/* * i386 helpers (without register variable usage) * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qapi/qapi-events-run-state.h" #include "cpu.h" #include "exec/exec-all.h" #include "qemu/qemu-print.h" #include "sysemu/kvm.h" #include "sysemu/runstate.h" #include "kvm_i386.h" #ifndef CONFIG_USER_ONLY #include "sysemu/tcg.h" #include "sysemu/hw_accel.h" #include "monitor/monitor.h" #include "hw/i386/apic_internal.h" #endif void cpu_sync_bndcs_hflags(CPUX86State *env) { uint32_t hflags = env->hflags; uint32_t hflags2 = env->hflags2; uint32_t bndcsr; if ((hflags & HF_CPL_MASK) == 3) { bndcsr = env->bndcs_regs.cfgu; } else { bndcsr = env->msr_bndcfgs; } if ((env->cr[4] & CR4_OSXSAVE_MASK) && (env->xcr0 & XSTATE_BNDCSR_MASK) && (bndcsr & BNDCFG_ENABLE)) { hflags |= HF_MPX_EN_MASK; } else { hflags &= ~HF_MPX_EN_MASK; } if (bndcsr & BNDCFG_BNDPRESERVE) { hflags2 |= HF2_MPX_PR_MASK; } else { hflags2 &= ~HF2_MPX_PR_MASK; } env->hflags = hflags; env->hflags2 = hflags2; } static void cpu_x86_version(CPUX86State *env, int *family, int *model) { int cpuver = env->cpuid_version; if (family == NULL || model == NULL) { return; } *family = (cpuver >> 8) & 0x0f; *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f); } /* Broadcast MCA signal for processor version 06H_EH and above */ int cpu_x86_support_mca_broadcast(CPUX86State *env) { int family = 0; int model = 0; cpu_x86_version(env, &family, &model); if ((family == 6 && model >= 14) || family > 6) { return 1; } return 0; } /***********************************************************/ /* x86 debug */ static const char *cc_op_str[CC_OP_NB] = { "DYNAMIC", "EFLAGS", "MULB", "MULW", "MULL", "MULQ", "ADDB", "ADDW", "ADDL", "ADDQ", "ADCB", "ADCW", "ADCL", "ADCQ", "SUBB", "SUBW", "SUBL", "SUBQ", "SBBB", "SBBW", "SBBL", "SBBQ", "LOGICB", "LOGICW", "LOGICL", "LOGICQ", "INCB", "INCW", "INCL", "INCQ", "DECB", "DECW", "DECL", "DECQ", "SHLB", "SHLW", "SHLL", "SHLQ", "SARB", "SARW", "SARL", "SARQ", "BMILGB", "BMILGW", "BMILGL", "BMILGQ", "ADCX", "ADOX", "ADCOX", "CLR", }; static void cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f, const char *name, struct SegmentCache *sc) { #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { qemu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name, sc->selector, sc->base, sc->limit, sc->flags & 0x00ffff00); } else #endif { qemu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector, (uint32_t)sc->base, sc->limit, sc->flags & 0x00ffff00); } if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK)) goto done; qemu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT); if (sc->flags & DESC_S_MASK) { if (sc->flags & DESC_CS_MASK) { qemu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" : ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16")); qemu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-', (sc->flags & DESC_R_MASK) ? 'R' : '-'); } else { qemu_fprintf(f, (sc->flags & DESC_B_MASK || env->hflags & HF_LMA_MASK) ? "DS " : "DS16"); qemu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-', (sc->flags & DESC_W_MASK) ? 'W' : '-'); } qemu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-'); } else { static const char *sys_type_name[2][16] = { { /* 32 bit mode */ "Reserved", "TSS16-avl", "LDT", "TSS16-busy", "CallGate16", "TaskGate", "IntGate16", "TrapGate16", "Reserved", "TSS32-avl", "Reserved", "TSS32-busy", "CallGate32", "Reserved", "IntGate32", "TrapGate32" }, { /* 64 bit mode */ "", "Reserved", "LDT", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64", "Reserved", "IntGate64", "TrapGate64" } }; qemu_fprintf(f, "%s", sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0] [(sc->flags & DESC_TYPE_MASK) >> DESC_TYPE_SHIFT]); } done: qemu_fprintf(f, "\n"); } #ifndef CONFIG_USER_ONLY /* ARRAY_SIZE check is not required because * DeliveryMode(dm) has a size of 3 bit. */ static inline const char *dm2str(uint32_t dm) { static const char *str[] = { "Fixed", "...", "SMI", "...", "NMI", "INIT", "...", "ExtINT" }; return str[dm]; } static void dump_apic_lvt(const char *name, uint32_t lvt, bool is_timer) { uint32_t dm = (lvt & APIC_LVT_DELIV_MOD) >> APIC_LVT_DELIV_MOD_SHIFT; qemu_printf("%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s", name, lvt, lvt & APIC_LVT_INT_POLARITY ? "active-lo" : "active-hi", lvt & APIC_LVT_LEVEL_TRIGGER ? "level" : "edge", lvt & APIC_LVT_MASKED ? "masked" : "", lvt & APIC_LVT_DELIV_STS ? "pending" : "", !is_timer ? "" : lvt & APIC_LVT_TIMER_PERIODIC ? "periodic" : lvt & APIC_LVT_TIMER_TSCDEADLINE ? "tsc-deadline" : "one-shot", dm2str(dm)); if (dm != APIC_DM_NMI) { qemu_printf(" (vec %u)\n", lvt & APIC_VECTOR_MASK); } else { qemu_printf("\n"); } } /* ARRAY_SIZE check is not required because * destination shorthand has a size of 2 bit. */ static inline const char *shorthand2str(uint32_t shorthand) { const char *str[] = { "no-shorthand", "self", "all-self", "all" }; return str[shorthand]; } static inline uint8_t divider_conf(uint32_t divide_conf) { uint8_t divide_val = ((divide_conf & 0x8) >> 1) | (divide_conf & 0x3); return divide_val == 7 ? 1 : 2 << divide_val; } static inline void mask2str(char *str, uint32_t val, uint8_t size) { while (size--) { *str++ = (val >> size) & 1 ? '1' : '0'; } *str = 0; } #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16 static void dump_apic_icr(APICCommonState *s, CPUX86State *env) { uint32_t icr = s->icr[0], icr2 = s->icr[1]; uint8_t dest_shorthand = \ (icr & APIC_ICR_DEST_SHORT) >> APIC_ICR_DEST_SHORT_SHIFT; bool logical_mod = icr & APIC_ICR_DEST_MOD; char apic_id_str[MAX_LOGICAL_APIC_ID_MASK_SIZE + 1]; uint32_t dest_field; bool x2apic; qemu_printf("ICR\t 0x%08x %s %s %s %s\n", icr, logical_mod ? "logical" : "physical", icr & APIC_ICR_TRIGGER_MOD ? "level" : "edge", icr & APIC_ICR_LEVEL ? "assert" : "de-assert", shorthand2str(dest_shorthand)); qemu_printf("ICR2\t 0x%08x", icr2); if (dest_shorthand != 0) { qemu_printf("\n"); return; } x2apic = env->features[FEAT_1_ECX] & CPUID_EXT_X2APIC; dest_field = x2apic ? icr2 : icr2 >> APIC_ICR_DEST_SHIFT; if (!logical_mod) { if (x2apic) { qemu_printf(" cpu %u (X2APIC ID)\n", dest_field); } else { qemu_printf(" cpu %u (APIC ID)\n", dest_field & APIC_LOGDEST_XAPIC_ID); } return; } if (s->dest_mode == 0xf) { /* flat mode */ mask2str(apic_id_str, icr2 >> APIC_ICR_DEST_SHIFT, 8); qemu_printf(" mask %s (APIC ID)\n", apic_id_str); } else if (s->dest_mode == 0) { /* cluster mode */ if (x2apic) { mask2str(apic_id_str, dest_field & APIC_LOGDEST_X2APIC_ID, 16); qemu_printf(" cluster %u mask %s (X2APIC ID)\n", dest_field >> APIC_LOGDEST_X2APIC_SHIFT, apic_id_str); } else { mask2str(apic_id_str, dest_field & APIC_LOGDEST_XAPIC_ID, 4); qemu_printf(" cluster %u mask %s (APIC ID)\n", dest_field >> APIC_LOGDEST_XAPIC_SHIFT, apic_id_str); } } } static void dump_apic_interrupt(const char *name, uint32_t *ireg_tab, uint32_t *tmr_tab) { int i, empty = true; qemu_printf("%s\t ", name); for (i = 0; i < 256; i++) { if (apic_get_bit(ireg_tab, i)) { qemu_printf("%u%s ", i, apic_get_bit(tmr_tab, i) ? "(level)" : ""); empty = false; } } qemu_printf("%s\n", empty ? "(none)" : ""); } void x86_cpu_dump_local_apic_state(CPUState *cs, int flags) { X86CPU *cpu = X86_CPU(cs); APICCommonState *s = APIC_COMMON(cpu->apic_state); if (!s) { qemu_printf("local apic state not available\n"); return; } uint32_t *lvt = s->lvt; qemu_printf("dumping local APIC state for CPU %-2u\n\n", CPU(cpu)->cpu_index); dump_apic_lvt("LVT0", lvt[APIC_LVT_LINT0], false); dump_apic_lvt("LVT1", lvt[APIC_LVT_LINT1], false); dump_apic_lvt("LVTPC", lvt[APIC_LVT_PERFORM], false); dump_apic_lvt("LVTERR", lvt[APIC_LVT_ERROR], false); dump_apic_lvt("LVTTHMR", lvt[APIC_LVT_THERMAL], false); dump_apic_lvt("LVTT", lvt[APIC_LVT_TIMER], true); qemu_printf("Timer\t DCR=0x%x (divide by %u) initial_count = %u" " current_count = %u\n", s->divide_conf & APIC_DCR_MASK, divider_conf(s->divide_conf), s->initial_count, apic_get_current_count(s)); qemu_printf("SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n", s->spurious_vec, s->spurious_vec & APIC_SPURIO_ENABLED ? "enabled" : "disabled", s->spurious_vec & APIC_SPURIO_FOCUS ? "on" : "off", s->spurious_vec & APIC_VECTOR_MASK); dump_apic_icr(s, &cpu->env); qemu_printf("ESR\t 0x%08x\n", s->esr); dump_apic_interrupt("ISR", s->isr, s->tmr); dump_apic_interrupt("IRR", s->irr, s->tmr); qemu_printf("\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x", s->arb_id, s->tpr, s->dest_mode, s->log_dest); if (s->dest_mode == 0) { qemu_printf("(cluster %u: id %u)", s->log_dest >> APIC_LOGDEST_XAPIC_SHIFT, s->log_dest & APIC_LOGDEST_XAPIC_ID); } qemu_printf(" PPR 0x%02x\n", apic_get_ppr(s)); } #else void x86_cpu_dump_local_apic_state(CPUState *cs, int flags) { } #endif /* !CONFIG_USER_ONLY */ #define DUMP_CODE_BYTES_TOTAL 50 #define DUMP_CODE_BYTES_BACKWARD 20 void x86_cpu_dump_state(CPUState *cs, FILE *f, int flags) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; int eflags, i, nb; char cc_op_name[32]; static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" }; eflags = cpu_compute_eflags(env); #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { qemu_fprintf(f, "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n" "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n" "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n" "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n" "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n", env->regs[R_EAX], env->regs[R_EBX], env->regs[R_ECX], env->regs[R_EDX], env->regs[R_ESI], env->regs[R_EDI], env->regs[R_EBP], env->regs[R_ESP], env->regs[8], env->regs[9], env->regs[10], env->regs[11], env->regs[12], env->regs[13], env->regs[14], env->regs[15], env->eip, eflags, eflags & DF_MASK ? 'D' : '-', eflags & CC_O ? 'O' : '-', eflags & CC_S ? 'S' : '-', eflags & CC_Z ? 'Z' : '-', eflags & CC_A ? 'A' : '-', eflags & CC_P ? 'P' : '-', eflags & CC_C ? 'C' : '-', env->hflags & HF_CPL_MASK, (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1, (env->a20_mask >> 20) & 1, (env->hflags >> HF_SMM_SHIFT) & 1, cs->halted); } else #endif { qemu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n" "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n" "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n", (uint32_t)env->regs[R_EAX], (uint32_t)env->regs[R_EBX], (uint32_t)env->regs[R_ECX], (uint32_t)env->regs[R_EDX], (uint32_t)env->regs[R_ESI], (uint32_t)env->regs[R_EDI], (uint32_t)env->regs[R_EBP], (uint32_t)env->regs[R_ESP], (uint32_t)env->eip, eflags, eflags & DF_MASK ? 'D' : '-', eflags & CC_O ? 'O' : '-', eflags & CC_S ? 'S' : '-', eflags & CC_Z ? 'Z' : '-', eflags & CC_A ? 'A' : '-', eflags & CC_P ? 'P' : '-', eflags & CC_C ? 'C' : '-', env->hflags & HF_CPL_MASK, (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1, (env->a20_mask >> 20) & 1, (env->hflags >> HF_SMM_SHIFT) & 1, cs->halted); } for(i = 0; i < 6; i++) { cpu_x86_dump_seg_cache(env, f, seg_name[i], &env->segs[i]); } cpu_x86_dump_seg_cache(env, f, "LDT", &env->ldt); cpu_x86_dump_seg_cache(env, f, "TR", &env->tr); #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { qemu_fprintf(f, "GDT= %016" PRIx64 " %08x\n", env->gdt.base, env->gdt.limit); qemu_fprintf(f, "IDT= %016" PRIx64 " %08x\n", env->idt.base, env->idt.limit); qemu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n", (uint32_t)env->cr[0], env->cr[2], env->cr[3], (uint32_t)env->cr[4]); for(i = 0; i < 4; i++) qemu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]); qemu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n", env->dr[6], env->dr[7]); } else #endif { qemu_fprintf(f, "GDT= %08x %08x\n", (uint32_t)env->gdt.base, env->gdt.limit); qemu_fprintf(f, "IDT= %08x %08x\n", (uint32_t)env->idt.base, env->idt.limit); qemu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n", (uint32_t)env->cr[0], (uint32_t)env->cr[2], (uint32_t)env->cr[3], (uint32_t)env->cr[4]); for(i = 0; i < 4; i++) { qemu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]); } qemu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n", env->dr[6], env->dr[7]); } if (flags & CPU_DUMP_CCOP) { if ((unsigned)env->cc_op < CC_OP_NB) snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]); else snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op); #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { qemu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n", env->cc_src, env->cc_dst, cc_op_name); } else #endif { qemu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n", (uint32_t)env->cc_src, (uint32_t)env->cc_dst, cc_op_name); } } qemu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer); if (flags & CPU_DUMP_FPU) { int fptag; fptag = 0; for(i = 0; i < 8; i++) { fptag |= ((!env->fptags[i]) << i); } update_mxcsr_from_sse_status(env); qemu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n", env->fpuc, (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11, env->fpstt, fptag, env->mxcsr); for(i=0;i<8;i++) { CPU_LDoubleU u; u.d = env->fpregs[i].d; qemu_fprintf(f, "FPR%d=%016" PRIx64 " %04x", i, u.l.lower, u.l.upper); if ((i & 1) == 1) qemu_fprintf(f, "\n"); else qemu_fprintf(f, " "); } if (env->hflags & HF_CS64_MASK) nb = 16; else nb = 8; for(i=0;ixmm_regs[i].ZMM_L(3), env->xmm_regs[i].ZMM_L(2), env->xmm_regs[i].ZMM_L(1), env->xmm_regs[i].ZMM_L(0)); if ((i & 1) == 1) qemu_fprintf(f, "\n"); else qemu_fprintf(f, " "); } } if (flags & CPU_DUMP_CODE) { target_ulong base = env->segs[R_CS].base + env->eip; target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD); uint8_t code; char codestr[3]; qemu_fprintf(f, "Code="); for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) { if (cpu_memory_rw_debug(cs, base - offs + i, &code, 1, 0) == 0) { snprintf(codestr, sizeof(codestr), "%02x", code); } else { snprintf(codestr, sizeof(codestr), "??"); } qemu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "", i == offs ? "<" : "", codestr, i == offs ? ">" : ""); } qemu_fprintf(f, "\n"); } } /***********************************************************/ /* x86 mmu */ /* XXX: add PGE support */ void x86_cpu_set_a20(X86CPU *cpu, int a20_state) { CPUX86State *env = &cpu->env; a20_state = (a20_state != 0); if (a20_state != ((env->a20_mask >> 20) & 1)) { CPUState *cs = CPU(cpu); qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state); /* if the cpu is currently executing code, we must unlink it and all the potentially executing TB */ cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); /* when a20 is changed, all the MMU mappings are invalid, so we must flush everything */ tlb_flush(cs); env->a20_mask = ~(1 << 20) | (a20_state << 20); } } void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) { X86CPU *cpu = env_archcpu(env); int pe_state; qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0); if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { tlb_flush(CPU(cpu)); } #ifdef TARGET_X86_64 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && (env->efer & MSR_EFER_LME)) { /* enter in long mode */ /* XXX: generate an exception */ if (!(env->cr[4] & CR4_PAE_MASK)) return; env->efer |= MSR_EFER_LMA; env->hflags |= HF_LMA_MASK; } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && (env->efer & MSR_EFER_LMA)) { /* exit long mode */ env->efer &= ~MSR_EFER_LMA; env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); env->eip &= 0xffffffff; } #endif env->cr[0] = new_cr0 | CR0_ET_MASK; /* update PE flag in hidden flags */ pe_state = (env->cr[0] & CR0_PE_MASK); env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); /* ensure that ADDSEG is always set in real mode */ env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); /* update FPU flags */ env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); } /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in the PDPT */ void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) { env->cr[3] = new_cr3; if (env->cr[0] & CR0_PG_MASK) { qemu_log_mask(CPU_LOG_MMU, "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); tlb_flush(env_cpu(env)); } } void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) { uint32_t hflags; #if defined(DEBUG_MMU) printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4); #endif if ((new_cr4 ^ env->cr[4]) & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK | CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) { tlb_flush(env_cpu(env)); } /* Clear bits we're going to recompute. */ hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK); /* SSE handling */ if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) { new_cr4 &= ~CR4_OSFXSR_MASK; } if (new_cr4 & CR4_OSFXSR_MASK) { hflags |= HF_OSFXSR_MASK; } if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) { new_cr4 &= ~CR4_SMAP_MASK; } if (new_cr4 & CR4_SMAP_MASK) { hflags |= HF_SMAP_MASK; } if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) { new_cr4 &= ~CR4_PKE_MASK; } env->cr[4] = new_cr4; env->hflags = hflags; cpu_sync_bndcs_hflags(env); } #if !defined(CONFIG_USER_ONLY) hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, MemTxAttrs *attrs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; target_ulong pde_addr, pte_addr; uint64_t pte; int32_t a20_mask; uint32_t page_offset; int page_size; *attrs = cpu_get_mem_attrs(env); a20_mask = x86_get_a20_mask(env); if (!(env->cr[0] & CR0_PG_MASK)) { pte = addr & a20_mask; page_size = 4096; } else if (env->cr[4] & CR4_PAE_MASK) { target_ulong pdpe_addr; uint64_t pde, pdpe; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { bool la57 = env->cr[4] & CR4_LA57_MASK; uint64_t pml5e_addr, pml5e; uint64_t pml4e_addr, pml4e; int32_t sext; /* test virtual address sign extension */ sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; if (sext != 0 && sext != -1) { return -1; } if (la57) { pml5e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 48) & 0x1ff) << 3)) & a20_mask; pml5e = x86_ldq_phys(cs, pml5e_addr); if (!(pml5e & PG_PRESENT_MASK)) { return -1; } } else { pml5e = env->cr[3]; } pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + (((addr >> 39) & 0x1ff) << 3)) & a20_mask; pml4e = x86_ldq_phys(cs, pml4e_addr); if (!(pml4e & PG_PRESENT_MASK)) { return -1; } pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) & a20_mask; pdpe = x86_ldq_phys(cs, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { return -1; } if (pdpe & PG_PSE_MASK) { page_size = 1024 * 1024 * 1024; pte = pdpe; goto out; } } else #endif { pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & a20_mask; pdpe = x86_ldq_phys(cs, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) return -1; } pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) & a20_mask; pde = x86_ldq_phys(cs, pde_addr); if (!(pde & PG_PRESENT_MASK)) { return -1; } if (pde & PG_PSE_MASK) { /* 2 MB page */ page_size = 2048 * 1024; pte = pde; } else { /* 4 KB page */ pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) & a20_mask; page_size = 4096; pte = x86_ldq_phys(cs, pte_addr); } if (!(pte & PG_PRESENT_MASK)) { return -1; } } else { uint32_t pde; /* page directory entry */ pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask; pde = x86_ldl_phys(cs, pde_addr); if (!(pde & PG_PRESENT_MASK)) return -1; if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); page_size = 4096 * 1024; } else { /* page directory entry */ pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask; pte = x86_ldl_phys(cs, pte_addr); if (!(pte & PG_PRESENT_MASK)) { return -1; } page_size = 4096; } pte = pte & a20_mask; } #ifdef TARGET_X86_64 out: #endif pte &= PG_ADDRESS_MASK & ~(page_size - 1); page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); return pte | page_offset; } typedef struct MCEInjectionParams { Monitor *mon; int bank; uint64_t status; uint64_t mcg_status; uint64_t addr; uint64_t misc; int flags; } MCEInjectionParams; static void emit_guest_memory_failure(MemoryFailureAction action, bool ar, bool recursive) { MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive}; qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action, &mff); } static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data) { MCEInjectionParams *params = data.host_ptr; X86CPU *cpu = X86_CPU(cs); CPUX86State *cenv = &cpu->env; uint64_t *banks = cenv->mce_banks + 4 * params->bank; g_autofree char *msg = NULL; bool need_reset = false; bool recursive; bool ar = !!(params->status & MCI_STATUS_AR); cpu_synchronize_state(cs); recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP); /* * If there is an MCE exception being processed, ignore this SRAO MCE * unless unconditional injection was requested. */ if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) { emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive); return; } if (params->status & MCI_STATUS_UC) { /* * if MSR_MCG_CTL is not all 1s, the uncorrected error * reporting is disabled */ if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) { monitor_printf(params->mon, "CPU %d: Uncorrected error reporting disabled\n", cs->cpu_index); return; } /* * if MSR_MCi_CTL is not all 1s, the uncorrected error * reporting is disabled for the bank */ if (banks[0] != ~(uint64_t)0) { monitor_printf(params->mon, "CPU %d: Uncorrected error reporting disabled for" " bank %d\n", cs->cpu_index, params->bank); return; } if (!(cenv->cr[4] & CR4_MCE_MASK)) { need_reset = true; msg = g_strdup_printf("CPU %d: MCE capability is not enabled, " "raising triple fault", cs->cpu_index); } else if (recursive) { need_reset = true; msg = g_strdup_printf("CPU %d: Previous MCE still in progress, " "raising triple fault", cs->cpu_index); } if (need_reset) { emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar, recursive); monitor_printf(params->mon, "%s", msg); qemu_log_mask(CPU_LOG_RESET, "%s\n", msg); qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); return; } if (banks[1] & MCI_STATUS_VAL) { params->status |= MCI_STATUS_OVER; } banks[2] = params->addr; banks[3] = params->misc; cenv->mcg_status = params->mcg_status; banks[1] = params->status; cpu_interrupt(cs, CPU_INTERRUPT_MCE); } else if (!(banks[1] & MCI_STATUS_VAL) || !(banks[1] & MCI_STATUS_UC)) { if (banks[1] & MCI_STATUS_VAL) { params->status |= MCI_STATUS_OVER; } banks[2] = params->addr; banks[3] = params->misc; banks[1] = params->status; } else { banks[1] |= MCI_STATUS_OVER; } emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive); } void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, uint64_t status, uint64_t mcg_status, uint64_t addr, uint64_t misc, int flags) { CPUState *cs = CPU(cpu); CPUX86State *cenv = &cpu->env; MCEInjectionParams params = { .mon = mon, .bank = bank, .status = status, .mcg_status = mcg_status, .addr = addr, .misc = misc, .flags = flags, }; unsigned bank_num = cenv->mcg_cap & 0xff; if (!cenv->mcg_cap) { monitor_printf(mon, "MCE injection not supported\n"); return; } if (bank >= bank_num) { monitor_printf(mon, "Invalid MCE bank number\n"); return; } if (!(status & MCI_STATUS_VAL)) { monitor_printf(mon, "Invalid MCE status code\n"); return; } if ((flags & MCE_INJECT_BROADCAST) && !cpu_x86_support_mca_broadcast(cenv)) { monitor_printf(mon, "Guest CPU does not support MCA broadcast\n"); return; } run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); if (flags & MCE_INJECT_BROADCAST) { CPUState *other_cs; params.bank = 1; params.status = MCI_STATUS_VAL | MCI_STATUS_UC; params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; params.addr = 0; params.misc = 0; CPU_FOREACH(other_cs) { if (other_cs == cs) { continue; } run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); } } } void cpu_report_tpr_access(CPUX86State *env, TPRAccess access) { X86CPU *cpu = env_archcpu(env); CPUState *cs = env_cpu(env); if (kvm_enabled() || whpx_enabled()) { env->tpr_access_type = access; cpu_interrupt(cs, CPU_INTERRUPT_TPR); } else if (tcg_enabled()) { cpu_restore_state(cs, cs->mem_io_pc, false); apic_handle_tpr_access_report(cpu->apic_state, env->eip, access); } } #endif /* !CONFIG_USER_ONLY */ int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, target_ulong *base, unsigned int *limit, unsigned int *flags) { CPUState *cs = env_cpu(env); SegmentCache *dt; target_ulong ptr; uint32_t e1, e2; int index; if (selector & 0x4) dt = &env->ldt; else dt = &env->gdt; index = selector & ~7; ptr = dt->base + index; if ((index + 7) > dt->limit || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0) return 0; *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); *limit = (e1 & 0xffff) | (e2 & 0x000f0000); if (e2 & DESC_G_MASK) *limit = (*limit << 12) | 0xfff; *flags = e2; return 1; } #if !defined(CONFIG_USER_ONLY) void do_cpu_init(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; CPUX86State *save = g_new(CPUX86State, 1); int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI; *save = *env; cpu_reset(cs); cs->interrupt_request = sipi; memcpy(&env->start_init_save, &save->start_init_save, offsetof(CPUX86State, end_init_save) - offsetof(CPUX86State, start_init_save)); g_free(save); if (kvm_enabled()) { kvm_arch_do_init_vcpu(cpu); } apic_init_reset(cpu->apic_state); } void do_cpu_sipi(X86CPU *cpu) { apic_sipi(cpu->apic_state); } #else void do_cpu_init(X86CPU *cpu) { } void do_cpu_sipi(X86CPU *cpu) { } #endif /* Frob eflags into and out of the CPU temporary format. */ void x86_cpu_exec_enter(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); env->df = 1 - (2 * ((env->eflags >> 10) & 1)); CC_OP = CC_OP_EFLAGS; env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); } void x86_cpu_exec_exit(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; env->eflags = cpu_compute_eflags(env); } #ifndef CONFIG_USER_ONLY uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); return address_space_ldub(as, addr, attrs, NULL); } uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); return address_space_lduw(as, addr, attrs, NULL); } uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); return address_space_ldl(as, addr, attrs, NULL); } uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); return address_space_ldq(as, addr, attrs, NULL); } void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); address_space_stb(as, addr, val, attrs, NULL); } void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); address_space_stl_notdirty(as, addr, val, attrs, NULL); } void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); address_space_stw(as, addr, val, attrs, NULL); } void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); address_space_stl(as, addr, val, attrs, NULL); } void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); address_space_stq(as, addr, val, attrs, NULL); } #endif