assert(decode.op[0].unit == X86_OP_INT); if (decode.op[0].has_ea) { decode.op[0].ot = MO_16; } break; default: break; } if (s->prefix & PREFIX_LOCK) { if (decode.e.special != X86_SPECIAL_HasLock || !decode.op[0].has_ea) { goto illegal_op; } } if (!validate_vex(s, &decode)) { return; } /* * Checks that result in #GP or VMEXIT come second. Intercepts are * generally checked after non-memory exceptions (i.e. after all * exceptions if there is no memory operand). Exceptions are * vm86 checks (INTn, IRET, PUSHF/POPF), RSM and XSETBV (!). * * XSETBV will check for CPL0 in the gen_* function instead of using chk(). */ if (decode.e.check & X86_CHECK_cpl0) { if (CPL(s) != 0) { goto gp_fault; } } if (decode.e.has_intercept && unlikely(GUEST(s))) { gen_helper_svm_check_intercept(tcg_env, tcg_constant_i32(decode.e.intercept)); } if (decode.e.check) { if ((decode.e.check & X86_CHECK_smm) && !(s->flags & HF_SMM_MASK)) { goto illegal_op; } if ((decode.e.check & X86_CHECK_vm86_iopl) && VM86(s)) { if (IOPL(s) < 3) { goto gp_fault; } } else if (decode.e.check & X86_CHECK_cpl_iopl) { if (IOPL(s) < CPL(s)) { goto gp_fault; } } } if (decode.e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { gen_helper_enter_mmx(tcg_env); } if (decode.e.special != X86_SPECIAL_NoLoadEA && (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea)) { gen_load_ea(s, &decode.mem, decode.e.vex_class == 12); } if (s->prefix & PREFIX_LOCK) { gen_load(s, &decode, 2, s->T1); decode.e.gen(s, &decode); } else { if (decode.op[0].unit == X86_OP_MMX) { compute_mmx_offset(&decode.op[0]); } else if (decode.op[0].unit == X86_OP_SSE) { compute_xmm_offset(&decode.op[0]); } gen_load(s, &decode, 1, s->T0); gen_load(s, &decode, 2, s->T1); decode.e.gen(s, &decode); gen_writeback(s, &decode, 0, s->T0); } /* * Write back flags after last memory access. Some older ALU instructions, as * well as SSE instructions, write flags in the gen_* function, but that can * cause incorrect tracking of CC_OP for instructions that write to both memory * and flags. */ if (decode.cc_op != -1) { if (decode.cc_dst) { tcg_gen_mov_tl(cpu_cc_dst, decode.cc_dst); } if (decode.cc_src) { tcg_gen_mov_tl(cpu_cc_src, decode.cc_src); } if (decode.cc_src2) { tcg_gen_mov_tl(cpu_cc_src2, decode.cc_src2); } if (decode.cc_op == CC_OP_DYNAMIC) { tcg_gen_mov_i32(cpu_cc_op, decode.cc_op_dynamic); } set_cc_op(s, decode.cc_op); cc_live = cc_op_live[decode.cc_op]; } else { cc_live = 0; } if (decode.cc_op != CC_OP_DYNAMIC) { assert(!decode.cc_op_dynamic); assert(!!decode.cc_dst == !!(cc_live & USES_CC_DST)); assert(!!decode.cc_src == !!(cc_live & USES_CC_SRC)); assert(!!decode.cc_src2 == !!(cc_live & USES_CC_SRC2)); } return; gp_fault: gen_exception_gpf(s); return; illegal_op: gen_illegal_opcode(s); return; unknown_op: gen_unknown_opcode(env, s); }