/* * x86 gdb server stub * * Copyright (c) 2003-2005 Fabrice Bellard * Copyright (c) 2013 SUSE LINUX Products GmbH * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/gdbstub.h" #ifdef TARGET_X86_64 static const int gpr_map[16] = { R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, 8, 9, 10, 11, 12, 13, 14, 15 }; #else #define gpr_map gpr_map32 #endif static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; /* * Keep these in sync with assignment to * gdb_num_core_regs in target/i386/cpu.c * and with the machine description */ /* * SEG: 6 segments, plus fs_base, gs_base, kernel_gs_base */ /* * general regs -----> 8 or 16 */ #define IDX_NB_IP 1 #define IDX_NB_FLAGS 1 #define IDX_NB_SEG (6 + 3) #define IDX_NB_CTL 6 #define IDX_NB_FP 16 /* * fpu regs ----------> 8 or 16 */ #define IDX_NB_MXCSR 1 /* * total ----> 8+1+1+9+6+16+8+1=50 or 16+1+1+9+6+16+16+1=66 */ #define IDX_IP_REG CPU_NB_REGS #define IDX_FLAGS_REG (IDX_IP_REG + IDX_NB_IP) #define IDX_SEG_REGS (IDX_FLAGS_REG + IDX_NB_FLAGS) #define IDX_CTL_REGS (IDX_SEG_REGS + IDX_NB_SEG) #define IDX_FP_REGS (IDX_CTL_REGS + IDX_NB_CTL) #define IDX_XMM_REGS (IDX_FP_REGS + IDX_NB_FP) #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS) #define IDX_CTL_CR0_REG (IDX_CTL_REGS + 0) #define IDX_CTL_CR2_REG (IDX_CTL_REGS + 1) #define IDX_CTL_CR3_REG (IDX_CTL_REGS + 2) #define IDX_CTL_CR4_REG (IDX_CTL_REGS + 3) #define IDX_CTL_CR8_REG (IDX_CTL_REGS + 4) #define IDX_CTL_EFER_REG (IDX_CTL_REGS + 5) #ifdef TARGET_X86_64 #define GDB_FORCE_64 1 #else #define GDB_FORCE_64 0 #endif int x86_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; uint64_t tpr; /* N.B. GDB can't deal with changes in registers or sizes in the middle of a session. So if we're in 32-bit mode on a 64-bit cpu, still act as if we're on a 64-bit cpu. */ if (n < CPU_NB_REGS) { if (TARGET_LONG_BITS == 64) { if (env->hflags & HF_CS64_MASK) { return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]); } else if (n < CPU_NB_REGS32) { return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]] & 0xffffffffUL); } else { memset(mem_buf, 0, sizeof(target_ulong)); return sizeof(target_ulong); } } else { return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]); } } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { #ifdef USE_X86LDOUBLE /* FIXME: byteswap float values - after fixing fpregs layout. */ memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10); #else memset(mem_buf, 0, 10); #endif return 10; } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { n -= IDX_XMM_REGS; if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) { stq_p(mem_buf, env->xmm_regs[n].ZMM_Q(0)); stq_p(mem_buf + 8, env->xmm_regs[n].ZMM_Q(1)); return 16; } } else { switch (n) { case IDX_IP_REG: if (TARGET_LONG_BITS == 64) { if (env->hflags & HF_CS64_MASK) { return gdb_get_reg64(mem_buf, env->eip); } else { return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL); } } else { return gdb_get_reg32(mem_buf, env->eip); } case IDX_FLAGS_REG: return gdb_get_reg32(mem_buf, env->eflags); case IDX_SEG_REGS: return gdb_get_reg32(mem_buf, env->segs[R_CS].selector); case IDX_SEG_REGS + 1: return gdb_get_reg32(mem_buf, env->segs[R_SS].selector); case IDX_SEG_REGS + 2: return gdb_get_reg32(mem_buf, env->segs[R_DS].selector); case IDX_SEG_REGS + 3: return gdb_get_reg32(mem_buf, env->segs[R_ES].selector); case IDX_SEG_REGS + 4: return gdb_get_reg32(mem_buf, env->segs[R_FS].selector); case IDX_SEG_REGS + 5: return gdb_get_reg32(mem_buf, env->segs[R_GS].selector); case IDX_SEG_REGS + 6: if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { return gdb_get_reg64(mem_buf, env->segs[R_FS].base); } return gdb_get_reg32(mem_buf, env->segs[R_FS].base); case IDX_SEG_REGS + 7: if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { return gdb_get_reg64(mem_buf, env->segs[R_GS].base); } return gdb_get_reg32(mem_buf, env->segs[R_GS].base); case IDX_SEG_REGS + 8: #ifdef TARGET_X86_64 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { return gdb_get_reg64(mem_buf, env->kernelgsbase); } return gdb_get_reg32(mem_buf, env->kernelgsbase); #else return gdb_get_reg32(mem_buf, 0); #endif case IDX_FP_REGS + 8: return gdb_get_reg32(mem_buf, env->fpuc); case IDX_FP_REGS + 9: return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11); case IDX_FP_REGS + 10: return gdb_get_reg32(mem_buf, 0); /* ftag */ case IDX_FP_REGS + 11: return gdb_get_reg32(mem_buf, 0); /* fiseg */ case IDX_FP_REGS + 12: return gdb_get_reg32(mem_buf, 0); /* fioff */ case IDX_FP_REGS + 13: return gdb_get_reg32(mem_buf, 0); /* foseg */ case IDX_FP_REGS + 14: return gdb_get_reg32(mem_buf, 0); /* fooff */ case IDX_FP_REGS + 15: return gdb_get_reg32(mem_buf, 0); /* fop */ case IDX_MXCSR_REG: return gdb_get_reg32(mem_buf, env->mxcsr); case IDX_CTL_CR0_REG: if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { return gdb_get_reg64(mem_buf, env->cr[0]); } return gdb_get_reg32(mem_buf, env->cr[0]); case IDX_CTL_CR2_REG: if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { return gdb_get_reg64(mem_buf, env->cr[2]); } return gdb_get_reg32(mem_buf, env->cr[2]); case IDX_CTL_CR3_REG: if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { return gdb_get_reg64(mem_buf, env->cr[3]); } return gdb_get_reg32(mem_buf, env->cr[3]); case IDX_CTL_CR4_REG: if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { return gdb_get_reg64(mem_buf, env->cr[4]); } return gdb_get_reg32(mem_buf, env->cr[4]); case IDX_CTL_CR8_REG: #ifdef CONFIG_SOFTMMU tpr = cpu_get_apic_tpr(cpu->apic_state); #else tpr = 0; #endif if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { return gdb_get_reg64(mem_buf, tpr); } return gdb_get_reg32(mem_buf, tpr); case IDX_CTL_EFER_REG: if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) { return gdb_get_reg64(mem_buf, env->efer); } return gdb_get_reg32(mem_buf, env->efer); } } return 0; } static int x86_cpu_gdb_load_seg(X86CPU *cpu, int sreg, uint8_t *mem_buf) { CPUX86State *env = &cpu->env; uint16_t selector = ldl_p(mem_buf); if (selector != env->segs[sreg].selector) { #if defined(CONFIG_USER_ONLY) cpu_x86_load_seg(env, sreg, selector); #else unsigned int limit, flags; target_ulong base; if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { int dpl = (env->eflags & VM_MASK) ? 3 : 0; base = selector << 4; limit = 0xffff; flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK | (dpl << DESC_DPL_SHIFT); } else { if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags)) { return 4; } } cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags); #endif } return 4; } int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; uint32_t tmp; /* N.B. GDB can't deal with changes in registers or sizes in the middle of a session. So if we're in 32-bit mode on a 64-bit cpu, still act as if we're on a 64-bit cpu. */ if (n < CPU_NB_REGS) { if (TARGET_LONG_BITS == 64) { if (env->hflags & HF_CS64_MASK) { env->regs[gpr_map[n]] = ldtul_p(mem_buf); } else if (n < CPU_NB_REGS32) { env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL; } return sizeof(target_ulong); } else if (n < CPU_NB_REGS32) { n = gpr_map32[n]; env->regs[n] &= ~0xffffffffUL; env->regs[n] |= (uint32_t)ldl_p(mem_buf); return 4; } } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { #ifdef USE_X86LDOUBLE /* FIXME: byteswap float values - after fixing fpregs layout. */ memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10); #endif return 10; } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { n -= IDX_XMM_REGS; if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) { env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf); env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8); return 16; } } else { switch (n) { case IDX_IP_REG: if (TARGET_LONG_BITS == 64) { if (env->hflags & HF_CS64_MASK) { env->eip = ldq_p(mem_buf); } else { env->eip = ldq_p(mem_buf) & 0xffffffffUL; } return 8; } else { env->eip &= ~0xffffffffUL; env->eip |= (uint32_t)ldl_p(mem_buf); return 4; } case IDX_FLAGS_REG: env->eflags = ldl_p(mem_buf); return 4; case IDX_SEG_REGS: return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf); case IDX_SEG_REGS + 1: return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf); case IDX_SEG_REGS + 2: return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf); case IDX_SEG_REGS + 3: return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf); case IDX_SEG_REGS + 4: return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf); case IDX_SEG_REGS + 5: return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf); case IDX_SEG_REGS + 6: if (env->hflags & HF_CS64_MASK) { env->segs[R_FS].base = ldq_p(mem_buf); return 8; } env->segs[R_FS].base = ldl_p(mem_buf); return 4; case IDX_SEG_REGS + 7: if (env->hflags & HF_CS64_MASK) { env->segs[R_GS].base = ldq_p(mem_buf); return 8; } env->segs[R_GS].base = ldl_p(mem_buf); return 4; case IDX_SEG_REGS + 8: #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { env->kernelgsbase = ldq_p(mem_buf); return 8; } env->kernelgsbase = ldl_p(mem_buf); #endif return 4; case IDX_FP_REGS + 8: cpu_set_fpuc(env, ldl_p(mem_buf)); return 4; case IDX_FP_REGS + 9: tmp = ldl_p(mem_buf); env->fpstt = (tmp >> 11) & 7; env->fpus = tmp & ~0x3800; return 4; case IDX_FP_REGS + 10: /* ftag */ return 4; case IDX_FP_REGS + 11: /* fiseg */ return 4; case IDX_FP_REGS + 12: /* fioff */ return 4; case IDX_FP_REGS + 13: /* foseg */ return 4; case IDX_FP_REGS + 14: /* fooff */ return 4; case IDX_FP_REGS + 15: /* fop */ return 4; case IDX_MXCSR_REG: cpu_set_mxcsr(env, ldl_p(mem_buf)); return 4; case IDX_CTL_CR0_REG: if (env->hflags & HF_CS64_MASK) { cpu_x86_update_cr0(env, ldq_p(mem_buf)); return 8; } cpu_x86_update_cr0(env, ldl_p(mem_buf)); return 4; case IDX_CTL_CR2_REG: if (env->hflags & HF_CS64_MASK) { env->cr[2] = ldq_p(mem_buf); return 8; } env->cr[2] = ldl_p(mem_buf); return 4; case IDX_CTL_CR3_REG: if (env->hflags & HF_CS64_MASK) { cpu_x86_update_cr3(env, ldq_p(mem_buf)); return 8; } cpu_x86_update_cr3(env, ldl_p(mem_buf)); return 4; case IDX_CTL_CR4_REG: if (env->hflags & HF_CS64_MASK) { cpu_x86_update_cr4(env, ldq_p(mem_buf)); return 8; } cpu_x86_update_cr4(env, ldl_p(mem_buf)); return 4; case IDX_CTL_CR8_REG: if (env->hflags & HF_CS64_MASK) { #ifdef CONFIG_SOFTMMU cpu_set_apic_tpr(cpu->apic_state, ldq_p(mem_buf)); #endif return 8; } #ifdef CONFIG_SOFTMMU cpu_set_apic_tpr(cpu->apic_state, ldl_p(mem_buf)); #endif return 4; case IDX_CTL_EFER_REG: if (env->hflags & HF_CS64_MASK) { cpu_load_efer(env, ldq_p(mem_buf)); return 8; } cpu_load_efer(env, ldl_p(mem_buf)); return 4; } } /* Unrecognised register. */ return 0; }