/* * New-style decoder for i386 instructions * * Copyright (c) 2022 Red Hat, Inc. * * Author: Paolo Bonzini * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * The decoder is mostly based on tables copied from the Intel SDM. As * a result, most operand load and writeback is done entirely in common * table-driven code using the same operand type (X86_TYPE_*) and * size (X86_SIZE_*) codes used in the manual. * * The main difference is that the V, U and W types are extended to * cover MMX as well; if an instruction is like * * por Pq, Qq * 66 por Vx, Hx, Wx * * only the second row is included and the instruction is marked as a * valid MMX instruction. The MMX flag directs the decoder to rewrite * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing * "x" to "q" if there is no prefix. * * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x" * if the difference is expressed via prefixes. Individual instructions * are separated by prefix in the generator functions. * * There are a couple cases in which instructions (e.g. MOVD) write the * whole XMM or MM register but are established incorrectly in the manual * as "d" or "q". These have to be fixed for the decoder to work correctly. */ #define X86_OP_NONE { 0 }, #define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ .decode = glue(decode_, op), \ .op0 = glue(X86_TYPE_, op0_), \ .s0 = glue(X86_SIZE_, s0_), \ .op1 = glue(X86_TYPE_, op1_), \ .s1 = glue(X86_SIZE_, s1_), \ .op2 = glue(X86_TYPE_, op2_), \ .s2 = glue(X86_SIZE_, s2_), \ .is_decode = true, \ ## __VA_ARGS__ \ } #define X86_OP_GROUP2(op, op0, s0, op1, s1, ...) \ X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) #define X86_OP_GROUP0(op, ...) \ X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__) #define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ .gen = glue(gen_, op), \ .op0 = glue(X86_TYPE_, op0_), \ .s0 = glue(X86_SIZE_, s0_), \ .op1 = glue(X86_TYPE_, op1_), \ .s1 = glue(X86_SIZE_, s1_), \ .op2 = glue(X86_TYPE_, op2_), \ .s2 = glue(X86_SIZE_, s2_), \ ## __VA_ARGS__ \ } #define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) \ X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, \ .op3 = X86_TYPE_I, .s3 = X86_SIZE_b, \ ## __VA_ARGS__) #define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...) \ X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) #define X86_OP_ENTRYw(op, op0, s0, ...) \ X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__) #define X86_OP_ENTRYr(op, op0, s0, ...) \ X86_OP_ENTRY3(op, None, None, None, None, op0, s0, ## __VA_ARGS__) #define X86_OP_ENTRY0(op, ...) \ X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__) #define cpuid(feat) .cpuid = X86_FEAT_##feat, #define i64 .special = X86_SPECIAL_i64, #define o64 .special = X86_SPECIAL_o64, #define xchg .special = X86_SPECIAL_Locked, #define mmx .special = X86_SPECIAL_MMX, #define zext0 .special = X86_SPECIAL_ZExtOp0, #define zext2 .special = X86_SPECIAL_ZExtOp2, #define avx_movx .special = X86_SPECIAL_AVXExtMov, #define vex1 .vex_class = 1, #define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar, #define vex2 .vex_class = 2, #define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar, #define vex3 .vex_class = 3, #define vex4 .vex_class = 4, #define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned, #define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar, #define vex5 .vex_class = 5, #define vex6 .vex_class = 6, #define vex7 .vex_class = 7, #define vex8 .vex_class = 8, #define vex11 .vex_class = 11, #define vex12 .vex_class = 12, #define vex13 .vex_class = 13, #define avx2_256 .vex_special = X86_VEX_AVX2_256, #define P_00 1 #define P_66 (1 << PREFIX_DATA) #define P_F3 (1 << PREFIX_REPZ) #define P_F2 (1 << PREFIX_REPNZ) #define p_00 .valid_prefix = P_00, #define p_66 .valid_prefix = P_66, #define p_f3 .valid_prefix = P_F3, #define p_f2 .valid_prefix = P_F2, #define p_00_66 .valid_prefix = P_00 | P_66, #define p_00_f3 .valid_prefix = P_00 | P_F3, #define p_66_f2 .valid_prefix = P_66 | P_F2, #define p_00_66_f3 .valid_prefix = P_00 | P_66 | P_F3, #define p_66_f3_f2 .valid_prefix = P_66 | P_F3 | P_F2, #define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2, static uint8_t get_modrm(DisasContext *s, CPUX86State *env) { if (!s->has_modrm) { s->modrm = x86_ldub_code(env, s); s->has_modrm = true; } return s->modrm; } static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4]) { if (s->prefix & PREFIX_REPNZ) { return &entries[3]; } else if (s->prefix & PREFIX_REPZ) { return &entries[2]; } else if (s->prefix & PREFIX_DATA) { return &entries[1]; } else { return &entries[0]; } } static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { /* only includes ldmxcsr and stmxcsr, because they have AVX variants. */ static const X86OpEntry group15_reg[8] = { }; static const X86OpEntry group15_mem[8] = { [2] = X86_OP_ENTRYr(LDMXCSR, E,d, vex5), [3] = X86_OP_ENTRYw(STMXCSR, E,d, vex5), }; uint8_t modrm = get_modrm(s, env); if ((modrm >> 6) == 3) { *entry = group15_reg[(modrm >> 3) & 7]; } else { *entry = group15_mem[(modrm >> 3) & 7]; } } static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86GenFunc group17_gen[8] = { NULL, gen_BLSR, gen_BLSMSK, gen_BLSI, }; int op = (get_modrm(s, env) >> 3) & 7; entry->gen = group17_gen[op]; } static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_group12[8] = { {}, {}, X86_OP_ENTRY3(PSRLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, X86_OP_ENTRY3(PSRAW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, X86_OP_ENTRY3(PSLLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, }; int op = (get_modrm(s, env) >> 3) & 7; *entry = opcodes_group12[op]; } static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_group13[8] = { {}, {}, X86_OP_ENTRY3(PSRLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, X86_OP_ENTRY3(PSRAD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, X86_OP_ENTRY3(PSLLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), {}, }; int op = (get_modrm(s, env) >> 3) & 7; *entry = opcodes_group13[op]; } static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_group14[8] = { /* grp14 */ {}, {}, X86_OP_ENTRY3(PSRLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), {}, {}, X86_OP_ENTRY3(PSLLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), }; int op = (get_modrm(s, env) >> 3) & 7; *entry = opcodes_group14[op]; } static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F6F[4] = { X86_OP_ENTRY3(MOVDQ, P,q, None,None, Q,q, vex5 mmx), /* movq */ X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1), /* movdqa */ X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* movdqu */ {}, }; *entry = *decode_by_prefix(s, opcodes_0F6F); } static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry pshufw[4] = { X86_OP_ENTRY3(PSHUFW, P,q, Q,q, I,b, vex4 mmx), X86_OP_ENTRY3(PSHUFD, V,x, W,x, I,b, vex4 avx2_256), X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256), X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256), }; *entry = *decode_by_prefix(s, pshufw); } static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { if (!(s->prefix & PREFIX_VEX)) { entry->gen = gen_EMMS; } else if (!s->vex_l) { entry->gen = gen_VZEROUPPER; entry->vex_class = 8; } else { entry->gen = gen_VZEROALL; entry->vex_class = 8; } } static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F78[4] = { {}, X86_OP_ENTRY3(EXTRQ_i, V,x, None,None, I,w, cpuid(SSE4A)), /* AMD extension */ {}, X86_OP_ENTRY3(INSERTQ_i, V,x, U,x, I,w, cpuid(SSE4A)), /* AMD extension */ }; *entry = *decode_by_prefix(s, opcodes_0F78); } static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { if (s->prefix & PREFIX_REPNZ) { entry->gen = gen_INSERTQ_r; /* AMD extension */ } else if (s->prefix & PREFIX_DATA) { entry->gen = gen_EXTRQ_r; /* AMD extension */ } else { entry->gen = NULL; }; } static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F7E[4] = { X86_OP_ENTRY3(MOVD_from, E,y, None,None, P,y, vex5 mmx), X86_OP_ENTRY3(MOVD_from, E,y, None,None, V,y, vex5), X86_OP_ENTRY3(MOVQ, V,x, None,None, W,q, vex5), /* wrong dest Vy on SDM! */ {}, }; *entry = *decode_by_prefix(s, opcodes_0F7E); } static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F7F[4] = { X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex5 mmx), /* movq */ X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1), /* movdqa */ X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4_unal), /* movdqu */ {}, }; *entry = *decode_by_prefix(s, opcodes_0F7F); } static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry movq[4] = { {}, X86_OP_ENTRY3(MOVQ, W,x, None, None, V,q, vex5), X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q), X86_OP_ENTRY3(MOVq_dq, P,q, None, None, U,q), }; *entry = *decode_by_prefix(s, movq); } static const X86OpEntry opcodes_0F38_00toEF[240] = { [0x00] = X86_OP_ENTRY3(PSHUFB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x01] = X86_OP_ENTRY3(PHADDW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x02] = X86_OP_ENTRY3(PHADDD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x03] = X86_OP_ENTRY3(PHADDSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x05] = X86_OP_ENTRY3(PHSUBW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x06] = X86_OP_ENTRY3(PHSUBD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x07] = X86_OP_ENTRY3(PHSUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x10] = X86_OP_ENTRY2(PBLENDVB, V,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x, W,ph, vex11 cpuid(F16C) p_66), [0x14] = X86_OP_ENTRY2(BLENDVPS, V,x, W,x, vex4 cpuid(SSE41) p_66), [0x15] = X86_OP_ENTRY2(BLENDVPD, V,x, W,x, vex4 cpuid(SSE41) p_66), /* Listed incorrectly as type 4 */ [0x16] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), [0x17] = X86_OP_ENTRY3(VPTEST, None,None, V,x, W,x, vex4 cpuid(SSE41) p_66), /* * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed * as 128-bit only in 2-17. */ [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), /* Same as PMOVSX. */ [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), [0x36] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), [0x37] = X86_OP_ENTRY3(PCMPGTQ, V,x, H,x, W,x, vex4 cpuid(SSE42) avx2_256 p_66), [0x40] = X86_OP_ENTRY3(PMULLD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66), /* Listed incorrectly as type 4 */ [0x45] = X86_OP_ENTRY3(VPSRLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), [0x46] = X86_OP_ENTRY3(VPSRAV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), [0x47] = X86_OP_ENTRY3(VPSLLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */ [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */ [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vgatherdps/d */ [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vgatherqps/d */ /* Should be exception type 2 but they do not have legacy SSE equivalents? */ [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x08] = X86_OP_ENTRY3(PSIGNB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x09] = X86_OP_ENTRY3(PSIGNW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x0a] = X86_OP_ENTRY3(PSIGND, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x0b] = X86_OP_ENTRY3(PMULHRSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x, H,x, W,x, vex4 cpuid(AVX) p_00_66), [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x, H,x, W,x, vex4 cpuid(AVX) p_66), [0x0e] = X86_OP_ENTRY3(VTESTPS, None,None, V,x, W,x, vex4 cpuid(AVX) p_66), [0x0f] = X86_OP_ENTRY3(VTESTPD, None,None, V,x, W,x, vex4 cpuid(AVX) p_66), [0x18] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 cpuid(AVX) p_66), /* vbroadcastss */ [0x19] = X86_OP_ENTRY3(VPBROADCASTQ, V,qq, None,None, W,q, vex6 cpuid(AVX) p_66), /* vbroadcastsd */ [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX) p_66), [0x1c] = X86_OP_ENTRY3(PABSB, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x1d] = X86_OP_ENTRY3(PABSW, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x1e] = X86_OP_ENTRY3(PABSD, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x28] = X86_OP_ENTRY3(PMULDQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x29] = X86_OP_ENTRY3(PCMPEQQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x2a] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */ [0x2b] = X86_OP_ENTRY3(VPACKUSDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x2c] = X86_OP_ENTRY3(VMASKMOVPS, V,x, H,x, WM,x, vex6 cpuid(AVX) p_66), [0x2d] = X86_OP_ENTRY3(VMASKMOVPD, V,x, H,x, WM,x, vex6 cpuid(AVX) p_66), /* Incorrectly listed as Mx,Hx,Vx in the manual */ [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x, H,x, vex6 cpuid(AVX) p_66), [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x, H,x, vex6 cpuid(AVX) p_66), [0x38] = X86_OP_ENTRY3(PMINSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x39] = X86_OP_ENTRY3(PMINSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3a] = X86_OP_ENTRY3(PMINUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3b] = X86_OP_ENTRY3(PMINUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3c] = X86_OP_ENTRY3(PMAXSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3d] = X86_OP_ENTRY3(PMAXSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3e] = X86_OP_ENTRY3(PMAXUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x3f] = X86_OP_ENTRY3(PMAXUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x58] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 cpuid(AVX2) p_66), [0x59] = X86_OP_ENTRY3(VPBROADCASTQ, V,x, None,None, W,q, vex6 cpuid(AVX2) p_66), [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX2) p_66), [0x78] = X86_OP_ENTRY3(VPBROADCASTB, V,x, None,None, W,b, vex6 cpuid(AVX2) p_66), [0x79] = X86_OP_ENTRY3(VPBROADCASTW, V,x, None,None, W,w, vex6 cpuid(AVX2) p_66), [0x8c] = X86_OP_ENTRY3(VPMASKMOV, V,x, H,x, WM,x, vex6 cpuid(AVX2) p_66), [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x, V,x, H,x, vex6 cpuid(AVX2) p_66), /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */ [0x98] = X86_OP_ENTRY3(VFMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x99] = X86_OP_ENTRY3(VFMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9a] = X86_OP_ENTRY3(VFMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xa8] = X86_OP_ENTRY3(VFMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xa9] = X86_OP_ENTRY3(VFMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xaa] = X86_OP_ENTRY3(VFMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xab] = X86_OP_ENTRY3(VFMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xb8] = X86_OP_ENTRY3(VFMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xb9] = X86_OP_ENTRY3(VFMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xba] = X86_OP_ENTRY3(VFMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), [0xdb] = X86_OP_ENTRY3(VAESIMC, V,dq, None,None, W,dq, vex4 cpuid(AES) p_66), [0xdc] = X86_OP_ENTRY3(VAESENC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), [0xde] = X86_OP_ENTRY3(VAESDEC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), }; /* five rows for no prefix, 66, F3, F2, 66+F2 */ static const X86OpEntry opcodes_0F38_F0toFF[16][5] = { [0] = { X86_OP_ENTRY3(MOVBE, G,y, M,y, None,None, cpuid(MOVBE)), X86_OP_ENTRY3(MOVBE, G,w, M,w, None,None, cpuid(MOVBE)), {}, X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), }, [1] = { X86_OP_ENTRY3(MOVBE, M,y, G,y, None,None, cpuid(MOVBE)), X86_OP_ENTRY3(MOVBE, M,w, G,w, None,None, cpuid(MOVBE)), {}, X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)), X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)), }, [2] = { X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)), {}, {}, {}, {}, }, [3] = { X86_OP_GROUP3(group17, B,y, E,y, None,None, vex13 cpuid(BMI1)), {}, {}, {}, {}, }, [5] = { X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)), {}, X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 cpuid(BMI2)), X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 cpuid(BMI2)), {}, }, [6] = { {}, X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)), X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)), X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)), {}, }, [7] = { X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 cpuid(BMI1)), X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)), X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 cpuid(BMI1)), X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 cpuid(BMI1)), {}, }, }; static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { *b = x86_ldub_code(env, s); if (*b < 0xf0) { *entry = opcodes_0F38_00toEF[*b]; } else { int row = 0; if (s->prefix & PREFIX_REPZ) { /* The REPZ (F3) prefix has priority over 66 */ row = 2; } else { row += s->prefix & PREFIX_REPNZ ? 3 : 0; row += s->prefix & PREFIX_DATA ? 1 : 0; } *entry = opcodes_0F38_F0toFF[*b & 15][row]; } } static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66), vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d, vex5 cpuid(SSE41) p_66); int modrm = get_modrm(s, env); *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem; } static const X86OpEntry opcodes_0F3A[256] = { /* * These are VEX-only, but incorrectly listed in the manual as exception type 4. * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256 * only. */ [0x00] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 cpuid(AVX2) p_66), [0x01] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 cpuid(AVX2) p_66), /* VPERMPD */ [0x02] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), /* VPBLENDD */ [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x, W,x, I,b, vex6 cpuid(AVX) p_66), [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x, W,x, I,b, vex6 cpuid(AVX) p_66), [0x06] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66), [0x14] = X86_OP_ENTRY3(PEXTRB, E,b, V,dq, I,b, vex5 cpuid(SSE41) zext0 p_66), [0x15] = X86_OP_ENTRY3(PEXTRW, E,w, V,dq, I,b, vex5 cpuid(SSE41) zext0 p_66), [0x16] = X86_OP_ENTRY3(PEXTR, E,y, V,dq, I,b, vex5 cpuid(SSE41) p_66), [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d, V,dq, I,b, vex5 cpuid(SSE41) p_66), [0x1d] = X86_OP_ENTRY3(VCVTPS2PH, W,ph, V,x, I,b, vex11 cpuid(F16C) p_66), [0x20] = X86_OP_ENTRY4(PINSRB, V,dq, H,dq, E,b, vex5 cpuid(SSE41) zext2 p_66), [0x21] = X86_OP_GROUP0(VINSERTPS), [0x22] = X86_OP_ENTRY4(PINSR, V,dq, H,dq, E,y, vex5 cpuid(SSE41) p_66), [0x40] = X86_OP_ENTRY4(VDDPS, V,x, H,x, W,x, vex2 cpuid(SSE41) p_66), [0x41] = X86_OP_ENTRY4(VDDPD, V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66), [0x42] = X86_OP_ENTRY4(VMPSADBW, V,x, H,x, W,x, vex2 cpuid(SSE41) avx2_256 p_66), [0x44] = X86_OP_ENTRY4(PCLMULQDQ, V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66), [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), [0x60] = X86_OP_ENTRY4(PCMPESTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), [0x61] = X86_OP_ENTRY4(PCMPESTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), [0x62] = X86_OP_ENTRY4(PCMPISTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), [0x63] = X86_OP_ENTRY4(PCMPISTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), [0x08] = X86_OP_ENTRY3(VROUNDPS, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), [0x09] = X86_OP_ENTRY3(VROUNDPD, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), /* * Not listed as four operand in the manual. Also writes and reads 128-bits * from the first two operands due to the V operand picking higher entries of * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect. * For other unary operations such as VSQRTSx this is hidden by the "REPScalar" * value of vex_special, because the table lists the operand types of VSQRTPx. */ [0x0a] = X86_OP_ENTRY4(VROUNDSS, V,x, H,x, W,ss, vex3 cpuid(SSE41) p_66), [0x0b] = X86_OP_ENTRY4(VROUNDSD, V,x, H,x, W,sd, vex3 cpuid(SSE41) p_66), [0x0c] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), [0x0d] = X86_OP_ENTRY4(VBLENDPD, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), [0x0e] = X86_OP_ENTRY4(VPBLENDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), [0x0f] = X86_OP_ENTRY4(PALIGNR, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), [0x18] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66), [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 cpuid(AVX) p_66), [0x38] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 cpuid(AVX2) p_66), /* Listed incorrectly as type 4 */ [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x, H,x, W,x, vex6 cpuid(AVX) p_66), [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x, H,x, W,x, vex6 cpuid(AVX) p_66), [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x, H,x, W,x, vex6 cpuid(AVX) p_66 avx2_256), [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b, vex4 cpuid(AES) p_66), [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2), }; static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { *b = x86_ldub_code(env, s); *entry = opcodes_0F3A[*b]; } /* * There are some mistakes in the operands in the manual, and the load/store/register * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and * efficiency of implementation rather than copying what the manual says. * * In particular: * * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b, * but this is not mentioned in the tables. * * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high * quadword of the V operand. */ static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F10_reg[4] = { X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ X86_OP_ENTRY3(VMOVSS, V,x, H,x, W,x, vex5), X86_OP_ENTRY3(VMOVLPx, V,x, H,x, W,x, vex5), /* MOVSD */ }; static const X86OpEntry opcodes_0F10_mem[4] = { X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ X86_OP_ENTRY3(VMOVSS_ld, V,x, H,x, M,ss, vex5), X86_OP_ENTRY3(VMOVSD_ld, V,x, H,x, M,sd, vex5), }; if ((get_modrm(s, env) >> 6) == 3) { *entry = *decode_by_prefix(s, opcodes_0F10_reg); } else { *entry = *decode_by_prefix(s, opcodes_0F10_mem); } } static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F11_reg[4] = { X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */ X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */ X86_OP_ENTRY3(VMOVSS, W,x, H,x, V,x, vex5), X86_OP_ENTRY3(VMOVLPx, W,x, H,x, V,q, vex5), /* MOVSD */ }; static const X86OpEntry opcodes_0F11_mem[4] = { X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */ X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */ X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex5), X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex5), /* MOVSD */ }; if ((get_modrm(s, env) >> 6) == 3) { *entry = *decode_by_prefix(s, opcodes_0F11_reg); } else { *entry = *decode_by_prefix(s, opcodes_0F11_mem); } } static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F12_mem[4] = { /* * Use dq for operand for compatibility with gen_MOVSD and * to allow VEX128 only. */ X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPS */ X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPD */ X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, WM,q, vex5 cpuid(SSE3)), /* qq if VEX.256 */ }; static const X86OpEntry opcodes_0F12_reg[4] = { X86_OP_ENTRY3(VMOVHLPS, V,dq, H,dq, U,dq, vex7), X86_OP_ENTRY3(VMOVLPx, W,x, H,x, U,q, vex5), /* MOVLPD */ X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, U,x, vex5 cpuid(SSE3)), }; if ((get_modrm(s, env) >> 6) == 3) { *entry = *decode_by_prefix(s, opcodes_0F12_reg); } else { *entry = *decode_by_prefix(s, opcodes_0F12_mem); if ((s->prefix & PREFIX_REPNZ) && s->vex_l) { entry->s2 = X86_SIZE_qq; } } } static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F16_mem[4] = { /* * Operand 1 technically only reads the low 64 bits, but uses dq so that * it is easier to check for op0 == op1 in an endianness-neutral manner. */ X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPS */ X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPD */ X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), {}, }; static const X86OpEntry opcodes_0F16_reg[4] = { /* Same as above, operand 1 could be Hq if it wasn't for big-endian. */ X86_OP_ENTRY3(VMOVLHPS, V,dq, H,dq, U,q, vex7), X86_OP_ENTRY3(VMOVHPx, V,x, H,x, U,x, vex5), /* MOVHPD */ X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), {}, }; if ((get_modrm(s, env) >> 6) == 3) { *entry = *decode_by_prefix(s, opcodes_0F16_reg); } else { *entry = *decode_by_prefix(s, opcodes_0F16_mem); } } static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F2A[4] = { X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), }; *entry = *decode_by_prefix(s, opcodes_0F2A); } static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F2B[4] = { X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPS */ X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPD */ /* AMD extensions */ X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */ X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */ }; *entry = *decode_by_prefix(s, opcodes_0F2B); } static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F2C[4] = { /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit. */ X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,q), X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,dq), X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,ss, vex3), X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,sd, vex3), }; *entry = *decode_by_prefix(s, opcodes_0F2C); } static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F2D[4] = { /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit. */ X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,q), X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,dq), X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,ss, vex3), X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,sd, vex3), }; *entry = *decode_by_prefix(s, opcodes_0F2D); } static void decode_VxCOMISx(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { /* * VUCOMISx and VCOMISx are different and use no-prefix and 0x66 for SS and SD * respectively. Scalar values usually are associated with 0xF2 and 0xF3, for * which X86_VEX_REPScalar exists, but here it has to be decoded by hand. */ entry->s1 = entry->s2 = (s->prefix & PREFIX_DATA ? X86_SIZE_sd : X86_SIZE_ss); entry->gen = (*b == 0x2E ? gen_VUCOMI : gen_VCOMI); } static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) { entry->op1 = X86_TYPE_None; entry->s1 = X86_SIZE_None; } switch (*b) { case 0x51: entry->gen = gen_VSQRT; break; case 0x52: entry->gen = gen_VRSQRT; break; case 0x53: entry->gen = gen_VRCP; break; case 0x5A: entry->gen = gen_VCVTfp2fp; break; } } static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0F5B[4] = { X86_OP_ENTRY2(VCVTDQ2PS, V,x, W,x, vex2), X86_OP_ENTRY2(VCVTPS2DQ, V,x, W,x, vex2), X86_OP_ENTRY2(VCVTTPS2DQ, V,x, W,x, vex2), {}, }; *entry = *decode_by_prefix(s, opcodes_0F5B); } static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { static const X86OpEntry opcodes_0FE6[4] = { {}, X86_OP_ENTRY2(VCVTTPD2DQ, V,x, W,x, vex2), X86_OP_ENTRY2(VCVTDQ2PD, V,x, W,x, vex5), X86_OP_ENTRY2(VCVTPD2DQ, V,x, W,x, vex2), }; *entry = *decode_by_prefix(s, opcodes_0FE6); } static const X86OpEntry opcodes_0F[256] = { [0x0E] = X86_OP_ENTRY0(EMMS, cpuid(3DNOW)), /* femms */ /* * 3DNow!'s opcode byte comes *after* modrm and displacements, making it * more like an Ib operand. Dispatch to the right helper in a single gen_* * function. */ [0x0F] = X86_OP_ENTRY3(3dnow, P,q, Q,q, I,b, cpuid(3DNOW)), [0x10] = X86_OP_GROUP0(0F10), [0x11] = X86_OP_GROUP0(0F11), [0x12] = X86_OP_GROUP0(0F12), [0x13] = X86_OP_ENTRY3(VMOVLPx_st, M,q, None,None, V,q, vex5 p_00_66), [0x14] = X86_OP_ENTRY3(VUNPCKLPx, V,x, H,x, W,x, vex4 p_00_66), [0x15] = X86_OP_ENTRY3(VUNPCKHPx, V,x, H,x, W,x, vex4 p_00_66), [0x16] = X86_OP_GROUP0(0F16), /* Incorrectly listed as Mq,Vq in the manual */ [0x17] = X86_OP_ENTRY3(VMOVHPx_st, M,q, None,None, V,dq, vex5 p_00_66), [0x50] = X86_OP_ENTRY3(MOVMSK, G,y, None,None, U,x, vex7 p_00_66), [0x51] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* sqrtps */ [0x52] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rsqrtps */ [0x53] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rcpps */ [0x54] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 p_00_66), /* vand */ [0x55] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 p_00_66), /* vandn */ [0x56] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 p_00_66), /* vor */ [0x57] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 p_00_66), /* vxor */ [0x60] = X86_OP_ENTRY3(PUNPCKLBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x61] = X86_OP_ENTRY3(PUNPCKLWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x62] = X86_OP_ENTRY3(PUNPCKLDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x63] = X86_OP_ENTRY3(PACKSSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x64] = X86_OP_ENTRY3(PCMPGTB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x65] = X86_OP_ENTRY3(PCMPGTW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x66] = X86_OP_ENTRY3(PCMPGTD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x67] = X86_OP_ENTRY3(PACKUSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x70] = X86_OP_GROUP0(0F70), [0x71] = X86_OP_GROUP0(group12), [0x72] = X86_OP_GROUP0(group13), [0x73] = X86_OP_GROUP0(group14), [0x74] = X86_OP_ENTRY3(PCMPEQB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x75] = X86_OP_ENTRY3(PCMPEQW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x76] = X86_OP_ENTRY3(PCMPEQD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x77] = X86_OP_GROUP0(0F77), [0x28] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1 p_00_66), /* MOVAPS */ [0x29] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 p_00_66), /* MOVAPS */ [0x2A] = X86_OP_GROUP0(0F2A), [0x2B] = X86_OP_GROUP0(0F2B), [0x2C] = X86_OP_GROUP0(0F2C), [0x2D] = X86_OP_GROUP0(0F2D), [0x2E] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VUCOMISS/SD */ [0x2F] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VCOMISS/SD */ [0x38] = X86_OP_GROUP0(0F38), [0x3a] = X86_OP_GROUP0(0F3A), [0x58] = X86_OP_ENTRY3(VADD, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x59] = X86_OP_ENTRY3(VMUL, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x5a] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* CVTPS2PD */ [0x5b] = X86_OP_GROUP0(0F5B), [0x5c] = X86_OP_ENTRY3(VSUB, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x5d] = X86_OP_ENTRY3(VMIN, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x5e] = X86_OP_ENTRY3(VDIV, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x5f] = X86_OP_ENTRY3(VMAX, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0x68] = X86_OP_ENTRY3(PUNPCKHBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x69] = X86_OP_ENTRY3(PUNPCKHWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x6b] = X86_OP_ENTRY3(PACKSSDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), [0x6e] = X86_OP_ENTRY3(MOVD_to, V,x, None,None, E,y, vex5 mmx p_00_66), /* wrong dest Vy on SDM! */ [0x6f] = X86_OP_GROUP0(0F6F), [0x78] = X86_OP_GROUP0(0F78), [0x79] = X86_OP_GROUP2(0F79, V,x, U,x, cpuid(SSE4A)), [0x7c] = X86_OP_ENTRY3(VHADD, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), [0x7d] = X86_OP_ENTRY3(VHSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), [0x7e] = X86_OP_GROUP0(0F7E), [0x7f] = X86_OP_GROUP0(0F7F), [0xae] = X86_OP_GROUP0(group15), [0xc2] = X86_OP_ENTRY4(VCMP, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), [0xc4] = X86_OP_ENTRY4(PINSRW, V,dq,H,dq,E,w, vex5 mmx p_00_66), [0xc5] = X86_OP_ENTRY3(PEXTRW, G,d, U,dq,I,b, vex5 mmx p_00_66), [0xc6] = X86_OP_ENTRY4(VSHUF, V,x, H,x, W,x, vex4 p_00_66), [0xd0] = X86_OP_ENTRY3(VADDSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), [0xd1] = X86_OP_ENTRY3(PSRLW_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd2] = X86_OP_ENTRY3(PSRLD_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd3] = X86_OP_ENTRY3(PSRLQ_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd4] = X86_OP_ENTRY3(PADDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd5] = X86_OP_ENTRY3(PMULLW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd6] = X86_OP_GROUP0(0FD6), [0xd7] = X86_OP_ENTRY3(PMOVMSKB, G,d, None,None, U,x, vex7 mmx avx2_256 p_00_66), [0xe0] = X86_OP_ENTRY3(PAVGB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe1] = X86_OP_ENTRY3(PSRAW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), [0xe2] = X86_OP_ENTRY3(PSRAD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), [0xe3] = X86_OP_ENTRY3(PAVGW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe4] = X86_OP_ENTRY3(PMULHUW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe5] = X86_OP_ENTRY3(PMULHW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe6] = X86_OP_GROUP0(0FE6), [0xe7] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */ [0xf0] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex4_unal cpuid(SSE3) p_f2), /* LDDQU */ [0xf1] = X86_OP_ENTRY3(PSLLW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), [0xf2] = X86_OP_ENTRY3(PSLLD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), [0xf3] = X86_OP_ENTRY3(PSLLQ_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), [0xf4] = X86_OP_ENTRY3(PMULUDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xf5] = X86_OP_ENTRY3(PMADDWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xf6] = X86_OP_ENTRY3(PSADBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xf7] = X86_OP_ENTRY3(MASKMOV, None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66), /* Incorrectly missing from 2-17 */ [0xd8] = X86_OP_ENTRY3(PSUBUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xd9] = X86_OP_ENTRY3(PSUBUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xda] = X86_OP_ENTRY3(PMINUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xdb] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xdc] = X86_OP_ENTRY3(PADDUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xdd] = X86_OP_ENTRY3(PADDUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xde] = X86_OP_ENTRY3(PMAXUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xdf] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe8] = X86_OP_ENTRY3(PSUBSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xe9] = X86_OP_ENTRY3(PSUBSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xea] = X86_OP_ENTRY3(PMINSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xeb] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xec] = X86_OP_ENTRY3(PADDSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xed] = X86_OP_ENTRY3(PADDSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xee] = X86_OP_ENTRY3(PMAXSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xef] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xf8] = X86_OP_ENTRY3(PSUBB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xf9] = X86_OP_ENTRY3(PSUBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xfa] = X86_OP_ENTRY3(PSUBD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xfb] = X86_OP_ENTRY3(PSUBQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xfc] = X86_OP_ENTRY3(PADDB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xfd] = X86_OP_ENTRY3(PADDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), [0xfe] = X86_OP_ENTRY3(PADDD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), /* 0xff = UD0 */ }; static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { *entry = opcodes_0F[*b]; } static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { *b = x86_ldub_code(env, s); do_decode_0F(s, env, entry, b); } static const X86OpEntry opcodes_root[256] = { [0x0F] = X86_OP_GROUP0(0F), }; #undef mmx #undef vex1 #undef vex2 #undef vex3 #undef vex4 #undef vex4_unal #undef vex5 #undef vex6 #undef vex7 #undef vex8 #undef vex11 #undef vex12 #undef vex13 /* * Decode the fixed part of the opcode and place the last * in b. */ static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) { *entry = opcodes_root[*b]; } static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, X86DecodedOp *op, X86OpType type) { int modrm = get_modrm(s, env); if ((modrm >> 6) == 3) { if (s->prefix & PREFIX_LOCK) { decode->e.gen = gen_illegal; return 0xff; } op->n = (modrm & 7); if (type != X86_TYPE_Q && type != X86_TYPE_N) { op->n |= REX_B(s); } } else { op->has_ea = true; op->n = -1; decode->mem = gen_lea_modrm_0(env, s, get_modrm(s, env)); } return modrm; } static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot) { switch (size) { case X86_SIZE_b: /* byte */ *ot = MO_8; return true; case X86_SIZE_d: /* 32-bit */ case X86_SIZE_ss: /* SSE/AVX scalar single precision */ *ot = MO_32; return true; case X86_SIZE_p: /* Far pointer, return offset size */ case X86_SIZE_s: /* Descriptor, return offset size */ case X86_SIZE_v: /* 16/32/64-bit, based on operand size */ *ot = s->dflag; return true; case X86_SIZE_pi: /* MMX */ case X86_SIZE_q: /* 64-bit */ case X86_SIZE_sd: /* SSE/AVX scalar double precision */ *ot = MO_64; return true; case X86_SIZE_w: /* 16-bit */ *ot = MO_16; return true; case X86_SIZE_y: /* 32/64-bit, based on operand size */ *ot = s->dflag == MO_16 ? MO_32 : s->dflag; return true; case X86_SIZE_z: /* 16-bit for 16-bit operand size, else 32-bit */ *ot = s->dflag == MO_16 ? MO_16 : MO_32; return true; case X86_SIZE_dq: /* SSE/AVX 128-bit */ if (e->special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { *ot = MO_64; return true; } if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) { return false; } *ot = MO_128; return true; case X86_SIZE_qq: /* AVX 256-bit */ if (!s->vex_l) { return false; } *ot = MO_256; return true; case X86_SIZE_x: /* 128/256-bit, based on operand size */ if (e->special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { *ot = MO_64; return true; } /* fall through */ case X86_SIZE_ps: /* SSE/AVX packed single precision */ case X86_SIZE_pd: /* SSE/AVX packed double precision */ *ot = s->vex_l ? MO_256 : MO_128; return true; case X86_SIZE_ph: /* SSE/AVX packed half precision */ *ot = s->vex_l ? MO_128 : MO_64; return true; case X86_SIZE_d64: /* Default to 64-bit in 64-bit mode */ *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag; return true; case X86_SIZE_f64: /* Ignore size override prefix in 64-bit mode */ *ot = CODE64(s) ? MO_64 : s->dflag; return true; default: *ot = -1; return true; } } static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, X86DecodedOp *op, X86OpType type, int b) { int modrm; switch (type) { case X86_TYPE_None: /* Implicit or absent */ case X86_TYPE_A: /* Implicit */ case X86_TYPE_F: /* EFLAGS/RFLAGS */ break; case X86_TYPE_B: /* VEX.vvvv selects a GPR */ op->unit = X86_OP_INT; op->n = s->vex_v; break; case X86_TYPE_C: /* REG in the modrm byte selects a control register */ op->unit = X86_OP_CR; goto get_reg; case X86_TYPE_D: /* REG in the modrm byte selects a debug register */ op->unit = X86_OP_DR; goto get_reg; case X86_TYPE_G: /* REG in the modrm byte selects a GPR */ op->unit = X86_OP_INT; goto get_reg; case X86_TYPE_S: /* reg selects a segment register */ op->unit = X86_OP_SEG; goto get_reg; case X86_TYPE_P: op->unit = X86_OP_MMX; goto get_reg; case X86_TYPE_V: /* reg in the modrm byte selects an XMM/YMM register */ if (decode->e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { op->unit = X86_OP_MMX; } else { op->unit = X86_OP_SSE; } get_reg: op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s); break; case X86_TYPE_E: /* ALU modrm operand */ op->unit = X86_OP_INT; goto get_modrm; case X86_TYPE_Q: /* MMX modrm operand */ op->unit = X86_OP_MMX; goto get_modrm; case X86_TYPE_W: /* XMM/YMM modrm operand */ if (decode->e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { op->unit = X86_OP_MMX; } else { op->unit = X86_OP_SSE; } goto get_modrm; case X86_TYPE_N: /* R/M in the modrm byte selects an MMX register */ op->unit = X86_OP_MMX; goto get_modrm_reg; case X86_TYPE_U: /* R/M in the modrm byte selects an XMM/YMM register */ if (decode->e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { op->unit = X86_OP_MMX; } else { op->unit = X86_OP_SSE; } goto get_modrm_reg; case X86_TYPE_R: /* R/M in the modrm byte selects a register */ op->unit = X86_OP_INT; get_modrm_reg: modrm = get_modrm(s, env); if ((modrm >> 6) != 3) { return false; } goto get_modrm; case X86_TYPE_WM: /* modrm byte selects an XMM/YMM memory operand */ op->unit = X86_OP_SSE; /* fall through */ case X86_TYPE_M: /* modrm byte selects a memory operand */ modrm = get_modrm(s, env); if ((modrm >> 6) == 3) { return false; } get_modrm: decode_modrm(s, env, decode, op, type); break; case X86_TYPE_O: /* Absolute address encoded in the instruction */ op->unit = X86_OP_INT; op->has_ea = true; op->n = -1; decode->mem = (AddressParts) { .def_seg = R_DS, .base = -1, .index = -1, .disp = insn_get_addr(env, s, s->aflag) }; break; case X86_TYPE_H: /* For AVX, VEX.vvvv selects an XMM/YMM register */ if ((s->prefix & PREFIX_VEX)) { op->unit = X86_OP_SSE; op->n = s->vex_v; break; } if (op == &decode->op[0]) { /* shifts place the destination in VEX.vvvv, use modrm */ return decode_op(s, env, decode, op, decode->e.op1, b); } else { return decode_op(s, env, decode, op, decode->e.op0, b); } case X86_TYPE_I: /* Immediate */ op->unit = X86_OP_IMM; decode->immediate = insn_get_signed(env, s, op->ot); break; case X86_TYPE_J: /* Relative offset for a jump */ op->unit = X86_OP_IMM; decode->immediate = insn_get_signed(env, s, op->ot); decode->immediate += s->pc - s->cs_base; if (s->dflag == MO_16) { decode->immediate &= 0xffff; } else if (!CODE64(s)) { decode->immediate &= 0xffffffffu; } break; case X86_TYPE_L: /* The upper 4 bits of the immediate select a 128-bit register */ op->n = insn_get(env, s, op->ot) >> 4; break; case X86_TYPE_X: /* string source */ op->n = -1; decode->mem = (AddressParts) { .def_seg = R_DS, .base = R_ESI, .index = -1, }; break; case X86_TYPE_Y: /* string destination */ op->n = -1; decode->mem = (AddressParts) { .def_seg = R_ES, .base = R_EDI, .index = -1, }; break; case X86_TYPE_2op: *op = decode->op[0]; break; case X86_TYPE_LoBits: op->n = (b & 7) | REX_B(s); op->unit = X86_OP_INT; break; case X86_TYPE_0 ... X86_TYPE_7: op->n = type - X86_TYPE_0; op->unit = X86_OP_INT; break; case X86_TYPE_ES ... X86_TYPE_GS: op->n = type - X86_TYPE_ES; op->unit = X86_OP_SEG; break; } return true; } static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e) { uint16_t sse_prefixes; if (!e->valid_prefix) { return true; } if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66. */ s->prefix &= ~PREFIX_DATA; } /* Now, either zero or one bit is set in sse_prefixes. */ sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA); return e->valid_prefix & (1 << sse_prefixes); } static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func, X86DecodedInsn *decode) { X86OpEntry *e = &decode->e; decode_func(s, env, e, &decode->b); while (e->is_decode) { e->is_decode = false; e->decode(s, env, e, &decode->b); } if (!validate_sse_prefix(s, e)) { return false; } /* First compute size of operands in order to initialize s->rip_offset. */ if (e->op0 != X86_TYPE_None) { if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) { return false; } if (e->op0 == X86_TYPE_I) { s->rip_offset += 1 << decode->op[0].ot; } } if (e->op1 != X86_TYPE_None) { if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) { return false; } if (e->op1 == X86_TYPE_I) { s->rip_offset += 1 << decode->op[1].ot; } } if (e->op2 != X86_TYPE_None) { if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) { return false; } if (e->op2 == X86_TYPE_I) { s->rip_offset += 1 << decode->op[2].ot; } } if (e->op3 != X86_TYPE_None) { /* * A couple instructions actually use the extra immediate byte for an Lx * register operand; those are handled in the gen_* functions as one off. */ assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b); s->rip_offset += 1; } if (e->op0 != X86_TYPE_None && !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) { return false; } if (e->op1 != X86_TYPE_None && !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) { return false; } if (e->op2 != X86_TYPE_None && !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) { return false; } if (e->op3 != X86_TYPE_None) { decode->immediate = insn_get_signed(env, s, MO_8); } return true; } static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid) { switch (cpuid) { case X86_FEAT_None: return true; case X86_FEAT_F16C: return (s->cpuid_ext_features & CPUID_EXT_F16C); case X86_FEAT_FMA: return (s->cpuid_ext_features & CPUID_EXT_FMA); case X86_FEAT_MOVBE: return (s->cpuid_ext_features & CPUID_EXT_MOVBE); case X86_FEAT_PCLMULQDQ: return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ); case X86_FEAT_SSE: return (s->cpuid_ext_features & CPUID_SSE); case X86_FEAT_SSE2: return (s->cpuid_ext_features & CPUID_SSE2); case X86_FEAT_SSE3: return (s->cpuid_ext_features & CPUID_EXT_SSE3); case X86_FEAT_SSSE3: return (s->cpuid_ext_features & CPUID_EXT_SSSE3); case X86_FEAT_SSE41: return (s->cpuid_ext_features & CPUID_EXT_SSE41); case X86_FEAT_SSE42: return (s->cpuid_ext_features & CPUID_EXT_SSE42); case X86_FEAT_AES: if (!(s->cpuid_ext_features & CPUID_EXT_AES)) { return false; } else if (!(s->prefix & PREFIX_VEX)) { return true; } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) { return false; } else { return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES); } case X86_FEAT_AVX: return (s->cpuid_ext_features & CPUID_EXT_AVX); case X86_FEAT_3DNOW: return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW); case X86_FEAT_SSE4A: return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A); case X86_FEAT_ADX: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX); case X86_FEAT_BMI1: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1); case X86_FEAT_BMI2: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2); case X86_FEAT_AVX2: return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2); } g_assert_not_reached(); } static bool validate_vex(DisasContext *s, X86DecodedInsn *decode) { X86OpEntry *e = &decode->e; switch (e->vex_special) { case X86_VEX_REPScalar: /* * Instructions which differ between 00/66 and F2/F3 in the * exception classification and the size of the memory operand. */ assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4); if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { e->vex_class = e->vex_class < 4 ? 3 : 5; if (s->vex_l) { goto illegal; } assert(decode->e.s2 == X86_SIZE_x); if (decode->op[2].has_ea) { decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64; } } break; case X86_VEX_SSEUnaligned: /* handled in sse_needs_alignment. */ break; case X86_VEX_AVX2_256: if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) { goto illegal; } } /* TODO: instructions that require VEX.W=0 (Table 2-16) */ switch (e->vex_class) { case 0: if (s->prefix & PREFIX_VEX) { goto illegal; } return true; case 1: case 2: case 3: case 4: case 5: case 7: if (s->prefix & PREFIX_VEX) { if (!(s->flags & HF_AVX_EN_MASK)) { goto illegal; } } else if (e->special != X86_SPECIAL_MMX || (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { if (!(s->flags & HF_OSFXSR_MASK)) { goto illegal; } } break; case 12: /* Must have a VSIB byte and no address prefix. */ assert(s->has_modrm); if ((s->modrm & 7) != 4 || s->aflag == MO_16) { goto illegal; } /* Check no overlap between registers. */ if (!decode->op[0].has_ea && (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) { goto illegal; } assert(!decode->op[1].has_ea); if (decode->op[1].n == decode->mem.index) { goto illegal; } if (!decode->op[2].has_ea && (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) { goto illegal; } /* fall through */ case 6: case 11: if (!(s->prefix & PREFIX_VEX)) { goto illegal; } if (!(s->flags & HF_AVX_EN_MASK)) { goto illegal; } break; case 8: /* Non-VEX case handled in decode_0F77. */ assert(s->prefix & PREFIX_VEX); if (!(s->flags & HF_AVX_EN_MASK)) { goto illegal; } break; case 13: if (!(s->prefix & PREFIX_VEX)) { goto illegal; } if (s->vex_l) { goto illegal; } /* All integer instructions use VEX.vvvv, so exit. */ return true; } if (s->vex_v != 0 && e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B && e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B && e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) { goto illegal; } if (s->flags & HF_TS_MASK) { goto nm_exception; } if (s->flags & HF_EM_MASK) { goto illegal; } return true; nm_exception: gen_NM_exception(s); return false; illegal: gen_illegal_opcode(s); return false; } /* * Convert one instruction. s->base.is_jmp is set if the translation must * be stopped. */ static void disas_insn_new(DisasContext *s, CPUState *cpu, int b) { CPUX86State *env = cpu->env_ptr; bool first = true; X86DecodedInsn decode; X86DecodeFunc decode_func = decode_root; s->has_modrm = false; next_byte: if (first) { first = false; } else { b = x86_ldub_code(env, s); } /* Collect prefixes. */ switch (b) { case 0xf3: s->prefix |= PREFIX_REPZ; s->prefix &= ~PREFIX_REPNZ; goto next_byte; case 0xf2: s->prefix |= PREFIX_REPNZ; s->prefix &= ~PREFIX_REPZ; goto next_byte; case 0xf0: s->prefix |= PREFIX_LOCK; goto next_byte; case 0x2e: s->override = R_CS; goto next_byte; case 0x36: s->override = R_SS; goto next_byte; case 0x3e: s->override = R_DS; goto next_byte; case 0x26: s->override = R_ES; goto next_byte; case 0x64: s->override = R_FS; goto next_byte; case 0x65: s->override = R_GS; goto next_byte; case 0x66: s->prefix |= PREFIX_DATA; goto next_byte; case 0x67: s->prefix |= PREFIX_ADR; goto next_byte; #ifdef TARGET_X86_64 case 0x40 ... 0x4f: if (CODE64(s)) { /* REX prefix */ s->prefix |= PREFIX_REX; s->vex_w = (b >> 3) & 1; s->rex_r = (b & 0x4) << 1; s->rex_x = (b & 0x2) << 2; s->rex_b = (b & 0x1) << 3; goto next_byte; } break; #endif case 0xc5: /* 2-byte VEX */ case 0xc4: /* 3-byte VEX */ /* * VEX prefixes cannot be used except in 32-bit mode. * Otherwise the instruction is LES or LDS. */ if (CODE32(s) && !VM86(s)) { static const int pp_prefix[4] = { 0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ }; int vex3, vex2 = x86_ldub_code(env, s); if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) { /* * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b, * otherwise the instruction is LES or LDS. */ s->pc--; /* rewind the advance_pc() x86_ldub_code() did */ break; } /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */ if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) { goto illegal_op; } #ifdef TARGET_X86_64 s->rex_r = (~vex2 >> 4) & 8; #endif if (b == 0xc5) { /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */ vex3 = vex2; decode_func = decode_0F; } else { /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */ vex3 = x86_ldub_code(env, s); #ifdef TARGET_X86_64 s->rex_x = (~vex2 >> 3) & 8; s->rex_b = (~vex2 >> 2) & 8; #endif s->vex_w = (vex3 >> 7) & 1; switch (vex2 & 0x1f) { case 0x01: /* Implied 0f leading opcode bytes. */ decode_func = decode_0F; break; case 0x02: /* Implied 0f 38 leading opcode bytes. */ decode_func = decode_0F38; break; case 0x03: /* Implied 0f 3a leading opcode bytes. */ decode_func = decode_0F3A; break; default: /* Reserved for future use. */ goto unknown_op; } } s->vex_v = (~vex3 >> 3) & 0xf; s->vex_l = (vex3 >> 2) & 1; s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX; } break; default: if (b >= 0x100) { b -= 0x100; decode_func = do_decode_0F; } break; } /* Post-process prefixes. */ if (CODE64(s)) { /* * In 64-bit mode, the default data size is 32-bit. Select 64-bit * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence * over 0x66 if both are present. */ s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32); /* In 64-bit mode, 0x67 selects 32-bit addressing. */ s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64); } else { /* In 16/32-bit mode, 0x66 selects the opposite data size. */ if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) { s->dflag = MO_32; } else { s->dflag = MO_16; } /* In 16/32-bit mode, 0x67 selects the opposite addressing. */ if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) { s->aflag = MO_32; } else { s->aflag = MO_16; } } memset(&decode, 0, sizeof(decode)); decode.b = b; if (!decode_insn(s, env, decode_func, &decode)) { goto illegal_op; } if (!decode.e.gen) { goto unknown_op; } if (!has_cpuid_feature(s, decode.e.cpuid)) { goto illegal_op; } switch (decode.e.special) { case X86_SPECIAL_None: break; case X86_SPECIAL_Locked: if (decode.op[0].has_ea) { s->prefix |= PREFIX_LOCK; } break; case X86_SPECIAL_ProtMode: if (!PE(s) || VM86(s)) { goto illegal_op; } break; case X86_SPECIAL_i64: if (CODE64(s)) { goto illegal_op; } break; case X86_SPECIAL_o64: if (!CODE64(s)) { goto illegal_op; } break; case X86_SPECIAL_ZExtOp0: assert(decode.op[0].unit == X86_OP_INT); if (!decode.op[0].has_ea) { decode.op[0].ot = MO_32; } break; case X86_SPECIAL_ZExtOp2: assert(decode.op[2].unit == X86_OP_INT); if (!decode.op[2].has_ea) { decode.op[2].ot = MO_32; } break; case X86_SPECIAL_AVXExtMov: if (!decode.op[2].has_ea) { decode.op[2].ot = s->vex_l ? MO_256 : MO_128; } else if (s->vex_l) { decode.op[2].ot++; } break; default: break; } if (!validate_vex(s, &decode)) { return; } if (decode.e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { gen_helper_enter_mmx(cpu_env); } if (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea) { gen_load_ea(s, &decode.mem, decode.e.vex_class == 12); } if (s->prefix & PREFIX_LOCK) { if (decode.op[0].unit != X86_OP_INT || !decode.op[0].has_ea) { goto illegal_op; } gen_load(s, &decode, 2, s->T1); decode.e.gen(s, env, &decode); } else { if (decode.op[0].unit == X86_OP_MMX) { compute_mmx_offset(&decode.op[0]); } else if (decode.op[0].unit == X86_OP_SSE) { compute_xmm_offset(&decode.op[0]); } gen_load(s, &decode, 1, s->T0); gen_load(s, &decode, 2, s->T1); decode.e.gen(s, env, &decode); gen_writeback(s, &decode, 0, s->T0); } return; illegal_op: gen_illegal_opcode(s); return; unknown_op: gen_unknown_opcode(env, s); }