/* * i386 CPUID helper functions * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/cutils.h" #include "qemu/bitops.h" #include "qemu/qemu-print.h" #include "cpu.h" #include "exec/exec-all.h" #include "sysemu/kvm.h" #include "sysemu/reset.h" #include "sysemu/hvf.h" #include "sysemu/cpus.h" #include "kvm_i386.h" #include "sev_i386.h" #include "qemu/error-report.h" #include "qemu/module.h" #include "qemu/option.h" #include "qemu/config-file.h" #include "qapi/error.h" #include "qapi/qapi-visit-machine.h" #include "qapi/qapi-visit-run-state.h" #include "qapi/qmp/qdict.h" #include "qapi/qmp/qerror.h" #include "qapi/visitor.h" #include "qom/qom-qobject.h" #include "sysemu/arch_init.h" #include "qapi/qapi-commands-machine-target.h" #include "standard-headers/asm-x86/kvm_para.h" #include "sysemu/sysemu.h" #include "sysemu/tcg.h" #include "hw/qdev-properties.h" #include "hw/i386/topology.h" #ifndef CONFIG_USER_ONLY #include "exec/address-spaces.h" #include "hw/xen/xen.h" #include "hw/i386/apic_internal.h" #include "hw/boards.h" #endif #include "disas/capstone.h" /* Helpers for building CPUID[2] descriptors: */ struct CPUID2CacheDescriptorInfo { enum CacheType type; int level; int size; int line_size; int associativity; }; /* * Known CPUID 2 cache descriptors. * From Intel SDM Volume 2A, CPUID instruction */ struct CPUID2CacheDescriptorInfo cpuid2_cache_descriptors[] = { [0x06] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 8 * KiB, .associativity = 4, .line_size = 32, }, [0x08] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 16 * KiB, .associativity = 4, .line_size = 32, }, [0x09] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 32 * KiB, .associativity = 4, .line_size = 64, }, [0x0A] = { .level = 1, .type = DATA_CACHE, .size = 8 * KiB, .associativity = 2, .line_size = 32, }, [0x0C] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB, .associativity = 4, .line_size = 32, }, [0x0D] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB, .associativity = 4, .line_size = 64, }, [0x0E] = { .level = 1, .type = DATA_CACHE, .size = 24 * KiB, .associativity = 6, .line_size = 64, }, [0x1D] = { .level = 2, .type = UNIFIED_CACHE, .size = 128 * KiB, .associativity = 2, .line_size = 64, }, [0x21] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB, .associativity = 8, .line_size = 64, }, /* lines per sector is not supported cpuid2_cache_descriptor(), * so descriptors 0x22, 0x23 are not included */ [0x24] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB, .associativity = 16, .line_size = 64, }, /* lines per sector is not supported cpuid2_cache_descriptor(), * so descriptors 0x25, 0x20 are not included */ [0x2C] = { .level = 1, .type = DATA_CACHE, .size = 32 * KiB, .associativity = 8, .line_size = 64, }, [0x30] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 32 * KiB, .associativity = 8, .line_size = 64, }, [0x41] = { .level = 2, .type = UNIFIED_CACHE, .size = 128 * KiB, .associativity = 4, .line_size = 32, }, [0x42] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB, .associativity = 4, .line_size = 32, }, [0x43] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB, .associativity = 4, .line_size = 32, }, [0x44] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB, .associativity = 4, .line_size = 32, }, [0x45] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB, .associativity = 4, .line_size = 32, }, [0x46] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB, .associativity = 4, .line_size = 64, }, [0x47] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB, .associativity = 8, .line_size = 64, }, [0x48] = { .level = 2, .type = UNIFIED_CACHE, .size = 3 * MiB, .associativity = 12, .line_size = 64, }, /* Descriptor 0x49 depends on CPU family/model, so it is not included */ [0x4A] = { .level = 3, .type = UNIFIED_CACHE, .size = 6 * MiB, .associativity = 12, .line_size = 64, }, [0x4B] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB, .associativity = 16, .line_size = 64, }, [0x4C] = { .level = 3, .type = UNIFIED_CACHE, .size = 12 * MiB, .associativity = 12, .line_size = 64, }, [0x4D] = { .level = 3, .type = UNIFIED_CACHE, .size = 16 * MiB, .associativity = 16, .line_size = 64, }, [0x4E] = { .level = 2, .type = UNIFIED_CACHE, .size = 6 * MiB, .associativity = 24, .line_size = 64, }, [0x60] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB, .associativity = 8, .line_size = 64, }, [0x66] = { .level = 1, .type = DATA_CACHE, .size = 8 * KiB, .associativity = 4, .line_size = 64, }, [0x67] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB, .associativity = 4, .line_size = 64, }, [0x68] = { .level = 1, .type = DATA_CACHE, .size = 32 * KiB, .associativity = 4, .line_size = 64, }, [0x78] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB, .associativity = 4, .line_size = 64, }, /* lines per sector is not supported cpuid2_cache_descriptor(), * so descriptors 0x79, 0x7A, 0x7B, 0x7C are not included. */ [0x7D] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB, .associativity = 8, .line_size = 64, }, [0x7F] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB, .associativity = 2, .line_size = 64, }, [0x80] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB, .associativity = 8, .line_size = 64, }, [0x82] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB, .associativity = 8, .line_size = 32, }, [0x83] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB, .associativity = 8, .line_size = 32, }, [0x84] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB, .associativity = 8, .line_size = 32, }, [0x85] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB, .associativity = 8, .line_size = 32, }, [0x86] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB, .associativity = 4, .line_size = 64, }, [0x87] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB, .associativity = 8, .line_size = 64, }, [0xD0] = { .level = 3, .type = UNIFIED_CACHE, .size = 512 * KiB, .associativity = 4, .line_size = 64, }, [0xD1] = { .level = 3, .type = UNIFIED_CACHE, .size = 1 * MiB, .associativity = 4, .line_size = 64, }, [0xD2] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB, .associativity = 4, .line_size = 64, }, [0xD6] = { .level = 3, .type = UNIFIED_CACHE, .size = 1 * MiB, .associativity = 8, .line_size = 64, }, [0xD7] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB, .associativity = 8, .line_size = 64, }, [0xD8] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB, .associativity = 8, .line_size = 64, }, [0xDC] = { .level = 3, .type = UNIFIED_CACHE, .size = 1.5 * MiB, .associativity = 12, .line_size = 64, }, [0xDD] = { .level = 3, .type = UNIFIED_CACHE, .size = 3 * MiB, .associativity = 12, .line_size = 64, }, [0xDE] = { .level = 3, .type = UNIFIED_CACHE, .size = 6 * MiB, .associativity = 12, .line_size = 64, }, [0xE2] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB, .associativity = 16, .line_size = 64, }, [0xE3] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB, .associativity = 16, .line_size = 64, }, [0xE4] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB, .associativity = 16, .line_size = 64, }, [0xEA] = { .level = 3, .type = UNIFIED_CACHE, .size = 12 * MiB, .associativity = 24, .line_size = 64, }, [0xEB] = { .level = 3, .type = UNIFIED_CACHE, .size = 18 * MiB, .associativity = 24, .line_size = 64, }, [0xEC] = { .level = 3, .type = UNIFIED_CACHE, .size = 24 * MiB, .associativity = 24, .line_size = 64, }, }; /* * "CPUID leaf 2 does not report cache descriptor information, * use CPUID leaf 4 to query cache parameters" */ #define CACHE_DESCRIPTOR_UNAVAILABLE 0xFF /* * Return a CPUID 2 cache descriptor for a given cache. * If no known descriptor is found, return CACHE_DESCRIPTOR_UNAVAILABLE */ static uint8_t cpuid2_cache_descriptor(CPUCacheInfo *cache) { int i; assert(cache->size > 0); assert(cache->level > 0); assert(cache->line_size > 0); assert(cache->associativity > 0); for (i = 0; i < ARRAY_SIZE(cpuid2_cache_descriptors); i++) { struct CPUID2CacheDescriptorInfo *d = &cpuid2_cache_descriptors[i]; if (d->level == cache->level && d->type == cache->type && d->size == cache->size && d->line_size == cache->line_size && d->associativity == cache->associativity) { return i; } } return CACHE_DESCRIPTOR_UNAVAILABLE; } /* CPUID Leaf 4 constants: */ /* EAX: */ #define CACHE_TYPE_D 1 #define CACHE_TYPE_I 2 #define CACHE_TYPE_UNIFIED 3 #define CACHE_LEVEL(l) (l << 5) #define CACHE_SELF_INIT_LEVEL (1 << 8) /* EDX: */ #define CACHE_NO_INVD_SHARING (1 << 0) #define CACHE_INCLUSIVE (1 << 1) #define CACHE_COMPLEX_IDX (1 << 2) /* Encode CacheType for CPUID[4].EAX */ #define CACHE_TYPE(t) (((t) == DATA_CACHE) ? CACHE_TYPE_D : \ ((t) == INSTRUCTION_CACHE) ? CACHE_TYPE_I : \ ((t) == UNIFIED_CACHE) ? CACHE_TYPE_UNIFIED : \ 0 /* Invalid value */) /* Encode cache info for CPUID[4] */ static void encode_cache_cpuid4(CPUCacheInfo *cache, int num_apic_ids, int num_cores, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { assert(cache->size == cache->line_size * cache->associativity * cache->partitions * cache->sets); assert(num_apic_ids > 0); *eax = CACHE_TYPE(cache->type) | CACHE_LEVEL(cache->level) | (cache->self_init ? CACHE_SELF_INIT_LEVEL : 0) | ((num_cores - 1) << 26) | ((num_apic_ids - 1) << 14); assert(cache->line_size > 0); assert(cache->partitions > 0); assert(cache->associativity > 0); /* We don't implement fully-associative caches */ assert(cache->associativity < cache->sets); *ebx = (cache->line_size - 1) | ((cache->partitions - 1) << 12) | ((cache->associativity - 1) << 22); assert(cache->sets > 0); *ecx = cache->sets - 1; *edx = (cache->no_invd_sharing ? CACHE_NO_INVD_SHARING : 0) | (cache->inclusive ? CACHE_INCLUSIVE : 0) | (cache->complex_indexing ? CACHE_COMPLEX_IDX : 0); } /* Encode cache info for CPUID[0x80000005].ECX or CPUID[0x80000005].EDX */ static uint32_t encode_cache_cpuid80000005(CPUCacheInfo *cache) { assert(cache->size % 1024 == 0); assert(cache->lines_per_tag > 0); assert(cache->associativity > 0); assert(cache->line_size > 0); return ((cache->size / 1024) << 24) | (cache->associativity << 16) | (cache->lines_per_tag << 8) | (cache->line_size); } #define ASSOC_FULL 0xFF /* AMD associativity encoding used on CPUID Leaf 0x80000006: */ #define AMD_ENC_ASSOC(a) (a <= 1 ? a : \ a == 2 ? 0x2 : \ a == 4 ? 0x4 : \ a == 8 ? 0x6 : \ a == 16 ? 0x8 : \ a == 32 ? 0xA : \ a == 48 ? 0xB : \ a == 64 ? 0xC : \ a == 96 ? 0xD : \ a == 128 ? 0xE : \ a == ASSOC_FULL ? 0xF : \ 0 /* invalid value */) /* * Encode cache info for CPUID[0x80000006].ECX and CPUID[0x80000006].EDX * @l3 can be NULL. */ static void encode_cache_cpuid80000006(CPUCacheInfo *l2, CPUCacheInfo *l3, uint32_t *ecx, uint32_t *edx) { assert(l2->size % 1024 == 0); assert(l2->associativity > 0); assert(l2->lines_per_tag > 0); assert(l2->line_size > 0); *ecx = ((l2->size / 1024) << 16) | (AMD_ENC_ASSOC(l2->associativity) << 12) | (l2->lines_per_tag << 8) | (l2->line_size); if (l3) { assert(l3->size % (512 * 1024) == 0); assert(l3->associativity > 0); assert(l3->lines_per_tag > 0); assert(l3->line_size > 0); *edx = ((l3->size / (512 * 1024)) << 18) | (AMD_ENC_ASSOC(l3->associativity) << 12) | (l3->lines_per_tag << 8) | (l3->line_size); } else { *edx = 0; } } /* * Definitions used for building CPUID Leaf 0x8000001D and 0x8000001E * Please refer to the AMD64 Architecture Programmer’s Manual Volume 3. * Define the constants to build the cpu topology. Right now, TOPOEXT * feature is enabled only on EPYC. So, these constants are based on * EPYC supported configurations. We may need to handle the cases if * these values change in future. */ /* Maximum core complexes in a node */ #define MAX_CCX 2 /* Maximum cores in a core complex */ #define MAX_CORES_IN_CCX 4 /* Maximum cores in a node */ #define MAX_CORES_IN_NODE 8 /* Maximum nodes in a socket */ #define MAX_NODES_PER_SOCKET 4 /* * Figure out the number of nodes required to build this config. * Max cores in a node is 8 */ static int nodes_in_socket(int nr_cores) { int nodes; nodes = DIV_ROUND_UP(nr_cores, MAX_CORES_IN_NODE); /* Hardware does not support config with 3 nodes, return 4 in that case */ return (nodes == 3) ? 4 : nodes; } /* * Decide the number of cores in a core complex with the given nr_cores using * following set constants MAX_CCX, MAX_CORES_IN_CCX, MAX_CORES_IN_NODE and * MAX_NODES_PER_SOCKET. Maintain symmetry as much as possible * L3 cache is shared across all cores in a core complex. So, this will also * tell us how many cores are sharing the L3 cache. */ static int cores_in_core_complex(int nr_cores) { int nodes; /* Check if we can fit all the cores in one core complex */ if (nr_cores <= MAX_CORES_IN_CCX) { return nr_cores; } /* Get the number of nodes required to build this config */ nodes = nodes_in_socket(nr_cores); /* * Divide the cores accros all the core complexes * Return rounded up value */ return DIV_ROUND_UP(nr_cores, nodes * MAX_CCX); } /* Encode cache info for CPUID[8000001D] */ static void encode_cache_cpuid8000001d(CPUCacheInfo *cache, CPUState *cs, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { uint32_t l3_cores; assert(cache->size == cache->line_size * cache->associativity * cache->partitions * cache->sets); *eax = CACHE_TYPE(cache->type) | CACHE_LEVEL(cache->level) | (cache->self_init ? CACHE_SELF_INIT_LEVEL : 0); /* L3 is shared among multiple cores */ if (cache->level == 3) { l3_cores = cores_in_core_complex(cs->nr_cores); *eax |= ((l3_cores * cs->nr_threads) - 1) << 14; } else { *eax |= ((cs->nr_threads - 1) << 14); } assert(cache->line_size > 0); assert(cache->partitions > 0); assert(cache->associativity > 0); /* We don't implement fully-associative caches */ assert(cache->associativity < cache->sets); *ebx = (cache->line_size - 1) | ((cache->partitions - 1) << 12) | ((cache->associativity - 1) << 22); assert(cache->sets > 0); *ecx = cache->sets - 1; *edx = (cache->no_invd_sharing ? CACHE_NO_INVD_SHARING : 0) | (cache->inclusive ? CACHE_INCLUSIVE : 0) | (cache->complex_indexing ? CACHE_COMPLEX_IDX : 0); } /* Data structure to hold the configuration info for a given core index */ struct core_topology { /* core complex id of the current core index */ int ccx_id; /* * Adjusted core index for this core in the topology * This can be 0,1,2,3 with max 4 cores in a core complex */ int core_id; /* Node id for this core index */ int node_id; /* Number of nodes in this config */ int num_nodes; }; /* * Build the configuration closely match the EPYC hardware. Using the EPYC * hardware configuration values (MAX_CCX, MAX_CORES_IN_CCX, MAX_CORES_IN_NODE) * right now. This could change in future. * nr_cores : Total number of cores in the config * core_id : Core index of the current CPU * topo : Data structure to hold all the config info for this core index */ static void build_core_topology(int nr_cores, int core_id, struct core_topology *topo) { int nodes, cores_in_ccx; /* First get the number of nodes required */ nodes = nodes_in_socket(nr_cores); cores_in_ccx = cores_in_core_complex(nr_cores); topo->node_id = core_id / (cores_in_ccx * MAX_CCX); topo->ccx_id = (core_id % (cores_in_ccx * MAX_CCX)) / cores_in_ccx; topo->core_id = core_id % cores_in_ccx; topo->num_nodes = nodes; } /* Encode cache info for CPUID[8000001E] */ static void encode_topo_cpuid8000001e(CPUState *cs, X86CPU *cpu, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { struct core_topology topo = {0}; unsigned long nodes; int shift; build_core_topology(cs->nr_cores, cpu->core_id, &topo); *eax = cpu->apic_id; /* * CPUID_Fn8000001E_EBX * 31:16 Reserved * 15:8 Threads per core (The number of threads per core is * Threads per core + 1) * 7:0 Core id (see bit decoding below) * SMT: * 4:3 node id * 2 Core complex id * 1:0 Core id * Non SMT: * 5:4 node id * 3 Core complex id * 1:0 Core id */ if (cs->nr_threads - 1) { *ebx = ((cs->nr_threads - 1) << 8) | (topo.node_id << 3) | (topo.ccx_id << 2) | topo.core_id; } else { *ebx = (topo.node_id << 4) | (topo.ccx_id << 3) | topo.core_id; } /* * CPUID_Fn8000001E_ECX * 31:11 Reserved * 10:8 Nodes per processor (Nodes per processor is number of nodes + 1) * 7:0 Node id (see bit decoding below) * 2 Socket id * 1:0 Node id */ if (topo.num_nodes <= 4) { *ecx = ((topo.num_nodes - 1) << 8) | (cpu->socket_id << 2) | topo.node_id; } else { /* * Node id fix up. Actual hardware supports up to 4 nodes. But with * more than 32 cores, we may end up with more than 4 nodes. * Node id is a combination of socket id and node id. Only requirement * here is that this number should be unique accross the system. * Shift the socket id to accommodate more nodes. We dont expect both * socket id and node id to be big number at the same time. This is not * an ideal config but we need to to support it. Max nodes we can have * is 32 (255/8) with 8 cores per node and 255 max cores. We only need * 5 bits for nodes. Find the left most set bit to represent the total * number of nodes. find_last_bit returns last set bit(0 based). Left * shift(+1) the socket id to represent all the nodes. */ nodes = topo.num_nodes - 1; shift = find_last_bit(&nodes, 8); *ecx = ((topo.num_nodes - 1) << 8) | (cpu->socket_id << (shift + 1)) | topo.node_id; } *edx = 0; } /* * Definitions of the hardcoded cache entries we expose: * These are legacy cache values. If there is a need to change any * of these values please use builtin_x86_defs */ /* L1 data cache: */ static CPUCacheInfo legacy_l1d_cache = { .type = DATA_CACHE, .level = 1, .size = 32 * KiB, .self_init = 1, .line_size = 64, .associativity = 8, .sets = 64, .partitions = 1, .no_invd_sharing = true, }; /*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */ static CPUCacheInfo legacy_l1d_cache_amd = { .type = DATA_CACHE, .level = 1, .size = 64 * KiB, .self_init = 1, .line_size = 64, .associativity = 2, .sets = 512, .partitions = 1, .lines_per_tag = 1, .no_invd_sharing = true, }; /* L1 instruction cache: */ static CPUCacheInfo legacy_l1i_cache = { .type = INSTRUCTION_CACHE, .level = 1, .size = 32 * KiB, .self_init = 1, .line_size = 64, .associativity = 8, .sets = 64, .partitions = 1, .no_invd_sharing = true, }; /*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */ static CPUCacheInfo legacy_l1i_cache_amd = { .type = INSTRUCTION_CACHE, .level = 1, .size = 64 * KiB, .self_init = 1, .line_size = 64, .associativity = 2, .sets = 512, .partitions = 1, .lines_per_tag = 1, .no_invd_sharing = true, }; /* Level 2 unified cache: */ static CPUCacheInfo legacy_l2_cache = { .type = UNIFIED_CACHE, .level = 2, .size = 4 * MiB, .self_init = 1, .line_size = 64, .associativity = 16, .sets = 4096, .partitions = 1, .no_invd_sharing = true, }; /*FIXME: CPUID leaf 2 descriptor is inconsistent with CPUID leaf 4 */ static CPUCacheInfo legacy_l2_cache_cpuid2 = { .type = UNIFIED_CACHE, .level = 2, .size = 2 * MiB, .line_size = 64, .associativity = 8, }; /*FIXME: CPUID leaf 0x80000006 is inconsistent with leaves 2 & 4 */ static CPUCacheInfo legacy_l2_cache_amd = { .type = UNIFIED_CACHE, .level = 2, .size = 512 * KiB, .line_size = 64, .lines_per_tag = 1, .associativity = 16, .sets = 512, .partitions = 1, }; /* Level 3 unified cache: */ static CPUCacheInfo legacy_l3_cache = { .type = UNIFIED_CACHE, .level = 3, .size = 16 * MiB, .line_size = 64, .associativity = 16, .sets = 16384, .partitions = 1, .lines_per_tag = 1, .self_init = true, .inclusive = true, .complex_indexing = true, }; /* TLB definitions: */ #define L1_DTLB_2M_ASSOC 1 #define L1_DTLB_2M_ENTRIES 255 #define L1_DTLB_4K_ASSOC 1 #define L1_DTLB_4K_ENTRIES 255 #define L1_ITLB_2M_ASSOC 1 #define L1_ITLB_2M_ENTRIES 255 #define L1_ITLB_4K_ASSOC 1 #define L1_ITLB_4K_ENTRIES 255 #define L2_DTLB_2M_ASSOC 0 /* disabled */ #define L2_DTLB_2M_ENTRIES 0 /* disabled */ #define L2_DTLB_4K_ASSOC 4 #define L2_DTLB_4K_ENTRIES 512 #define L2_ITLB_2M_ASSOC 0 /* disabled */ #define L2_ITLB_2M_ENTRIES 0 /* disabled */ #define L2_ITLB_4K_ASSOC 4 #define L2_ITLB_4K_ENTRIES 512 /* CPUID Leaf 0x14 constants: */ #define INTEL_PT_MAX_SUBLEAF 0x1 /* * bit[00]: IA32_RTIT_CTL.CR3 filter can be set to 1 and IA32_RTIT_CR3_MATCH * MSR can be accessed; * bit[01]: Support Configurable PSB and Cycle-Accurate Mode; * bit[02]: Support IP Filtering, TraceStop filtering, and preservation * of Intel PT MSRs across warm reset; * bit[03]: Support MTC timing packet and suppression of COFI-based packets; */ #define INTEL_PT_MINIMAL_EBX 0xf /* * bit[00]: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1 and * IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be * accessed; * bit[01]: ToPA tables can hold any number of output entries, up to the * maximum allowed by the MaskOrTableOffset field of * IA32_RTIT_OUTPUT_MASK_PTRS; * bit[02]: Support Single-Range Output scheme; */ #define INTEL_PT_MINIMAL_ECX 0x7 /* generated packets which contain IP payloads have LIP values */ #define INTEL_PT_IP_LIP (1 << 31) #define INTEL_PT_ADDR_RANGES_NUM 0x2 /* Number of configurable address ranges */ #define INTEL_PT_ADDR_RANGES_NUM_MASK 0x3 #define INTEL_PT_MTC_BITMAP (0x0249 << 16) /* Support ART(0,3,6,9) */ #define INTEL_PT_CYCLE_BITMAP 0x1fff /* Support 0,2^(0~11) */ #define INTEL_PT_PSB_BITMAP (0x003f << 16) /* Support 2K,4K,8K,16K,32K,64K */ static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1, uint32_t vendor2, uint32_t vendor3) { int i; for (i = 0; i < 4; i++) { dst[i] = vendor1 >> (8 * i); dst[i + 4] = vendor2 >> (8 * i); dst[i + 8] = vendor3 >> (8 * i); } dst[CPUID_VENDOR_SZ] = '\0'; } #define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE) #define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \ CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC) #define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \ CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \ CPUID_PSE36 | CPUID_FXSR) #define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE) #define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \ CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \ CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \ CPUID_PAE | CPUID_SEP | CPUID_APIC) #define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \ CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \ CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \ CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \ CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS | CPUID_DE) /* partly implemented: CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) */ /* missing: CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */ #define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \ CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \ CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \ CPUID_EXT_XSAVE | /* CPUID_EXT_OSXSAVE is dynamic */ \ CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR | \ CPUID_EXT_RDRAND) /* missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX, CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA, CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_AVX, CPUID_EXT_F16C */ #ifdef TARGET_X86_64 #define TCG_EXT2_X86_64_FEATURES (CPUID_EXT2_SYSCALL | CPUID_EXT2_LM) #else #define TCG_EXT2_X86_64_FEATURES 0 #endif #define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \ CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \ CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_PDPE1GB | \ TCG_EXT2_X86_64_FEATURES) #define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \ CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A) #define TCG_EXT4_FEATURES 0 #define TCG_SVM_FEATURES CPUID_SVM_NPT #define TCG_KVM_FEATURES 0 #define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP | \ CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX | \ CPUID_7_0_EBX_PCOMMIT | CPUID_7_0_EBX_CLFLUSHOPT | \ CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_FSGSBASE | \ CPUID_7_0_EBX_ERMS) /* missing: CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2, CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM, CPUID_7_0_EBX_RDSEED */ #define TCG_7_0_ECX_FEATURES (CPUID_7_0_ECX_PKU | \ /* CPUID_7_0_ECX_OSPKE is dynamic */ \ CPUID_7_0_ECX_LA57) #define TCG_7_0_EDX_FEATURES 0 #define TCG_7_1_EAX_FEATURES 0 #define TCG_APM_FEATURES 0 #define TCG_6_EAX_FEATURES CPUID_6_EAX_ARAT #define TCG_XSAVE_FEATURES (CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XGETBV1) /* missing: CPUID_XSAVE_XSAVEC, CPUID_XSAVE_XSAVES */ typedef enum FeatureWordType { CPUID_FEATURE_WORD, MSR_FEATURE_WORD, } FeatureWordType; typedef struct FeatureWordInfo { FeatureWordType type; /* feature flags names are taken from "Intel Processor Identification and * the CPUID Instruction" and AMD's "CPUID Specification". * In cases of disagreement between feature naming conventions, * aliases may be added. */ const char *feat_names[64]; union { /* If type==CPUID_FEATURE_WORD */ struct { uint32_t eax; /* Input EAX for CPUID */ bool needs_ecx; /* CPUID instruction uses ECX as input */ uint32_t ecx; /* Input ECX value for CPUID */ int reg; /* output register (R_* constant) */ } cpuid; /* If type==MSR_FEATURE_WORD */ struct { uint32_t index; } msr; }; uint64_t tcg_features; /* Feature flags supported by TCG */ uint64_t unmigratable_flags; /* Feature flags known to be unmigratable */ uint64_t migratable_flags; /* Feature flags known to be migratable */ /* Features that shouldn't be auto-enabled by "-cpu host" */ uint64_t no_autoenable_flags; } FeatureWordInfo; static FeatureWordInfo feature_word_info[FEATURE_WORDS] = { [FEAT_1_EDX] = { .type = CPUID_FEATURE_WORD, .feat_names = { "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov", "pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */, NULL, "ds" /* Intel dts */, "acpi", "mmx", "fxsr", "sse", "sse2", "ss", "ht" /* Intel htt */, "tm", "ia64", "pbe", }, .cpuid = {.eax = 1, .reg = R_EDX, }, .tcg_features = TCG_FEATURES, }, [FEAT_1_ECX] = { .type = CPUID_FEATURE_WORD, .feat_names = { "pni" /* Intel,AMD sse3 */, "pclmulqdq", "dtes64", "monitor", "ds-cpl", "vmx", "smx", "est", "tm2", "ssse3", "cid", NULL, "fma", "cx16", "xtpr", "pdcm", NULL, "pcid", "dca", "sse4.1", "sse4.2", "x2apic", "movbe", "popcnt", "tsc-deadline", "aes", "xsave", NULL /* osxsave */, "avx", "f16c", "rdrand", "hypervisor", }, .cpuid = { .eax = 1, .reg = R_ECX, }, .tcg_features = TCG_EXT_FEATURES, }, /* Feature names that are already defined on feature_name[] but * are set on CPUID[8000_0001].EDX on AMD CPUs don't have their * names on feat_names below. They are copied automatically * to features[FEAT_8000_0001_EDX] if and only if CPU vendor is AMD. */ [FEAT_8000_0001_EDX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */, NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */, NULL /* cx8 */, NULL /* apic */, NULL, "syscall", NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */, NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */, "nx", NULL, "mmxext", NULL /* mmx */, NULL /* fxsr */, "fxsr-opt", "pdpe1gb", "rdtscp", NULL, "lm", "3dnowext", "3dnow", }, .cpuid = { .eax = 0x80000001, .reg = R_EDX, }, .tcg_features = TCG_EXT2_FEATURES, }, [FEAT_8000_0001_ECX] = { .type = CPUID_FEATURE_WORD, .feat_names = { "lahf-lm", "cmp-legacy", "svm", "extapic", "cr8legacy", "abm", "sse4a", "misalignsse", "3dnowprefetch", "osvw", "ibs", "xop", "skinit", "wdt", NULL, "lwp", "fma4", "tce", NULL, "nodeid-msr", NULL, "tbm", "topoext", "perfctr-core", "perfctr-nb", NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 0x80000001, .reg = R_ECX, }, .tcg_features = TCG_EXT3_FEATURES, /* * TOPOEXT is always allowed but can't be enabled blindly by * "-cpu host", as it requires consistent cache topology info * to be provided so it doesn't confuse guests. */ .no_autoenable_flags = CPUID_EXT3_TOPOEXT, }, [FEAT_C000_0001_EDX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL, NULL, "xstore", "xstore-en", NULL, NULL, "xcrypt", "xcrypt-en", "ace2", "ace2-en", "phe", "phe-en", "pmm", "pmm-en", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 0xC0000001, .reg = R_EDX, }, .tcg_features = TCG_EXT4_FEATURES, }, [FEAT_KVM] = { .type = CPUID_FEATURE_WORD, .feat_names = { "kvmclock", "kvm-nopiodelay", "kvm-mmu", "kvmclock", "kvm-asyncpf", "kvm-steal-time", "kvm-pv-eoi", "kvm-pv-unhalt", NULL, "kvm-pv-tlb-flush", NULL, "kvm-pv-ipi", "kvm-poll-control", "kvm-pv-sched-yield", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "kvmclock-stable-bit", NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = KVM_CPUID_FEATURES, .reg = R_EAX, }, .tcg_features = TCG_KVM_FEATURES, }, [FEAT_KVM_HINTS] = { .type = CPUID_FEATURE_WORD, .feat_names = { "kvm-hint-dedicated", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = KVM_CPUID_FEATURES, .reg = R_EDX, }, .tcg_features = TCG_KVM_FEATURES, /* * KVM hints aren't auto-enabled by -cpu host, they need to be * explicitly enabled in the command-line. */ .no_autoenable_flags = ~0U, }, /* * .feat_names are commented out for Hyper-V enlightenments because we * don't want to have two different ways for enabling them on QEMU command * line. Some features (e.g. "hyperv_time", "hyperv_vapic", ...) require * enabling several feature bits simultaneously, exposing these bits * individually may just confuse guests. */ [FEAT_HYPERV_EAX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL /* hv_msr_vp_runtime_access */, NULL /* hv_msr_time_refcount_access */, NULL /* hv_msr_synic_access */, NULL /* hv_msr_stimer_access */, NULL /* hv_msr_apic_access */, NULL /* hv_msr_hypercall_access */, NULL /* hv_vpindex_access */, NULL /* hv_msr_reset_access */, NULL /* hv_msr_stats_access */, NULL /* hv_reftsc_access */, NULL /* hv_msr_idle_access */, NULL /* hv_msr_frequency_access */, NULL /* hv_msr_debug_access */, NULL /* hv_msr_reenlightenment_access */, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 0x40000003, .reg = R_EAX, }, }, [FEAT_HYPERV_EBX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL /* hv_create_partitions */, NULL /* hv_access_partition_id */, NULL /* hv_access_memory_pool */, NULL /* hv_adjust_message_buffers */, NULL /* hv_post_messages */, NULL /* hv_signal_events */, NULL /* hv_create_port */, NULL /* hv_connect_port */, NULL /* hv_access_stats */, NULL, NULL, NULL /* hv_debugging */, NULL /* hv_cpu_power_management */, NULL /* hv_configure_profiler */, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 0x40000003, .reg = R_EBX, }, }, [FEAT_HYPERV_EDX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL /* hv_mwait */, NULL /* hv_guest_debugging */, NULL /* hv_perf_monitor */, NULL /* hv_cpu_dynamic_part */, NULL /* hv_hypercall_params_xmm */, NULL /* hv_guest_idle_state */, NULL, NULL, NULL, NULL, NULL /* hv_guest_crash_msr */, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 0x40000003, .reg = R_EDX, }, }, [FEAT_HV_RECOMM_EAX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL /* hv_recommend_pv_as_switch */, NULL /* hv_recommend_pv_tlbflush_local */, NULL /* hv_recommend_pv_tlbflush_remote */, NULL /* hv_recommend_msr_apic_access */, NULL /* hv_recommend_msr_reset */, NULL /* hv_recommend_relaxed_timing */, NULL /* hv_recommend_dma_remapping */, NULL /* hv_recommend_int_remapping */, NULL /* hv_recommend_x2apic_msrs */, NULL /* hv_recommend_autoeoi_deprecation */, NULL /* hv_recommend_pv_ipi */, NULL /* hv_recommend_ex_hypercalls */, NULL /* hv_hypervisor_is_nested */, NULL /* hv_recommend_int_mbec */, NULL /* hv_recommend_evmcs */, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 0x40000004, .reg = R_EAX, }, }, [FEAT_HV_NESTED_EAX] = { .type = CPUID_FEATURE_WORD, .cpuid = { .eax = 0x4000000A, .reg = R_EAX, }, }, [FEAT_SVM] = { .type = CPUID_FEATURE_WORD, .feat_names = { "npt", "lbrv", "svm-lock", "nrip-save", "tsc-scale", "vmcb-clean", "flushbyasid", "decodeassists", NULL, NULL, "pause-filter", NULL, "pfthreshold", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 0x8000000A, .reg = R_EDX, }, .tcg_features = TCG_SVM_FEATURES, }, [FEAT_7_0_EBX] = { .type = CPUID_FEATURE_WORD, .feat_names = { "fsgsbase", "tsc-adjust", NULL, "bmi1", "hle", "avx2", NULL, "smep", "bmi2", "erms", "invpcid", "rtm", NULL, NULL, "mpx", NULL, "avx512f", "avx512dq", "rdseed", "adx", "smap", "avx512ifma", "pcommit", "clflushopt", "clwb", "intel-pt", "avx512pf", "avx512er", "avx512cd", "sha-ni", "avx512bw", "avx512vl", }, .cpuid = { .eax = 7, .needs_ecx = true, .ecx = 0, .reg = R_EBX, }, .tcg_features = TCG_7_0_EBX_FEATURES, }, [FEAT_7_0_ECX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL, "avx512vbmi", "umip", "pku", NULL /* ospke */, NULL, "avx512vbmi2", NULL, "gfni", "vaes", "vpclmulqdq", "avx512vnni", "avx512bitalg", NULL, "avx512-vpopcntdq", NULL, "la57", NULL, NULL, NULL, NULL, NULL, "rdpid", NULL, NULL, "cldemote", NULL, "movdiri", "movdir64b", NULL, NULL, NULL, }, .cpuid = { .eax = 7, .needs_ecx = true, .ecx = 0, .reg = R_ECX, }, .tcg_features = TCG_7_0_ECX_FEATURES, }, [FEAT_7_0_EDX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL, NULL, "avx512-4vnniw", "avx512-4fmaps", NULL, NULL, NULL, NULL, NULL, NULL, "md-clear", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL /* pconfig */, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "spec-ctrl", "stibp", NULL, "arch-capabilities", "core-capability", "ssbd", }, .cpuid = { .eax = 7, .needs_ecx = true, .ecx = 0, .reg = R_EDX, }, .tcg_features = TCG_7_0_EDX_FEATURES, }, [FEAT_7_1_EAX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL, NULL, NULL, NULL, NULL, "avx512-bf16", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 7, .needs_ecx = true, .ecx = 1, .reg = R_EAX, }, .tcg_features = TCG_7_1_EAX_FEATURES, }, [FEAT_8000_0007_EDX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "invtsc", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 0x80000007, .reg = R_EDX, }, .tcg_features = TCG_APM_FEATURES, .unmigratable_flags = CPUID_APM_INVTSC, }, [FEAT_8000_0008_EBX] = { .type = CPUID_FEATURE_WORD, .feat_names = { "clzero", NULL, "xsaveerptr", NULL, NULL, NULL, NULL, NULL, NULL, "wbnoinvd", NULL, NULL, "ibpb", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "amd-ssbd", "virt-ssbd", "amd-no-ssb", NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 0x80000008, .reg = R_EBX, }, .tcg_features = 0, .unmigratable_flags = 0, }, [FEAT_XSAVE] = { .type = CPUID_FEATURE_WORD, .feat_names = { "xsaveopt", "xsavec", "xgetbv1", "xsaves", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 0xd, .needs_ecx = true, .ecx = 1, .reg = R_EAX, }, .tcg_features = TCG_XSAVE_FEATURES, }, [FEAT_6_EAX] = { .type = CPUID_FEATURE_WORD, .feat_names = { NULL, NULL, "arat", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .cpuid = { .eax = 6, .reg = R_EAX, }, .tcg_features = TCG_6_EAX_FEATURES, }, [FEAT_XSAVE_COMP_LO] = { .type = CPUID_FEATURE_WORD, .cpuid = { .eax = 0xD, .needs_ecx = true, .ecx = 0, .reg = R_EAX, }, .tcg_features = ~0U, .migratable_flags = XSTATE_FP_MASK | XSTATE_SSE_MASK | XSTATE_YMM_MASK | XSTATE_BNDREGS_MASK | XSTATE_BNDCSR_MASK | XSTATE_OPMASK_MASK | XSTATE_ZMM_Hi256_MASK | XSTATE_Hi16_ZMM_MASK | XSTATE_PKRU_MASK, }, [FEAT_XSAVE_COMP_HI] = { .type = CPUID_FEATURE_WORD, .cpuid = { .eax = 0xD, .needs_ecx = true, .ecx = 0, .reg = R_EDX, }, .tcg_features = ~0U, }, /*Below are MSR exposed features*/ [FEAT_ARCH_CAPABILITIES] = { .type = MSR_FEATURE_WORD, .feat_names = { "rdctl-no", "ibrs-all", "rsba", "skip-l1dfl-vmentry", "ssb-no", "mds-no", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .msr = { .index = MSR_IA32_ARCH_CAPABILITIES, }, }, [FEAT_CORE_CAPABILITY] = { .type = MSR_FEATURE_WORD, .feat_names = { NULL, NULL, NULL, NULL, NULL, "split-lock-detect", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .msr = { .index = MSR_IA32_CORE_CAPABILITY, }, }, [FEAT_VMX_PROCBASED_CTLS] = { .type = MSR_FEATURE_WORD, .feat_names = { NULL, NULL, "vmx-vintr-pending", "vmx-tsc-offset", NULL, NULL, NULL, "vmx-hlt-exit", NULL, "vmx-invlpg-exit", "vmx-mwait-exit", "vmx-rdpmc-exit", "vmx-rdtsc-exit", NULL, NULL, "vmx-cr3-load-noexit", "vmx-cr3-store-noexit", NULL, NULL, "vmx-cr8-load-exit", "vmx-cr8-store-exit", "vmx-flexpriority", "vmx-vnmi-pending", "vmx-movdr-exit", "vmx-io-exit", "vmx-io-bitmap", NULL, "vmx-mtf", "vmx-msr-bitmap", "vmx-monitor-exit", "vmx-pause-exit", "vmx-secondary-ctls", }, .msr = { .index = MSR_IA32_VMX_TRUE_PROCBASED_CTLS, } }, [FEAT_VMX_SECONDARY_CTLS] = { .type = MSR_FEATURE_WORD, .feat_names = { "vmx-apicv-xapic", "vmx-ept", "vmx-desc-exit", "vmx-rdtscp-exit", "vmx-apicv-x2apic", "vmx-vpid", "vmx-wbinvd-exit", "vmx-unrestricted-guest", "vmx-apicv-register", "vmx-apicv-vid", "vmx-ple", "vmx-rdrand-exit", "vmx-invpcid-exit", "vmx-vmfunc", "vmx-shadow-vmcs", "vmx-encls-exit", "vmx-rdseed-exit", "vmx-pml", NULL, NULL, "vmx-xsaves", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .msr = { .index = MSR_IA32_VMX_PROCBASED_CTLS2, } }, [FEAT_VMX_PINBASED_CTLS] = { .type = MSR_FEATURE_WORD, .feat_names = { "vmx-intr-exit", NULL, NULL, "vmx-nmi-exit", NULL, "vmx-vnmi", "vmx-preemption-timer", "vmx-posted-intr", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .msr = { .index = MSR_IA32_VMX_TRUE_PINBASED_CTLS, } }, [FEAT_VMX_EXIT_CTLS] = { .type = MSR_FEATURE_WORD, /* * VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE is copied from * the LM CPUID bit. */ .feat_names = { NULL, NULL, "vmx-exit-nosave-debugctl", NULL, NULL, NULL, NULL, NULL, NULL, NULL /* vmx-exit-host-addr-space-size */, NULL, NULL, "vmx-exit-load-perf-global-ctrl", NULL, NULL, "vmx-exit-ack-intr", NULL, NULL, "vmx-exit-save-pat", "vmx-exit-load-pat", "vmx-exit-save-efer", "vmx-exit-load-efer", "vmx-exit-save-preemption-timer", "vmx-exit-clear-bndcfgs", NULL, "vmx-exit-clear-rtit-ctl", NULL, NULL, NULL, NULL, NULL, NULL, }, .msr = { .index = MSR_IA32_VMX_TRUE_EXIT_CTLS, } }, [FEAT_VMX_ENTRY_CTLS] = { .type = MSR_FEATURE_WORD, .feat_names = { NULL, NULL, "vmx-entry-noload-debugctl", NULL, NULL, NULL, NULL, NULL, NULL, "vmx-entry-ia32e-mode", NULL, NULL, NULL, "vmx-entry-load-perf-global-ctrl", "vmx-entry-load-pat", "vmx-entry-load-efer", "vmx-entry-load-bndcfgs", NULL, "vmx-entry-load-rtit-ctl", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .msr = { .index = MSR_IA32_VMX_TRUE_ENTRY_CTLS, } }, [FEAT_VMX_MISC] = { .type = MSR_FEATURE_WORD, .feat_names = { NULL, NULL, NULL, NULL, NULL, "vmx-store-lma", "vmx-activity-hlt", "vmx-activity-shutdown", "vmx-activity-wait-sipi", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "vmx-vmwrite-vmexit-fields", "vmx-zero-len-inject", NULL, }, .msr = { .index = MSR_IA32_VMX_MISC, } }, [FEAT_VMX_EPT_VPID_CAPS] = { .type = MSR_FEATURE_WORD, .feat_names = { "vmx-ept-execonly", NULL, NULL, NULL, NULL, NULL, "vmx-page-walk-4", "vmx-page-walk-5", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "vmx-ept-2mb", "vmx-ept-1gb", NULL, NULL, "vmx-invept", "vmx-eptad", "vmx-ept-advanced-exitinfo", NULL, NULL, "vmx-invept-single-context", "vmx-invept-all-context", NULL, NULL, NULL, NULL, NULL, "vmx-invvpid", NULL, NULL, NULL, NULL, NULL, NULL, NULL, "vmx-invvpid-single-addr", "vmx-invept-single-context", "vmx-invvpid-all-context", "vmx-invept-single-context-noglobals", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, .msr = { .index = MSR_IA32_VMX_EPT_VPID_CAP, } }, [FEAT_VMX_BASIC] = { .type = MSR_FEATURE_WORD, .feat_names = { [54] = "vmx-ins-outs", [55] = "vmx-true-ctls", }, .msr = { .index = MSR_IA32_VMX_BASIC, }, /* Just to be safe - we don't support setting the MSEG version field. */ .no_autoenable_flags = MSR_VMX_BASIC_DUAL_MONITOR, }, [FEAT_VMX_VMFUNC] = { .type = MSR_FEATURE_WORD, .feat_names = { [0] = "vmx-eptp-switching", }, .msr = { .index = MSR_IA32_VMX_VMFUNC, } }, }; typedef struct FeatureMask { FeatureWord index; uint64_t mask; } FeatureMask; typedef struct FeatureDep { FeatureMask from, to; } FeatureDep; static FeatureDep feature_dependencies[] = { { .from = { FEAT_7_0_EDX, CPUID_7_0_EDX_ARCH_CAPABILITIES }, .to = { FEAT_ARCH_CAPABILITIES, ~0ull }, }, { .from = { FEAT_7_0_EDX, CPUID_7_0_EDX_CORE_CAPABILITY }, .to = { FEAT_CORE_CAPABILITY, ~0ull }, }, { .from = { FEAT_1_ECX, CPUID_EXT_VMX }, .to = { FEAT_VMX_PROCBASED_CTLS, ~0ull }, }, { .from = { FEAT_1_ECX, CPUID_EXT_VMX }, .to = { FEAT_VMX_PINBASED_CTLS, ~0ull }, }, { .from = { FEAT_1_ECX, CPUID_EXT_VMX }, .to = { FEAT_VMX_EXIT_CTLS, ~0ull }, }, { .from = { FEAT_1_ECX, CPUID_EXT_VMX }, .to = { FEAT_VMX_ENTRY_CTLS, ~0ull }, }, { .from = { FEAT_1_ECX, CPUID_EXT_VMX }, .to = { FEAT_VMX_MISC, ~0ull }, }, { .from = { FEAT_1_ECX, CPUID_EXT_VMX }, .to = { FEAT_VMX_BASIC, ~0ull }, }, { .from = { FEAT_8000_0001_EDX, CPUID_EXT2_LM }, .to = { FEAT_VMX_ENTRY_CTLS, VMX_VM_ENTRY_IA32E_MODE }, }, { .from = { FEAT_VMX_PROCBASED_CTLS, VMX_CPU_BASED_ACTIVATE_SECONDARY_CONTROLS }, .to = { FEAT_VMX_SECONDARY_CTLS, ~0ull }, }, { .from = { FEAT_XSAVE, CPUID_XSAVE_XSAVES }, .to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_XSAVES }, }, { .from = { FEAT_1_ECX, CPUID_EXT_RDRAND }, .to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_RDRAND_EXITING }, }, { .from = { FEAT_7_0_EBX, CPUID_7_0_EBX_INVPCID }, .to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_INVPCID }, }, { .from = { FEAT_7_0_EBX, CPUID_7_0_EBX_RDSEED }, .to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_RDSEED_EXITING }, }, { .from = { FEAT_8000_0001_EDX, CPUID_EXT2_RDTSCP }, .to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_RDTSCP }, }, { .from = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_EPT }, .to = { FEAT_VMX_EPT_VPID_CAPS, 0xffffffffull }, }, { .from = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_EPT }, .to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_UNRESTRICTED_GUEST }, }, { .from = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_VPID }, .to = { FEAT_VMX_EPT_VPID_CAPS, 0xffffffffull << 32 }, }, { .from = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_VMFUNC }, .to = { FEAT_VMX_VMFUNC, ~0ull }, }, }; typedef struct X86RegisterInfo32 { /* Name of register */ const char *name; /* QAPI enum value register */ X86CPURegister32 qapi_enum; } X86RegisterInfo32; #define REGISTER(reg) \ [R_##reg] = { .name = #reg, .qapi_enum = X86_CPU_REGISTER32_##reg } static const X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = { REGISTER(EAX), REGISTER(ECX), REGISTER(EDX), REGISTER(EBX), REGISTER(ESP), REGISTER(EBP), REGISTER(ESI), REGISTER(EDI), }; #undef REGISTER typedef struct ExtSaveArea { uint32_t feature, bits; uint32_t offset, size; } ExtSaveArea; static const ExtSaveArea x86_ext_save_areas[] = { [XSTATE_FP_BIT] = { /* x87 FP state component is always enabled if XSAVE is supported */ .feature = FEAT_1_ECX, .bits = CPUID_EXT_XSAVE, /* x87 state is in the legacy region of the XSAVE area */ .offset = 0, .size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader), }, [XSTATE_SSE_BIT] = { /* SSE state component is always enabled if XSAVE is supported */ .feature = FEAT_1_ECX, .bits = CPUID_EXT_XSAVE, /* SSE state is in the legacy region of the XSAVE area */ .offset = 0, .size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader), }, [XSTATE_YMM_BIT] = { .feature = FEAT_1_ECX, .bits = CPUID_EXT_AVX, .offset = offsetof(X86XSaveArea, avx_state), .size = sizeof(XSaveAVX) }, [XSTATE_BNDREGS_BIT] = { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX, .offset = offsetof(X86XSaveArea, bndreg_state), .size = sizeof(XSaveBNDREG) }, [XSTATE_BNDCSR_BIT] = { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX, .offset = offsetof(X86XSaveArea, bndcsr_state), .size = sizeof(XSaveBNDCSR) }, [XSTATE_OPMASK_BIT] = { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F, .offset = offsetof(X86XSaveArea, opmask_state), .size = sizeof(XSaveOpmask) }, [XSTATE_ZMM_Hi256_BIT] = { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F, .offset = offsetof(X86XSaveArea, zmm_hi256_state), .size = sizeof(XSaveZMM_Hi256) }, [XSTATE_Hi16_ZMM_BIT] = { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F, .offset = offsetof(X86XSaveArea, hi16_zmm_state), .size = sizeof(XSaveHi16_ZMM) }, [XSTATE_PKRU_BIT] = { .feature = FEAT_7_0_ECX, .bits = CPUID_7_0_ECX_PKU, .offset = offsetof(X86XSaveArea, pkru_state), .size = sizeof(XSavePKRU) }, }; static uint32_t xsave_area_size(uint64_t mask) { int i; uint64_t ret = 0; for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) { const ExtSaveArea *esa = &x86_ext_save_areas[i]; if ((mask >> i) & 1) { ret = MAX(ret, esa->offset + esa->size); } } return ret; } static inline bool accel_uses_host_cpuid(void) { return kvm_enabled() || hvf_enabled(); } static inline uint64_t x86_cpu_xsave_components(X86CPU *cpu) { return ((uint64_t)cpu->env.features[FEAT_XSAVE_COMP_HI]) << 32 | cpu->env.features[FEAT_XSAVE_COMP_LO]; } const char *get_register_name_32(unsigned int reg) { if (reg >= CPU_NB_REGS32) { return NULL; } return x86_reg_info_32[reg].name; } /* * Returns the set of feature flags that are supported and migratable by * QEMU, for a given FeatureWord. */ static uint64_t x86_cpu_get_migratable_flags(FeatureWord w) { FeatureWordInfo *wi = &feature_word_info[w]; uint64_t r = 0; int i; for (i = 0; i < 64; i++) { uint64_t f = 1ULL << i; /* If the feature name is known, it is implicitly considered migratable, * unless it is explicitly set in unmigratable_flags */ if ((wi->migratable_flags & f) || (wi->feat_names[i] && !(wi->unmigratable_flags & f))) { r |= f; } } return r; } void host_cpuid(uint32_t function, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { uint32_t vec[4]; #ifdef __x86_64__ asm volatile("cpuid" : "=a"(vec[0]), "=b"(vec[1]), "=c"(vec[2]), "=d"(vec[3]) : "0"(function), "c"(count) : "cc"); #elif defined(__i386__) asm volatile("pusha \n\t" "cpuid \n\t" "mov %%eax, 0(%2) \n\t" "mov %%ebx, 4(%2) \n\t" "mov %%ecx, 8(%2) \n\t" "mov %%edx, 12(%2) \n\t" "popa" : : "a"(function), "c"(count), "S"(vec) : "memory", "cc"); #else abort(); #endif if (eax) *eax = vec[0]; if (ebx) *ebx = vec[1]; if (ecx) *ecx = vec[2]; if (edx) *edx = vec[3]; } void host_vendor_fms(char *vendor, int *family, int *model, int *stepping) { uint32_t eax, ebx, ecx, edx; host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx); x86_cpu_vendor_words2str(vendor, ebx, edx, ecx); host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx); if (family) { *family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF); } if (model) { *model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12); } if (stepping) { *stepping = eax & 0x0F; } } /* CPU class name definitions: */ /* Return type name for a given CPU model name * Caller is responsible for freeing the returned string. */ static char *x86_cpu_type_name(const char *model_name) { return g_strdup_printf(X86_CPU_TYPE_NAME("%s"), model_name); } static ObjectClass *x86_cpu_class_by_name(const char *cpu_model) { ObjectClass *oc; char *typename = x86_cpu_type_name(cpu_model); oc = object_class_by_name(typename); g_free(typename); return oc; } static char *x86_cpu_class_get_model_name(X86CPUClass *cc) { const char *class_name = object_class_get_name(OBJECT_CLASS(cc)); assert(g_str_has_suffix(class_name, X86_CPU_TYPE_SUFFIX)); return g_strndup(class_name, strlen(class_name) - strlen(X86_CPU_TYPE_SUFFIX)); } typedef struct PropValue { const char *prop, *value; } PropValue; typedef struct X86CPUVersionDefinition { X86CPUVersion version; const char *alias; PropValue *props; } X86CPUVersionDefinition; /* Base definition for a CPU model */ typedef struct X86CPUDefinition { const char *name; uint32_t level; uint32_t xlevel; /* vendor is zero-terminated, 12 character ASCII string */ char vendor[CPUID_VENDOR_SZ + 1]; int family; int model; int stepping; FeatureWordArray features; const char *model_id; CPUCaches *cache_info; /* * Definitions for alternative versions of CPU model. * List is terminated by item with version == 0. * If NULL, version 1 will be registered automatically. */ const X86CPUVersionDefinition *versions; } X86CPUDefinition; /* Reference to a specific CPU model version */ struct X86CPUModel { /* Base CPU definition */ X86CPUDefinition *cpudef; /* CPU model version */ X86CPUVersion version; /* * If true, this is an alias CPU model. * This matters only for "-cpu help" and query-cpu-definitions */ bool is_alias; }; /* Get full model name for CPU version */ static char *x86_cpu_versioned_model_name(X86CPUDefinition *cpudef, X86CPUVersion version) { assert(version > 0); return g_strdup_printf("%s-v%d", cpudef->name, (int)version); } static const X86CPUVersionDefinition *x86_cpu_def_get_versions(X86CPUDefinition *def) { /* When X86CPUDefinition::versions is NULL, we register only v1 */ static const X86CPUVersionDefinition default_version_list[] = { { 1 }, { /* end of list */ } }; return def->versions ?: default_version_list; } static CPUCaches epyc_cache_info = { .l1d_cache = &(CPUCacheInfo) { .type = DATA_CACHE, .level = 1, .size = 32 * KiB, .line_size = 64, .associativity = 8, .partitions = 1, .sets = 64, .lines_per_tag = 1, .self_init = 1, .no_invd_sharing = true, }, .l1i_cache = &(CPUCacheInfo) { .type = INSTRUCTION_CACHE, .level = 1, .size = 64 * KiB, .line_size = 64, .associativity = 4, .partitions = 1, .sets = 256, .lines_per_tag = 1, .self_init = 1, .no_invd_sharing = true, }, .l2_cache = &(CPUCacheInfo) { .type = UNIFIED_CACHE, .level = 2, .size = 512 * KiB, .line_size = 64, .associativity = 8, .partitions = 1, .sets = 1024, .lines_per_tag = 1, }, .l3_cache = &(CPUCacheInfo) { .type = UNIFIED_CACHE, .level = 3, .size = 8 * MiB, .line_size = 64, .associativity = 16, .partitions = 1, .sets = 8192, .lines_per_tag = 1, .self_init = true, .inclusive = true, .complex_indexing = true, }, }; static X86CPUDefinition builtin_x86_defs[] = { { .name = "qemu64", .level = 0xd, .vendor = CPUID_VENDOR_AMD, .family = 6, .model = 6, .stepping = 3, .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_CX16, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM, .xlevel = 0x8000000A, .model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION, }, { .name = "phenom", .level = 5, .vendor = CPUID_VENDOR_AMD, .family = 16, .model = 2, .stepping = 3, /* Missing: CPUID_HT */ .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36 | CPUID_VME, .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 | CPUID_EXT_POPCNT, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT | CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP, /* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC, CPUID_EXT3_CR8LEG, CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH, CPUID_EXT3_OSVW, CPUID_EXT3_IBS */ .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A, /* Missing: CPUID_SVM_LBRV */ .features[FEAT_SVM] = CPUID_SVM_NPT, .xlevel = 0x8000001A, .model_id = "AMD Phenom(tm) 9550 Quad-Core Processor" }, { .name = "core2duo", .level = 10, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 15, .stepping = 11, /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */ .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36 | CPUID_VME | CPUID_ACPI | CPUID_SS, /* Missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_EST, * CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_VMX */ .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz", }, { .name = "kvm64", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 15, .model = 6, .stepping = 1, /* Missing: CPUID_HT */ .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_VME | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, /* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */ .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_CX16, /* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */ .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, /* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC, CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A, CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH, CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */ .features[FEAT_8000_0001_ECX] = 0, .xlevel = 0x80000008, .model_id = "Common KVM processor" }, { .name = "qemu32", .level = 4, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 6, .stepping = 3, .features[FEAT_1_EDX] = PPRO_FEATURES, .features[FEAT_1_ECX] = CPUID_EXT_SSE3, .xlevel = 0x80000004, .model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION, }, { .name = "kvm32", .level = 5, .vendor = CPUID_VENDOR_INTEL, .family = 15, .model = 6, .stepping = 1, .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_VME | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, .features[FEAT_1_ECX] = CPUID_EXT_SSE3, .features[FEAT_8000_0001_ECX] = 0, .xlevel = 0x80000008, .model_id = "Common 32-bit KVM processor" }, { .name = "coreduo", .level = 10, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 14, .stepping = 8, /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */ .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_VME | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_ACPI | CPUID_SS, /* Missing: CPUID_EXT_EST, CPUID_EXT_TM2 , CPUID_EXT_XTPR, * CPUID_EXT_PDCM, CPUID_EXT_VMX */ .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_NX, .xlevel = 0x80000008, .model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz", }, { .name = "486", .level = 1, .vendor = CPUID_VENDOR_INTEL, .family = 4, .model = 8, .stepping = 0, .features[FEAT_1_EDX] = I486_FEATURES, .xlevel = 0, .model_id = "", }, { .name = "pentium", .level = 1, .vendor = CPUID_VENDOR_INTEL, .family = 5, .model = 4, .stepping = 3, .features[FEAT_1_EDX] = PENTIUM_FEATURES, .xlevel = 0, .model_id = "", }, { .name = "pentium2", .level = 2, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 5, .stepping = 2, .features[FEAT_1_EDX] = PENTIUM2_FEATURES, .xlevel = 0, .model_id = "", }, { .name = "pentium3", .level = 3, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 7, .stepping = 3, .features[FEAT_1_EDX] = PENTIUM3_FEATURES, .xlevel = 0, .model_id = "", }, { .name = "athlon", .level = 2, .vendor = CPUID_VENDOR_AMD, .family = 6, .model = 2, .stepping = 3, .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR | CPUID_MCA, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT, .xlevel = 0x80000008, .model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION, }, { .name = "n270", .level = 10, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 28, .stepping = 2, /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */ .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME | CPUID_ACPI | CPUID_SS, /* Some CPUs got no CPUID_SEP */ /* Missing: CPUID_EXT_DSCPL, CPUID_EXT_EST, CPUID_EXT_TM2, * CPUID_EXT_XTPR */ .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_MOVBE, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_NX, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz", }, { .name = "Conroe", .level = 10, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 15, .stepping = 3, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "Intel Celeron_4x0 (Conroe/Merom Class Core 2)", }, { .name = "Penryn", .level = 10, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 23, .stepping = 3, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "Intel Core 2 Duo P9xxx (Penryn Class Core 2)", }, { .name = "Nehalem", .level = 11, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 26, .stepping = 3, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "Intel Core i7 9xx (Nehalem Class Core i7)", .versions = (X86CPUVersionDefinition[]) { { .version = 1 }, { .version = 2, .alias = "Nehalem-IBRS", .props = (PropValue[]) { { "spec-ctrl", "on" }, { "model-id", "Intel Core i7 9xx (Nehalem Core i7, IBRS update)" }, { /* end of list */ } } }, { /* end of list */ } } }, { .name = "Westmere", .level = 11, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 44, .stepping = 1, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Westmere E56xx/L56xx/X56xx (Nehalem-C)", .versions = (X86CPUVersionDefinition[]) { { .version = 1 }, { .version = 2, .alias = "Westmere-IBRS", .props = (PropValue[]) { { "spec-ctrl", "on" }, { "model-id", "Westmere E56xx/L56xx/X56xx (IBRS update)" }, { /* end of list */ } } }, { /* end of list */ } } }, { .name = "SandyBridge", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 42, .stepping = 1, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Xeon E312xx (Sandy Bridge)", .versions = (X86CPUVersionDefinition[]) { { .version = 1 }, { .version = 2, .alias = "SandyBridge-IBRS", .props = (PropValue[]) { { "spec-ctrl", "on" }, { "model-id", "Intel Xeon E312xx (Sandy Bridge, IBRS update)" }, { /* end of list */ } } }, { /* end of list */ } } }, { .name = "IvyBridge", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 58, .stepping = 9, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_ERMS, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge)", .versions = (X86CPUVersionDefinition[]) { { .version = 1 }, { .version = 2, .alias = "IvyBridge-IBRS", .props = (PropValue[]) { { "spec-ctrl", "on" }, { "model-id", "Intel Xeon E3-12xx v2 (Ivy Bridge, IBRS)" }, { /* end of list */ } } }, { /* end of list */ } } }, { .name = "Haswell", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 60, .stepping = 4, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM, .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Core Processor (Haswell)", .versions = (X86CPUVersionDefinition[]) { { .version = 1 }, { .version = 2, .alias = "Haswell-noTSX", .props = (PropValue[]) { { "hle", "off" }, { "rtm", "off" }, { "stepping", "1" }, { "model-id", "Intel Core Processor (Haswell, no TSX)", }, { /* end of list */ } }, }, { .version = 3, .alias = "Haswell-IBRS", .props = (PropValue[]) { /* Restore TSX features removed by -v2 above */ { "hle", "on" }, { "rtm", "on" }, /* * Haswell and Haswell-IBRS had stepping=4 in * QEMU 4.0 and older */ { "stepping", "4" }, { "spec-ctrl", "on" }, { "model-id", "Intel Core Processor (Haswell, IBRS)" }, { /* end of list */ } } }, { .version = 4, .alias = "Haswell-noTSX-IBRS", .props = (PropValue[]) { { "hle", "off" }, { "rtm", "off" }, /* spec-ctrl was already enabled by -v3 above */ { "stepping", "1" }, { "model-id", "Intel Core Processor (Haswell, no TSX, IBRS)" }, { /* end of list */ } } }, { /* end of list */ } } }, { .name = "Broadwell", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 61, .stepping = 2, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP, .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Core Processor (Broadwell)", .versions = (X86CPUVersionDefinition[]) { { .version = 1 }, { .version = 2, .alias = "Broadwell-noTSX", .props = (PropValue[]) { { "hle", "off" }, { "rtm", "off" }, { "model-id", "Intel Core Processor (Broadwell, no TSX)", }, { /* end of list */ } }, }, { .version = 3, .alias = "Broadwell-IBRS", .props = (PropValue[]) { /* Restore TSX features removed by -v2 above */ { "hle", "on" }, { "rtm", "on" }, { "spec-ctrl", "on" }, { "model-id", "Intel Core Processor (Broadwell, IBRS)" }, { /* end of list */ } } }, { .version = 4, .alias = "Broadwell-noTSX-IBRS", .props = (PropValue[]) { { "hle", "off" }, { "rtm", "off" }, /* spec-ctrl was already enabled by -v3 above */ { "model-id", "Intel Core Processor (Broadwell, no TSX, IBRS)" }, { /* end of list */ } } }, { /* end of list */ } } }, { .name = "Skylake-Client", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 94, .stepping = 3, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP, /* Missing: XSAVES (not supported by some Linux versions, * including v4.1 to v4.12). * KVM doesn't yet expose any XSAVES state save component, * and the only one defined in Skylake (processor tracing) * probably will block migration anyway. */ .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC | CPUID_XSAVE_XGETBV1, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Core Processor (Skylake)", .versions = (X86CPUVersionDefinition[]) { { .version = 1 }, { .version = 2, .alias = "Skylake-Client-IBRS", .props = (PropValue[]) { { "spec-ctrl", "on" }, { "model-id", "Intel Core Processor (Skylake, IBRS)" }, { /* end of list */ } } }, { /* end of list */ } } }, { .name = "Skylake-Server", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 85, .stepping = 4, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ | CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD | CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT, .features[FEAT_7_0_ECX] = CPUID_7_0_ECX_PKU, /* Missing: XSAVES (not supported by some Linux versions, * including v4.1 to v4.12). * KVM doesn't yet expose any XSAVES state save component, * and the only one defined in Skylake (processor tracing) * probably will block migration anyway. */ .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC | CPUID_XSAVE_XGETBV1, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Xeon Processor (Skylake)", .versions = (X86CPUVersionDefinition[]) { { .version = 1 }, { .version = 2, .alias = "Skylake-Server-IBRS", .props = (PropValue[]) { /* clflushopt was not added to Skylake-Server-IBRS */ /* TODO: add -v3 including clflushopt */ { "clflushopt", "off" }, { "spec-ctrl", "on" }, { "model-id", "Intel Xeon Processor (Skylake, IBRS)" }, { /* end of list */ } } }, { /* end of list */ } } }, { .name = "Cascadelake-Server", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 85, .stepping = 6, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ | CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD | CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT, .features[FEAT_7_0_ECX] = CPUID_7_0_ECX_PKU | CPUID_7_0_ECX_AVX512VNNI, .features[FEAT_7_0_EDX] = CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD, /* Missing: XSAVES (not supported by some Linux versions, * including v4.1 to v4.12). * KVM doesn't yet expose any XSAVES state save component, * and the only one defined in Skylake (processor tracing) * probably will block migration anyway. */ .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC | CPUID_XSAVE_XGETBV1, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Xeon Processor (Cascadelake)", .versions = (X86CPUVersionDefinition[]) { { .version = 1 }, { .version = 2, .props = (PropValue[]) { { "arch-capabilities", "on" }, { "rdctl-no", "on" }, { "ibrs-all", "on" }, { "skip-l1dfl-vmentry", "on" }, { "mds-no", "on" }, { /* end of list */ } }, }, { /* end of list */ } } }, { .name = "Icelake-Client", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 126, .stepping = 0, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH, .features[FEAT_8000_0008_EBX] = CPUID_8000_0008_EBX_WBNOINVD, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP, .features[FEAT_7_0_ECX] = CPUID_7_0_ECX_VBMI | CPUID_7_0_ECX_UMIP | CPUID_7_0_ECX_PKU | CPUID_7_0_ECX_VBMI2 | CPUID_7_0_ECX_GFNI | CPUID_7_0_ECX_VAES | CPUID_7_0_ECX_VPCLMULQDQ | CPUID_7_0_ECX_AVX512VNNI | CPUID_7_0_ECX_AVX512BITALG | CPUID_7_0_ECX_AVX512_VPOPCNTDQ, .features[FEAT_7_0_EDX] = CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD, /* Missing: XSAVES (not supported by some Linux versions, * including v4.1 to v4.12). * KVM doesn't yet expose any XSAVES state save component, * and the only one defined in Skylake (processor tracing) * probably will block migration anyway. */ .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC | CPUID_XSAVE_XGETBV1, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Core Processor (Icelake)", }, { .name = "Icelake-Server", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 134, .stepping = 0, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH, .features[FEAT_8000_0008_EBX] = CPUID_8000_0008_EBX_WBNOINVD, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ | CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD | CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT, .features[FEAT_7_0_ECX] = CPUID_7_0_ECX_VBMI | CPUID_7_0_ECX_UMIP | CPUID_7_0_ECX_PKU | CPUID_7_0_ECX_VBMI2 | CPUID_7_0_ECX_GFNI | CPUID_7_0_ECX_VAES | CPUID_7_0_ECX_VPCLMULQDQ | CPUID_7_0_ECX_AVX512VNNI | CPUID_7_0_ECX_AVX512BITALG | CPUID_7_0_ECX_AVX512_VPOPCNTDQ | CPUID_7_0_ECX_LA57, .features[FEAT_7_0_EDX] = CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD, /* Missing: XSAVES (not supported by some Linux versions, * including v4.1 to v4.12). * KVM doesn't yet expose any XSAVES state save component, * and the only one defined in Skylake (processor tracing) * probably will block migration anyway. */ .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC | CPUID_XSAVE_XGETBV1, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Xeon Processor (Icelake)", }, { .name = "Snowridge", .level = 27, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 134, .stepping = 1, .features[FEAT_1_EDX] = /* missing: CPUID_PN CPUID_IA64 */ /* missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */ CPUID_FP87 | CPUID_VME | CPUID_DE | CPUID_PSE | CPUID_TSC | CPUID_MSR | CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | CPUID_PSE36 | CPUID_CLFLUSH | CPUID_MMX | CPUID_FXSR | CPUID_SSE | CPUID_SSE2, .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_X2APIC | CPUID_EXT_MOVBE | CPUID_EXT_POPCNT | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_AES | CPUID_EXT_XSAVE | CPUID_EXT_RDRAND, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_SYSCALL | CPUID_EXT2_NX | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP | CPUID_EXT2_LM, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_MPX | /* missing bits 13, 15 */ CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT | CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_SHA_NI, .features[FEAT_7_0_ECX] = CPUID_7_0_ECX_UMIP | /* missing bit 5 */ CPUID_7_0_ECX_GFNI | CPUID_7_0_ECX_MOVDIRI | CPUID_7_0_ECX_CLDEMOTE | CPUID_7_0_ECX_MOVDIR64B, .features[FEAT_7_0_EDX] = CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_ARCH_CAPABILITIES | CPUID_7_0_EDX_SPEC_CTRL_SSBD | CPUID_7_0_EDX_CORE_CAPABILITY, .features[FEAT_CORE_CAPABILITY] = MSR_CORE_CAP_SPLIT_LOCK_DETECT, /* * Missing: XSAVES (not supported by some Linux versions, * including v4.1 to v4.12). * KVM doesn't yet expose any XSAVES state save component, * and the only one defined in Skylake (processor tracing) * probably will block migration anyway. */ .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC | CPUID_XSAVE_XGETBV1, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Atom Processor (SnowRidge)", }, { .name = "KnightsMill", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 133, .stepping = 0, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SS | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_F16C | CPUID_EXT_RDRAND, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512CD | CPUID_7_0_EBX_AVX512PF | CPUID_7_0_EBX_AVX512ER, .features[FEAT_7_0_ECX] = CPUID_7_0_ECX_AVX512_VPOPCNTDQ, .features[FEAT_7_0_EDX] = CPUID_7_0_EDX_AVX512_4VNNIW | CPUID_7_0_EDX_AVX512_4FMAPS, .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .xlevel = 0x80000008, .model_id = "Intel Xeon Phi Processor (Knights Mill)", }, { .name = "Opteron_G1", .level = 5, .vendor = CPUID_VENDOR_AMD, .family = 15, .model = 6, .stepping = 1, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .xlevel = 0x80000008, .model_id = "AMD Opteron 240 (Gen 1 Class Opteron)", }, { .name = "Opteron_G2", .level = 5, .vendor = CPUID_VENDOR_AMD, .family = 15, .model = 6, .stepping = 1, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_CX16 | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "AMD Opteron 22xx (Gen 2 Class Opteron)", }, { .name = "Opteron_G3", .level = 5, .vendor = CPUID_VENDOR_AMD, .family = 16, .model = 2, .stepping = 3, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL | CPUID_EXT2_RDTSCP, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "AMD Opteron 23xx (Gen 3 Class Opteron)", }, { .name = "Opteron_G4", .level = 0xd, .vendor = CPUID_VENDOR_AMD, .family = 21, .model = 1, .stepping = 2, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL | CPUID_EXT2_RDTSCP, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_FMA4 | CPUID_EXT3_XOP | CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .features[FEAT_SVM] = CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE, /* no xsaveopt! */ .xlevel = 0x8000001A, .model_id = "AMD Opteron 62xx class CPU", }, { .name = "Opteron_G5", .level = 0xd, .vendor = CPUID_VENDOR_AMD, .family = 21, .model = 2, .stepping = 0, .features[FEAT_1_EDX] = CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL | CPUID_EXT2_RDTSCP, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP | CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .features[FEAT_SVM] = CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE, /* no xsaveopt! */ .xlevel = 0x8000001A, .model_id = "AMD Opteron 63xx class CPU", }, { .name = "EPYC", .level = 0xd, .vendor = CPUID_VENDOR_AMD, .family = 23, .model = 1, .stepping = 2, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_VME | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 | CPUID_EXT_MONITOR | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB | CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_TOPOEXT, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT | CPUID_7_0_EBX_SHA_NI, /* Missing: XSAVES (not supported by some Linux versions, * including v4.1 to v4.12). * KVM doesn't yet expose any XSAVES state save component. */ .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC | CPUID_XSAVE_XGETBV1, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .features[FEAT_SVM] = CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE, .xlevel = 0x8000001E, .model_id = "AMD EPYC Processor", .cache_info = &epyc_cache_info, .versions = (X86CPUVersionDefinition[]) { { .version = 1 }, { .version = 2, .alias = "EPYC-IBPB", .props = (PropValue[]) { { "ibpb", "on" }, { "model-id", "AMD EPYC Processor (with IBPB)" }, { /* end of list */ } } }, { /* end of list */ } } }, { .name = "Dhyana", .level = 0xd, .vendor = CPUID_VENDOR_HYGON, .family = 24, .model = 0, .stepping = 1, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_VME | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_POPCNT | CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB | CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_TOPOEXT, .features[FEAT_8000_0008_EBX] = CPUID_8000_0008_EBX_IBPB, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT, /* * Missing: XSAVES (not supported by some Linux versions, * including v4.1 to v4.12). * KVM doesn't yet expose any XSAVES state save component. */ .features[FEAT_XSAVE] = CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC | CPUID_XSAVE_XGETBV1, .features[FEAT_6_EAX] = CPUID_6_EAX_ARAT, .features[FEAT_SVM] = CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE, .xlevel = 0x8000001E, .model_id = "Hygon Dhyana Processor", .cache_info = &epyc_cache_info, }, }; /* KVM-specific features that are automatically added/removed * from all CPU models when KVM is enabled. */ static PropValue kvm_default_props[] = { { "kvmclock", "on" }, { "kvm-nopiodelay", "on" }, { "kvm-asyncpf", "on" }, { "kvm-steal-time", "on" }, { "kvm-pv-eoi", "on" }, { "kvmclock-stable-bit", "on" }, { "x2apic", "on" }, { "acpi", "off" }, { "monitor", "off" }, { "svm", "off" }, { NULL, NULL }, }; /* TCG-specific defaults that override all CPU models when using TCG */ static PropValue tcg_default_props[] = { { "vme", "off" }, { NULL, NULL }, }; X86CPUVersion default_cpu_version = CPU_VERSION_LATEST; void x86_cpu_set_default_version(X86CPUVersion version) { /* Translating CPU_VERSION_AUTO to CPU_VERSION_AUTO doesn't make sense */ assert(version != CPU_VERSION_AUTO); default_cpu_version = version; } static X86CPUVersion x86_cpu_model_last_version(const X86CPUModel *model) { int v = 0; const X86CPUVersionDefinition *vdef = x86_cpu_def_get_versions(model->cpudef); while (vdef->version) { v = vdef->version; vdef++; } return v; } /* Return the actual version being used for a specific CPU model */ static X86CPUVersion x86_cpu_model_resolve_version(const X86CPUModel *model) { X86CPUVersion v = model->version; if (v == CPU_VERSION_AUTO) { v = default_cpu_version; } if (v == CPU_VERSION_LATEST) { return x86_cpu_model_last_version(model); } return v; } void x86_cpu_change_kvm_default(const char *prop, const char *value) { PropValue *pv; for (pv = kvm_default_props; pv->prop; pv++) { if (!strcmp(pv->prop, prop)) { pv->value = value; break; } } /* It is valid to call this function only for properties that * are already present in the kvm_default_props table. */ assert(pv->prop); } static uint64_t x86_cpu_get_supported_feature_word(FeatureWord w, bool migratable_only); static bool lmce_supported(void) { uint64_t mce_cap = 0; #ifdef CONFIG_KVM if (kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, &mce_cap) < 0) { return false; } #endif return !!(mce_cap & MCG_LMCE_P); } #define CPUID_MODEL_ID_SZ 48 /** * cpu_x86_fill_model_id: * Get CPUID model ID string from host CPU. * * @str should have at least CPUID_MODEL_ID_SZ bytes * * The function does NOT add a null terminator to the string * automatically. */ static int cpu_x86_fill_model_id(char *str) { uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0; int i; for (i = 0; i < 3; i++) { host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx); memcpy(str + i * 16 + 0, &eax, 4); memcpy(str + i * 16 + 4, &ebx, 4); memcpy(str + i * 16 + 8, &ecx, 4); memcpy(str + i * 16 + 12, &edx, 4); } return 0; } static Property max_x86_cpu_properties[] = { DEFINE_PROP_BOOL("migratable", X86CPU, migratable, true), DEFINE_PROP_BOOL("host-cache-info", X86CPU, cache_info_passthrough, false), DEFINE_PROP_END_OF_LIST() }; static void max_x86_cpu_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); X86CPUClass *xcc = X86_CPU_CLASS(oc); xcc->ordering = 9; xcc->model_description = "Enables all features supported by the accelerator in the current host"; dc->props = max_x86_cpu_properties; } static void max_x86_cpu_initfn(Object *obj) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; KVMState *s = kvm_state; /* We can't fill the features array here because we don't know yet if * "migratable" is true or false. */ cpu->max_features = true; if (accel_uses_host_cpuid()) { char vendor[CPUID_VENDOR_SZ + 1] = { 0 }; char model_id[CPUID_MODEL_ID_SZ + 1] = { 0 }; int family, model, stepping; host_vendor_fms(vendor, &family, &model, &stepping); cpu_x86_fill_model_id(model_id); object_property_set_str(OBJECT(cpu), vendor, "vendor", &error_abort); object_property_set_int(OBJECT(cpu), family, "family", &error_abort); object_property_set_int(OBJECT(cpu), model, "model", &error_abort); object_property_set_int(OBJECT(cpu), stepping, "stepping", &error_abort); object_property_set_str(OBJECT(cpu), model_id, "model-id", &error_abort); if (kvm_enabled()) { env->cpuid_min_level = kvm_arch_get_supported_cpuid(s, 0x0, 0, R_EAX); env->cpuid_min_xlevel = kvm_arch_get_supported_cpuid(s, 0x80000000, 0, R_EAX); env->cpuid_min_xlevel2 = kvm_arch_get_supported_cpuid(s, 0xC0000000, 0, R_EAX); } else { env->cpuid_min_level = hvf_get_supported_cpuid(0x0, 0, R_EAX); env->cpuid_min_xlevel = hvf_get_supported_cpuid(0x80000000, 0, R_EAX); env->cpuid_min_xlevel2 = hvf_get_supported_cpuid(0xC0000000, 0, R_EAX); } if (lmce_supported()) { object_property_set_bool(OBJECT(cpu), true, "lmce", &error_abort); } } else { object_property_set_str(OBJECT(cpu), CPUID_VENDOR_AMD, "vendor", &error_abort); object_property_set_int(OBJECT(cpu), 6, "family", &error_abort); object_property_set_int(OBJECT(cpu), 6, "model", &error_abort); object_property_set_int(OBJECT(cpu), 3, "stepping", &error_abort); object_property_set_str(OBJECT(cpu), "QEMU TCG CPU version " QEMU_HW_VERSION, "model-id", &error_abort); } object_property_set_bool(OBJECT(cpu), true, "pmu", &error_abort); } static const TypeInfo max_x86_cpu_type_info = { .name = X86_CPU_TYPE_NAME("max"), .parent = TYPE_X86_CPU, .instance_init = max_x86_cpu_initfn, .class_init = max_x86_cpu_class_init, }; #if defined(CONFIG_KVM) || defined(CONFIG_HVF) static void host_x86_cpu_class_init(ObjectClass *oc, void *data) { X86CPUClass *xcc = X86_CPU_CLASS(oc); xcc->host_cpuid_required = true; xcc->ordering = 8; #if defined(CONFIG_KVM) xcc->model_description = "KVM processor with all supported host features "; #elif defined(CONFIG_HVF) xcc->model_description = "HVF processor with all supported host features "; #endif } static const TypeInfo host_x86_cpu_type_info = { .name = X86_CPU_TYPE_NAME("host"), .parent = X86_CPU_TYPE_NAME("max"), .class_init = host_x86_cpu_class_init, }; #endif static char *feature_word_description(FeatureWordInfo *f, uint32_t bit) { assert(f->type == CPUID_FEATURE_WORD || f->type == MSR_FEATURE_WORD); switch (f->type) { case CPUID_FEATURE_WORD: { const char *reg = get_register_name_32(f->cpuid.reg); assert(reg); return g_strdup_printf("CPUID.%02XH:%s", f->cpuid.eax, reg); } case MSR_FEATURE_WORD: return g_strdup_printf("MSR(%02XH)", f->msr.index); } return NULL; } static bool x86_cpu_have_filtered_features(X86CPU *cpu) { FeatureWord w; for (w = 0; w < FEATURE_WORDS; w++) { if (cpu->filtered_features[w]) { return true; } } return false; } static void mark_unavailable_features(X86CPU *cpu, FeatureWord w, uint64_t mask, const char *verbose_prefix) { CPUX86State *env = &cpu->env; FeatureWordInfo *f = &feature_word_info[w]; int i; char *feat_word_str; if (!cpu->force_features) { env->features[w] &= ~mask; } cpu->filtered_features[w] |= mask; if (!verbose_prefix) { return; } for (i = 0; i < 64; ++i) { if ((1ULL << i) & mask) { feat_word_str = feature_word_description(f, i); warn_report("%s: %s%s%s [bit %d]", verbose_prefix, feat_word_str, f->feat_names[i] ? "." : "", f->feat_names[i] ? f->feat_names[i] : "", i); g_free(feat_word_str); } } } static void x86_cpuid_version_get_family(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int64_t value; value = (env->cpuid_version >> 8) & 0xf; if (value == 0xf) { value += (env->cpuid_version >> 20) & 0xff; } visit_type_int(v, name, &value, errp); } static void x86_cpuid_version_set_family(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xff + 0xf; Error *local_err = NULL; int64_t value; visit_type_int(v, name, &value, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (value < min || value > max) { error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } env->cpuid_version &= ~0xff00f00; if (value > 0x0f) { env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20); } else { env->cpuid_version |= value << 8; } } static void x86_cpuid_version_get_model(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int64_t value; value = (env->cpuid_version >> 4) & 0xf; value |= ((env->cpuid_version >> 16) & 0xf) << 4; visit_type_int(v, name, &value, errp); } static void x86_cpuid_version_set_model(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xff; Error *local_err = NULL; int64_t value; visit_type_int(v, name, &value, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (value < min || value > max) { error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } env->cpuid_version &= ~0xf00f0; env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16); } static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int64_t value; value = env->cpuid_version & 0xf; visit_type_int(v, name, &value, errp); } static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xf; Error *local_err = NULL; int64_t value; visit_type_int(v, name, &value, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (value < min || value > max) { error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } env->cpuid_version &= ~0xf; env->cpuid_version |= value & 0xf; } static char *x86_cpuid_get_vendor(Object *obj, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; char *value; value = g_malloc(CPUID_VENDOR_SZ + 1); x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2, env->cpuid_vendor3); return value; } static void x86_cpuid_set_vendor(Object *obj, const char *value, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int i; if (strlen(value) != CPUID_VENDOR_SZ) { error_setg(errp, QERR_PROPERTY_VALUE_BAD, "", "vendor", value); return; } env->cpuid_vendor1 = 0; env->cpuid_vendor2 = 0; env->cpuid_vendor3 = 0; for (i = 0; i < 4; i++) { env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i); env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i); env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i); } } static char *x86_cpuid_get_model_id(Object *obj, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; char *value; int i; value = g_malloc(48 + 1); for (i = 0; i < 48; i++) { value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3)); } value[48] = '\0'; return value; } static void x86_cpuid_set_model_id(Object *obj, const char *model_id, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int c, len, i; if (model_id == NULL) { model_id = ""; } len = strlen(model_id); memset(env->cpuid_model, 0, 48); for (i = 0; i < 48; i++) { if (i >= len) { c = '\0'; } else { c = (uint8_t)model_id[i]; } env->cpuid_model[i >> 2] |= c << (8 * (i & 3)); } } static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86CPU *cpu = X86_CPU(obj); int64_t value; value = cpu->env.tsc_khz * 1000; visit_type_int(v, name, &value, errp); } static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86CPU *cpu = X86_CPU(obj); const int64_t min = 0; const int64_t max = INT64_MAX; Error *local_err = NULL; int64_t value; visit_type_int(v, name, &value, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (value < min || value > max) { error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } cpu->env.tsc_khz = cpu->env.user_tsc_khz = value / 1000; } /* Generic getter for "feature-words" and "filtered-features" properties */ static void x86_cpu_get_feature_words(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { uint64_t *array = (uint64_t *)opaque; FeatureWord w; X86CPUFeatureWordInfo word_infos[FEATURE_WORDS] = { }; X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS] = { }; X86CPUFeatureWordInfoList *list = NULL; for (w = 0; w < FEATURE_WORDS; w++) { FeatureWordInfo *wi = &feature_word_info[w]; /* * We didn't have MSR features when "feature-words" was * introduced. Therefore skipped other type entries. */ if (wi->type != CPUID_FEATURE_WORD) { continue; } X86CPUFeatureWordInfo *qwi = &word_infos[w]; qwi->cpuid_input_eax = wi->cpuid.eax; qwi->has_cpuid_input_ecx = wi->cpuid.needs_ecx; qwi->cpuid_input_ecx = wi->cpuid.ecx; qwi->cpuid_register = x86_reg_info_32[wi->cpuid.reg].qapi_enum; qwi->features = array[w]; /* List will be in reverse order, but order shouldn't matter */ list_entries[w].next = list; list_entries[w].value = &word_infos[w]; list = &list_entries[w]; } visit_type_X86CPUFeatureWordInfoList(v, "feature-words", &list, errp); } /* Convert all '_' in a feature string option name to '-', to make feature * name conform to QOM property naming rule, which uses '-' instead of '_'. */ static inline void feat2prop(char *s) { while ((s = strchr(s, '_'))) { *s = '-'; } } /* Return the feature property name for a feature flag bit */ static const char *x86_cpu_feature_name(FeatureWord w, int bitnr) { const char *name; /* XSAVE components are automatically enabled by other features, * so return the original feature name instead */ if (w == FEAT_XSAVE_COMP_LO || w == FEAT_XSAVE_COMP_HI) { int comp = (w == FEAT_XSAVE_COMP_HI) ? bitnr + 32 : bitnr; if (comp < ARRAY_SIZE(x86_ext_save_areas) && x86_ext_save_areas[comp].bits) { w = x86_ext_save_areas[comp].feature; bitnr = ctz32(x86_ext_save_areas[comp].bits); } } assert(bitnr < 64); assert(w < FEATURE_WORDS); name = feature_word_info[w].feat_names[bitnr]; assert(bitnr < 32 || !(name && feature_word_info[w].type == CPUID_FEATURE_WORD)); return name; } /* Compatibily hack to maintain legacy +-feat semantic, * where +-feat overwrites any feature set by * feat=on|feat even if the later is parsed after +-feat * (i.e. "-x2apic,x2apic=on" will result in x2apic disabled) */ static GList *plus_features, *minus_features; static gint compare_string(gconstpointer a, gconstpointer b) { return g_strcmp0(a, b); } /* Parse "+feature,-feature,feature=foo" CPU feature string */ static void x86_cpu_parse_featurestr(const char *typename, char *features, Error **errp) { char *featurestr; /* Single 'key=value" string being parsed */ static bool cpu_globals_initialized; bool ambiguous = false; if (cpu_globals_initialized) { return; } cpu_globals_initialized = true; if (!features) { return; } for (featurestr = strtok(features, ","); featurestr; featurestr = strtok(NULL, ",")) { const char *name; const char *val = NULL; char *eq = NULL; char num[32]; GlobalProperty *prop; /* Compatibility syntax: */ if (featurestr[0] == '+') { plus_features = g_list_append(plus_features, g_strdup(featurestr + 1)); continue; } else if (featurestr[0] == '-') { minus_features = g_list_append(minus_features, g_strdup(featurestr + 1)); continue; } eq = strchr(featurestr, '='); if (eq) { *eq++ = 0; val = eq; } else { val = "on"; } feat2prop(featurestr); name = featurestr; if (g_list_find_custom(plus_features, name, compare_string)) { warn_report("Ambiguous CPU model string. " "Don't mix both \"+%s\" and \"%s=%s\"", name, name, val); ambiguous = true; } if (g_list_find_custom(minus_features, name, compare_string)) { warn_report("Ambiguous CPU model string. " "Don't mix both \"-%s\" and \"%s=%s\"", name, name, val); ambiguous = true; } /* Special case: */ if (!strcmp(name, "tsc-freq")) { int ret; uint64_t tsc_freq; ret = qemu_strtosz_metric(val, NULL, &tsc_freq); if (ret < 0 || tsc_freq > INT64_MAX) { error_setg(errp, "bad numerical value %s", val); return; } snprintf(num, sizeof(num), "%" PRId64, tsc_freq); val = num; name = "tsc-frequency"; } prop = g_new0(typeof(*prop), 1); prop->driver = typename; prop->property = g_strdup(name); prop->value = g_strdup(val); qdev_prop_register_global(prop); } if (ambiguous) { warn_report("Compatibility of ambiguous CPU model " "strings won't be kept on future QEMU versions"); } } static void x86_cpu_expand_features(X86CPU *cpu, Error **errp); static void x86_cpu_filter_features(X86CPU *cpu, bool verbose); /* Build a list with the name of all features on a feature word array */ static void x86_cpu_list_feature_names(FeatureWordArray features, strList **feat_names) { FeatureWord w; strList **next = feat_names; for (w = 0; w < FEATURE_WORDS; w++) { uint64_t filtered = features[w]; int i; for (i = 0; i < 64; i++) { if (filtered & (1ULL << i)) { strList *new = g_new0(strList, 1); new->value = g_strdup(x86_cpu_feature_name(w, i)); *next = new; next = &new->next; } } } } static void x86_cpu_get_unavailable_features(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86CPU *xc = X86_CPU(obj); strList *result = NULL; x86_cpu_list_feature_names(xc->filtered_features, &result); visit_type_strList(v, "unavailable-features", &result, errp); } /* Check for missing features that may prevent the CPU class from * running using the current machine and accelerator. */ static void x86_cpu_class_check_missing_features(X86CPUClass *xcc, strList **missing_feats) { X86CPU *xc; Error *err = NULL; strList **next = missing_feats; if (xcc->host_cpuid_required && !accel_uses_host_cpuid()) { strList *new = g_new0(strList, 1); new->value = g_strdup("kvm"); *missing_feats = new; return; } xc = X86_CPU(object_new(object_class_get_name(OBJECT_CLASS(xcc)))); x86_cpu_expand_features(xc, &err); if (err) { /* Errors at x86_cpu_expand_features should never happen, * but in case it does, just report the model as not * runnable at all using the "type" property. */ strList *new = g_new0(strList, 1); new->value = g_strdup("type"); *next = new; next = &new->next; } x86_cpu_filter_features(xc, false); x86_cpu_list_feature_names(xc->filtered_features, next); object_unref(OBJECT(xc)); } /* Print all cpuid feature names in featureset */ static void listflags(GList *features) { size_t len = 0; GList *tmp; for (tmp = features; tmp; tmp = tmp->next) { const char *name = tmp->data; if ((len + strlen(name) + 1) >= 75) { qemu_printf("\n"); len = 0; } qemu_printf("%s%s", len == 0 ? " " : " ", name); len += strlen(name) + 1; } qemu_printf("\n"); } /* Sort alphabetically by type name, respecting X86CPUClass::ordering. */ static gint x86_cpu_list_compare(gconstpointer a, gconstpointer b) { ObjectClass *class_a = (ObjectClass *)a; ObjectClass *class_b = (ObjectClass *)b; X86CPUClass *cc_a = X86_CPU_CLASS(class_a); X86CPUClass *cc_b = X86_CPU_CLASS(class_b); char *name_a, *name_b; int ret; if (cc_a->ordering != cc_b->ordering) { ret = cc_a->ordering - cc_b->ordering; } else { name_a = x86_cpu_class_get_model_name(cc_a); name_b = x86_cpu_class_get_model_name(cc_b); ret = strcmp(name_a, name_b); g_free(name_a); g_free(name_b); } return ret; } static GSList *get_sorted_cpu_model_list(void) { GSList *list = object_class_get_list(TYPE_X86_CPU, false); list = g_slist_sort(list, x86_cpu_list_compare); return list; } static char *x86_cpu_class_get_model_id(X86CPUClass *xc) { Object *obj = object_new(object_class_get_name(OBJECT_CLASS(xc))); char *r = object_property_get_str(obj, "model-id", &error_abort); object_unref(obj); return r; } static char *x86_cpu_class_get_alias_of(X86CPUClass *cc) { X86CPUVersion version; if (!cc->model || !cc->model->is_alias) { return NULL; } version = x86_cpu_model_resolve_version(cc->model); if (version <= 0) { return NULL; } return x86_cpu_versioned_model_name(cc->model->cpudef, version); } static void x86_cpu_list_entry(gpointer data, gpointer user_data) { ObjectClass *oc = data; X86CPUClass *cc = X86_CPU_CLASS(oc); char *name = x86_cpu_class_get_model_name(cc); char *desc = g_strdup(cc->model_description); char *alias_of = x86_cpu_class_get_alias_of(cc); if (!desc && alias_of) { if (cc->model && cc->model->version == CPU_VERSION_AUTO) { desc = g_strdup("(alias configured by machine type)"); } else { desc = g_strdup_printf("(alias of %s)", alias_of); } } if (!desc) { desc = x86_cpu_class_get_model_id(cc); } qemu_printf("x86 %-20s %-48s\n", name, desc); g_free(name); g_free(desc); g_free(alias_of); } /* list available CPU models and flags */ void x86_cpu_list(void) { int i, j; GSList *list; GList *names = NULL; qemu_printf("Available CPUs:\n"); list = get_sorted_cpu_model_list(); g_slist_foreach(list, x86_cpu_list_entry, NULL); g_slist_free(list); names = NULL; for (i = 0; i < ARRAY_SIZE(feature_word_info); i++) { FeatureWordInfo *fw = &feature_word_info[i]; for (j = 0; j < 64; j++) { if (fw->feat_names[j]) { names = g_list_append(names, (gpointer)fw->feat_names[j]); } } } names = g_list_sort(names, (GCompareFunc)strcmp); qemu_printf("\nRecognized CPUID flags:\n"); listflags(names); qemu_printf("\n"); g_list_free(names); } static void x86_cpu_definition_entry(gpointer data, gpointer user_data) { ObjectClass *oc = data; X86CPUClass *cc = X86_CPU_CLASS(oc); CpuDefinitionInfoList **cpu_list = user_data; CpuDefinitionInfoList *entry; CpuDefinitionInfo *info; info = g_malloc0(sizeof(*info)); info->name = x86_cpu_class_get_model_name(cc); x86_cpu_class_check_missing_features(cc, &info->unavailable_features); info->has_unavailable_features = true; info->q_typename = g_strdup(object_class_get_name(oc)); info->migration_safe = cc->migration_safe; info->has_migration_safe = true; info->q_static = cc->static_model; /* * Old machine types won't report aliases, so that alias translation * doesn't break compatibility with previous QEMU versions. */ if (default_cpu_version != CPU_VERSION_LEGACY) { info->alias_of = x86_cpu_class_get_alias_of(cc); info->has_alias_of = !!info->alias_of; } entry = g_malloc0(sizeof(*entry)); entry->value = info; entry->next = *cpu_list; *cpu_list = entry; } CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) { CpuDefinitionInfoList *cpu_list = NULL; GSList *list = get_sorted_cpu_model_list(); g_slist_foreach(list, x86_cpu_definition_entry, &cpu_list); g_slist_free(list); return cpu_list; } static uint64_t x86_cpu_get_supported_feature_word(FeatureWord w, bool migratable_only) { FeatureWordInfo *wi = &feature_word_info[w]; uint64_t r = 0; if (kvm_enabled()) { switch (wi->type) { case CPUID_FEATURE_WORD: r = kvm_arch_get_supported_cpuid(kvm_state, wi->cpuid.eax, wi->cpuid.ecx, wi->cpuid.reg); break; case MSR_FEATURE_WORD: r = kvm_arch_get_supported_msr_feature(kvm_state, wi->msr.index); break; } } else if (hvf_enabled()) { if (wi->type != CPUID_FEATURE_WORD) { return 0; } r = hvf_get_supported_cpuid(wi->cpuid.eax, wi->cpuid.ecx, wi->cpuid.reg); } else if (tcg_enabled()) { r = wi->tcg_features; } else { return ~0; } if (migratable_only) { r &= x86_cpu_get_migratable_flags(w); } return r; } static void x86_cpu_apply_props(X86CPU *cpu, PropValue *props) { PropValue *pv; for (pv = props; pv->prop; pv++) { if (!pv->value) { continue; } object_property_parse(OBJECT(cpu), pv->value, pv->prop, &error_abort); } } /* Apply properties for the CPU model version specified in model */ static void x86_cpu_apply_version_props(X86CPU *cpu, X86CPUModel *model) { const X86CPUVersionDefinition *vdef; X86CPUVersion version = x86_cpu_model_resolve_version(model); if (version == CPU_VERSION_LEGACY) { return; } for (vdef = x86_cpu_def_get_versions(model->cpudef); vdef->version; vdef++) { PropValue *p; for (p = vdef->props; p && p->prop; p++) { object_property_parse(OBJECT(cpu), p->value, p->prop, &error_abort); } if (vdef->version == version) { break; } } /* * If we reached the end of the list, version number was invalid */ assert(vdef->version == version); } /* Load data from X86CPUDefinition into a X86CPU object */ static void x86_cpu_load_model(X86CPU *cpu, X86CPUModel *model, Error **errp) { X86CPUDefinition *def = model->cpudef; CPUX86State *env = &cpu->env; const char *vendor; char host_vendor[CPUID_VENDOR_SZ + 1]; FeatureWord w; /*NOTE: any property set by this function should be returned by * x86_cpu_static_props(), so static expansion of * query-cpu-model-expansion is always complete. */ /* CPU models only set _minimum_ values for level/xlevel: */ object_property_set_uint(OBJECT(cpu), def->level, "min-level", errp); object_property_set_uint(OBJECT(cpu), def->xlevel, "min-xlevel", errp); object_property_set_int(OBJECT(cpu), def->family, "family", errp); object_property_set_int(OBJECT(cpu), def->model, "model", errp); object_property_set_int(OBJECT(cpu), def->stepping, "stepping", errp); object_property_set_str(OBJECT(cpu), def->model_id, "model-id", errp); for (w = 0; w < FEATURE_WORDS; w++) { env->features[w] = def->features[w]; } /* legacy-cache defaults to 'off' if CPU model provides cache info */ cpu->legacy_cache = !def->cache_info; /* Special cases not set in the X86CPUDefinition structs: */ /* TODO: in-kernel irqchip for hvf */ if (kvm_enabled()) { if (!kvm_irqchip_in_kernel()) { x86_cpu_change_kvm_default("x2apic", "off"); } x86_cpu_apply_props(cpu, kvm_default_props); } else if (tcg_enabled()) { x86_cpu_apply_props(cpu, tcg_default_props); } env->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR; /* sysenter isn't supported in compatibility mode on AMD, * syscall isn't supported in compatibility mode on Intel. * Normally we advertise the actual CPU vendor, but you can * override this using the 'vendor' property if you want to use * KVM's sysenter/syscall emulation in compatibility mode and * when doing cross vendor migration */ vendor = def->vendor; if (accel_uses_host_cpuid()) { uint32_t ebx = 0, ecx = 0, edx = 0; host_cpuid(0, 0, NULL, &ebx, &ecx, &edx); x86_cpu_vendor_words2str(host_vendor, ebx, edx, ecx); vendor = host_vendor; } object_property_set_str(OBJECT(cpu), vendor, "vendor", errp); x86_cpu_apply_version_props(cpu, model); } #ifndef CONFIG_USER_ONLY /* Return a QDict containing keys for all properties that can be included * in static expansion of CPU models. All properties set by x86_cpu_load_model() * must be included in the dictionary. */ static QDict *x86_cpu_static_props(void) { FeatureWord w; int i; static const char *props[] = { "min-level", "min-xlevel", "family", "model", "stepping", "model-id", "vendor", "lmce", NULL, }; static QDict *d; if (d) { return d; } d = qdict_new(); for (i = 0; props[i]; i++) { qdict_put_null(d, props[i]); } for (w = 0; w < FEATURE_WORDS; w++) { FeatureWordInfo *fi = &feature_word_info[w]; int bit; for (bit = 0; bit < 64; bit++) { if (!fi->feat_names[bit]) { continue; } qdict_put_null(d, fi->feat_names[bit]); } } return d; } /* Add an entry to @props dict, with the value for property. */ static void x86_cpu_expand_prop(X86CPU *cpu, QDict *props, const char *prop) { QObject *value = object_property_get_qobject(OBJECT(cpu), prop, &error_abort); qdict_put_obj(props, prop, value); } /* Convert CPU model data from X86CPU object to a property dictionary * that can recreate exactly the same CPU model. */ static void x86_cpu_to_dict(X86CPU *cpu, QDict *props) { QDict *sprops = x86_cpu_static_props(); const QDictEntry *e; for (e = qdict_first(sprops); e; e = qdict_next(sprops, e)) { const char *prop = qdict_entry_key(e); x86_cpu_expand_prop(cpu, props, prop); } } /* Convert CPU model data from X86CPU object to a property dictionary * that can recreate exactly the same CPU model, including every * writeable QOM property. */ static void x86_cpu_to_dict_full(X86CPU *cpu, QDict *props) { ObjectPropertyIterator iter; ObjectProperty *prop; object_property_iter_init(&iter, OBJECT(cpu)); while ((prop = object_property_iter_next(&iter))) { /* skip read-only or write-only properties */ if (!prop->get || !prop->set) { continue; } /* "hotplugged" is the only property that is configurable * on the command-line but will be set differently on CPUs * created using "-cpu ... -smp ..." and by CPUs created * on the fly by x86_cpu_from_model() for querying. Skip it. */ if (!strcmp(prop->name, "hotplugged")) { continue; } x86_cpu_expand_prop(cpu, props, prop->name); } } static void object_apply_props(Object *obj, QDict *props, Error **errp) { const QDictEntry *prop; Error *err = NULL; for (prop = qdict_first(props); prop; prop = qdict_next(props, prop)) { object_property_set_qobject(obj, qdict_entry_value(prop), qdict_entry_key(prop), &err); if (err) { break; } } error_propagate(errp, err); } /* Create X86CPU object according to model+props specification */ static X86CPU *x86_cpu_from_model(const char *model, QDict *props, Error **errp) { X86CPU *xc = NULL; X86CPUClass *xcc; Error *err = NULL; xcc = X86_CPU_CLASS(cpu_class_by_name(TYPE_X86_CPU, model)); if (xcc == NULL) { error_setg(&err, "CPU model '%s' not found", model); goto out; } xc = X86_CPU(object_new(object_class_get_name(OBJECT_CLASS(xcc)))); if (props) { object_apply_props(OBJECT(xc), props, &err); if (err) { goto out; } } x86_cpu_expand_features(xc, &err); if (err) { goto out; } out: if (err) { error_propagate(errp, err); object_unref(OBJECT(xc)); xc = NULL; } return xc; } CpuModelExpansionInfo * qmp_query_cpu_model_expansion(CpuModelExpansionType type, CpuModelInfo *model, Error **errp) { X86CPU *xc = NULL; Error *err = NULL; CpuModelExpansionInfo *ret = g_new0(CpuModelExpansionInfo, 1); QDict *props = NULL; const char *base_name; xc = x86_cpu_from_model(model->name, model->has_props ? qobject_to(QDict, model->props) : NULL, &err); if (err) { goto out; } props = qdict_new(); ret->model = g_new0(CpuModelInfo, 1); ret->model->props = QOBJECT(props); ret->model->has_props = true; switch (type) { case CPU_MODEL_EXPANSION_TYPE_STATIC: /* Static expansion will be based on "base" only */ base_name = "base"; x86_cpu_to_dict(xc, props); break; case CPU_MODEL_EXPANSION_TYPE_FULL: /* As we don't return every single property, full expansion needs * to keep the original model name+props, and add extra * properties on top of that. */ base_name = model->name; x86_cpu_to_dict_full(xc, props); break; default: error_setg(&err, "Unsupported expansion type"); goto out; } x86_cpu_to_dict(xc, props); ret->model->name = g_strdup(base_name); out: object_unref(OBJECT(xc)); if (err) { error_propagate(errp, err); qapi_free_CpuModelExpansionInfo(ret); ret = NULL; } return ret; } #endif /* !CONFIG_USER_ONLY */ static gchar *x86_gdb_arch_name(CPUState *cs) { #ifdef TARGET_X86_64 return g_strdup("i386:x86-64"); #else return g_strdup("i386"); #endif } static void x86_cpu_cpudef_class_init(ObjectClass *oc, void *data) { X86CPUModel *model = data; X86CPUClass *xcc = X86_CPU_CLASS(oc); xcc->model = model; xcc->migration_safe = true; } static void x86_register_cpu_model_type(const char *name, X86CPUModel *model) { char *typename = x86_cpu_type_name(name); TypeInfo ti = { .name = typename, .parent = TYPE_X86_CPU, .class_init = x86_cpu_cpudef_class_init, .class_data = model, }; type_register(&ti); g_free(typename); } static void x86_register_cpudef_types(X86CPUDefinition *def) { X86CPUModel *m; const X86CPUVersionDefinition *vdef; char *name; /* AMD aliases are handled at runtime based on CPUID vendor, so * they shouldn't be set on the CPU model table. */ assert(!(def->features[FEAT_8000_0001_EDX] & CPUID_EXT2_AMD_ALIASES)); /* catch mistakes instead of silently truncating model_id when too long */ assert(def->model_id && strlen(def->model_id) <= 48); /* Unversioned model: */ m = g_new0(X86CPUModel, 1); m->cpudef = def; m->version = CPU_VERSION_AUTO; m->is_alias = true; x86_register_cpu_model_type(def->name, m); /* Versioned models: */ for (vdef = x86_cpu_def_get_versions(def); vdef->version; vdef++) { X86CPUModel *m = g_new0(X86CPUModel, 1); m->cpudef = def; m->version = vdef->version; name = x86_cpu_versioned_model_name(def, vdef->version); x86_register_cpu_model_type(name, m); g_free(name); if (vdef->alias) { X86CPUModel *am = g_new0(X86CPUModel, 1); am->cpudef = def; am->version = vdef->version; am->is_alias = true; x86_register_cpu_model_type(vdef->alias, am); } } } #if !defined(CONFIG_USER_ONLY) void cpu_clear_apic_feature(CPUX86State *env) { env->features[FEAT_1_EDX] &= ~CPUID_APIC; } #endif /* !CONFIG_USER_ONLY */ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { X86CPU *cpu = env_archcpu(env); CPUState *cs = env_cpu(env); uint32_t die_offset; uint32_t limit; uint32_t signature[3]; /* Calculate & apply limits for different index ranges */ if (index >= 0xC0000000) { limit = env->cpuid_xlevel2; } else if (index >= 0x80000000) { limit = env->cpuid_xlevel; } else if (index >= 0x40000000) { limit = 0x40000001; } else { limit = env->cpuid_level; } if (index > limit) { /* Intel documentation states that invalid EAX input will * return the same information as EAX=cpuid_level * (Intel SDM Vol. 2A - Instruction Set Reference - CPUID) */ index = env->cpuid_level; } switch(index) { case 0: *eax = env->cpuid_level; *ebx = env->cpuid_vendor1; *edx = env->cpuid_vendor2; *ecx = env->cpuid_vendor3; break; case 1: *eax = env->cpuid_version; *ebx = (cpu->apic_id << 24) | 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */ *ecx = env->features[FEAT_1_ECX]; if ((*ecx & CPUID_EXT_XSAVE) && (env->cr[4] & CR4_OSXSAVE_MASK)) { *ecx |= CPUID_EXT_OSXSAVE; } *edx = env->features[FEAT_1_EDX]; if (cs->nr_cores * cs->nr_threads > 1) { *ebx |= (cs->nr_cores * cs->nr_threads) << 16; *edx |= CPUID_HT; } break; case 2: /* cache info: needed for Pentium Pro compatibility */ if (cpu->cache_info_passthrough) { host_cpuid(index, 0, eax, ebx, ecx, edx); break; } *eax = 1; /* Number of CPUID[EAX=2] calls required */ *ebx = 0; if (!cpu->enable_l3_cache) { *ecx = 0; } else { *ecx = cpuid2_cache_descriptor(env->cache_info_cpuid2.l3_cache); } *edx = (cpuid2_cache_descriptor(env->cache_info_cpuid2.l1d_cache) << 16) | (cpuid2_cache_descriptor(env->cache_info_cpuid2.l1i_cache) << 8) | (cpuid2_cache_descriptor(env->cache_info_cpuid2.l2_cache)); break; case 4: /* cache info: needed for Core compatibility */ if (cpu->cache_info_passthrough) { host_cpuid(index, count, eax, ebx, ecx, edx); /* QEMU gives out its own APIC IDs, never pass down bits 31..26. */ *eax &= ~0xFC000000; if ((*eax & 31) && cs->nr_cores > 1) { *eax |= (cs->nr_cores - 1) << 26; } } else { *eax = 0; switch (count) { case 0: /* L1 dcache info */ encode_cache_cpuid4(env->cache_info_cpuid4.l1d_cache, 1, cs->nr_cores, eax, ebx, ecx, edx); break; case 1: /* L1 icache info */ encode_cache_cpuid4(env->cache_info_cpuid4.l1i_cache, 1, cs->nr_cores, eax, ebx, ecx, edx); break; case 2: /* L2 cache info */ encode_cache_cpuid4(env->cache_info_cpuid4.l2_cache, cs->nr_threads, cs->nr_cores, eax, ebx, ecx, edx); break; case 3: /* L3 cache info */ die_offset = apicid_die_offset(env->nr_dies, cs->nr_cores, cs->nr_threads); if (cpu->enable_l3_cache) { encode_cache_cpuid4(env->cache_info_cpuid4.l3_cache, (1 << die_offset), cs->nr_cores, eax, ebx, ecx, edx); break; } /* fall through */ default: /* end of info */ *eax = *ebx = *ecx = *edx = 0; break; } } break; case 5: /* MONITOR/MWAIT Leaf */ *eax = cpu->mwait.eax; /* Smallest monitor-line size in bytes */ *ebx = cpu->mwait.ebx; /* Largest monitor-line size in bytes */ *ecx = cpu->mwait.ecx; /* flags */ *edx = cpu->mwait.edx; /* mwait substates */ break; case 6: /* Thermal and Power Leaf */ *eax = env->features[FEAT_6_EAX]; *ebx = 0; *ecx = 0; *edx = 0; break; case 7: /* Structured Extended Feature Flags Enumeration Leaf */ if (count == 0) { /* Maximum ECX value for sub-leaves */ *eax = env->cpuid_level_func7; *ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */ *ecx = env->features[FEAT_7_0_ECX]; /* Feature flags */ if ((*ecx & CPUID_7_0_ECX_PKU) && env->cr[4] & CR4_PKE_MASK) { *ecx |= CPUID_7_0_ECX_OSPKE; } *edx = env->features[FEAT_7_0_EDX]; /* Feature flags */ } else if (count == 1) { *eax = env->features[FEAT_7_1_EAX]; *ebx = 0; *ecx = 0; *edx = 0; } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 9: /* Direct Cache Access Information Leaf */ *eax = 0; /* Bits 0-31 in DCA_CAP MSR */ *ebx = 0; *ecx = 0; *edx = 0; break; case 0xA: /* Architectural Performance Monitoring Leaf */ if (kvm_enabled() && cpu->enable_pmu) { KVMState *s = cs->kvm_state; *eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX); *ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX); *ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX); *edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX); } else if (hvf_enabled() && cpu->enable_pmu) { *eax = hvf_get_supported_cpuid(0xA, count, R_EAX); *ebx = hvf_get_supported_cpuid(0xA, count, R_EBX); *ecx = hvf_get_supported_cpuid(0xA, count, R_ECX); *edx = hvf_get_supported_cpuid(0xA, count, R_EDX); } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 0xB: /* Extended Topology Enumeration Leaf */ if (!cpu->enable_cpuid_0xb) { *eax = *ebx = *ecx = *edx = 0; break; } *ecx = count & 0xff; *edx = cpu->apic_id; switch (count) { case 0: *eax = apicid_core_offset(env->nr_dies, cs->nr_cores, cs->nr_threads); *ebx = cs->nr_threads; *ecx |= CPUID_TOPOLOGY_LEVEL_SMT; break; case 1: *eax = apicid_pkg_offset(env->nr_dies, cs->nr_cores, cs->nr_threads); *ebx = cs->nr_cores * cs->nr_threads; *ecx |= CPUID_TOPOLOGY_LEVEL_CORE; break; default: *eax = 0; *ebx = 0; *ecx |= CPUID_TOPOLOGY_LEVEL_INVALID; } assert(!(*eax & ~0x1f)); *ebx &= 0xffff; /* The count doesn't need to be reliable. */ break; case 0x1F: /* V2 Extended Topology Enumeration Leaf */ if (env->nr_dies < 2) { *eax = *ebx = *ecx = *edx = 0; break; } *ecx = count & 0xff; *edx = cpu->apic_id; switch (count) { case 0: *eax = apicid_core_offset(env->nr_dies, cs->nr_cores, cs->nr_threads); *ebx = cs->nr_threads; *ecx |= CPUID_TOPOLOGY_LEVEL_SMT; break; case 1: *eax = apicid_die_offset(env->nr_dies, cs->nr_cores, cs->nr_threads); *ebx = cs->nr_cores * cs->nr_threads; *ecx |= CPUID_TOPOLOGY_LEVEL_CORE; break; case 2: *eax = apicid_pkg_offset(env->nr_dies, cs->nr_cores, cs->nr_threads); *ebx = env->nr_dies * cs->nr_cores * cs->nr_threads; *ecx |= CPUID_TOPOLOGY_LEVEL_DIE; break; default: *eax = 0; *ebx = 0; *ecx |= CPUID_TOPOLOGY_LEVEL_INVALID; } assert(!(*eax & ~0x1f)); *ebx &= 0xffff; /* The count doesn't need to be reliable. */ break; case 0xD: { /* Processor Extended State */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) { break; } if (count == 0) { *ecx = xsave_area_size(x86_cpu_xsave_components(cpu)); *eax = env->features[FEAT_XSAVE_COMP_LO]; *edx = env->features[FEAT_XSAVE_COMP_HI]; *ebx = xsave_area_size(env->xcr0); } else if (count == 1) { *eax = env->features[FEAT_XSAVE]; } else if (count < ARRAY_SIZE(x86_ext_save_areas)) { if ((x86_cpu_xsave_components(cpu) >> count) & 1) { const ExtSaveArea *esa = &x86_ext_save_areas[count]; *eax = esa->size; *ebx = esa->offset; } } break; } case 0x14: { /* Intel Processor Trace Enumeration */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) || !kvm_enabled()) { break; } if (count == 0) { *eax = INTEL_PT_MAX_SUBLEAF; *ebx = INTEL_PT_MINIMAL_EBX; *ecx = INTEL_PT_MINIMAL_ECX; } else if (count == 1) { *eax = INTEL_PT_MTC_BITMAP | INTEL_PT_ADDR_RANGES_NUM; *ebx = INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP; } break; } case 0x40000000: /* * CPUID code in kvm_arch_init_vcpu() ignores stuff * set here, but we restrict to TCG none the less. */ if (tcg_enabled() && cpu->expose_tcg) { memcpy(signature, "TCGTCGTCGTCG", 12); *eax = 0x40000001; *ebx = signature[0]; *ecx = signature[1]; *edx = signature[2]; } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 0x40000001: *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; case 0x80000000: *eax = env->cpuid_xlevel; *ebx = env->cpuid_vendor1; *edx = env->cpuid_vendor2; *ecx = env->cpuid_vendor3; break; case 0x80000001: *eax = env->cpuid_version; *ebx = 0; *ecx = env->features[FEAT_8000_0001_ECX]; *edx = env->features[FEAT_8000_0001_EDX]; /* The Linux kernel checks for the CMPLegacy bit and * discards multiple thread information if it is set. * So don't set it here for Intel to make Linux guests happy. */ if (cs->nr_cores * cs->nr_threads > 1) { if (env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1 || env->cpuid_vendor2 != CPUID_VENDOR_INTEL_2 || env->cpuid_vendor3 != CPUID_VENDOR_INTEL_3) { *ecx |= 1 << 1; /* CmpLegacy bit */ } } break; case 0x80000002: case 0x80000003: case 0x80000004: *eax = env->cpuid_model[(index - 0x80000002) * 4 + 0]; *ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1]; *ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2]; *edx = env->cpuid_model[(index - 0x80000002) * 4 + 3]; break; case 0x80000005: /* cache info (L1 cache) */ if (cpu->cache_info_passthrough) { host_cpuid(index, 0, eax, ebx, ecx, edx); break; } *eax = (L1_DTLB_2M_ASSOC << 24) | (L1_DTLB_2M_ENTRIES << 16) | \ (L1_ITLB_2M_ASSOC << 8) | (L1_ITLB_2M_ENTRIES); *ebx = (L1_DTLB_4K_ASSOC << 24) | (L1_DTLB_4K_ENTRIES << 16) | \ (L1_ITLB_4K_ASSOC << 8) | (L1_ITLB_4K_ENTRIES); *ecx = encode_cache_cpuid80000005(env->cache_info_amd.l1d_cache); *edx = encode_cache_cpuid80000005(env->cache_info_amd.l1i_cache); break; case 0x80000006: /* cache info (L2 cache) */ if (cpu->cache_info_passthrough) { host_cpuid(index, 0, eax, ebx, ecx, edx); break; } *eax = (AMD_ENC_ASSOC(L2_DTLB_2M_ASSOC) << 28) | \ (L2_DTLB_2M_ENTRIES << 16) | \ (AMD_ENC_ASSOC(L2_ITLB_2M_ASSOC) << 12) | \ (L2_ITLB_2M_ENTRIES); *ebx = (AMD_ENC_ASSOC(L2_DTLB_4K_ASSOC) << 28) | \ (L2_DTLB_4K_ENTRIES << 16) | \ (AMD_ENC_ASSOC(L2_ITLB_4K_ASSOC) << 12) | \ (L2_ITLB_4K_ENTRIES); encode_cache_cpuid80000006(env->cache_info_amd.l2_cache, cpu->enable_l3_cache ? env->cache_info_amd.l3_cache : NULL, ecx, edx); break; case 0x80000007: *eax = 0; *ebx = 0; *ecx = 0; *edx = env->features[FEAT_8000_0007_EDX]; break; case 0x80000008: /* virtual & phys address size in low 2 bytes. */ if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) { /* 64 bit processor */ *eax = cpu->phys_bits; /* configurable physical bits */ if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_LA57) { *eax |= 0x00003900; /* 57 bits virtual */ } else { *eax |= 0x00003000; /* 48 bits virtual */ } } else { *eax = cpu->phys_bits; } *ebx = env->features[FEAT_8000_0008_EBX]; *ecx = 0; *edx = 0; if (cs->nr_cores * cs->nr_threads > 1) { *ecx |= (cs->nr_cores * cs->nr_threads) - 1; } break; case 0x8000000A: if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) { *eax = 0x00000001; /* SVM Revision */ *ebx = 0x00000010; /* nr of ASIDs */ *ecx = 0; *edx = env->features[FEAT_SVM]; /* optional features */ } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 0x8000001D: *eax = 0; if (cpu->cache_info_passthrough) { host_cpuid(index, count, eax, ebx, ecx, edx); break; } switch (count) { case 0: /* L1 dcache info */ encode_cache_cpuid8000001d(env->cache_info_amd.l1d_cache, cs, eax, ebx, ecx, edx); break; case 1: /* L1 icache info */ encode_cache_cpuid8000001d(env->cache_info_amd.l1i_cache, cs, eax, ebx, ecx, edx); break; case 2: /* L2 cache info */ encode_cache_cpuid8000001d(env->cache_info_amd.l2_cache, cs, eax, ebx, ecx, edx); break; case 3: /* L3 cache info */ encode_cache_cpuid8000001d(env->cache_info_amd.l3_cache, cs, eax, ebx, ecx, edx); break; default: /* end of info */ *eax = *ebx = *ecx = *edx = 0; break; } break; case 0x8000001E: assert(cpu->core_id <= 255); encode_topo_cpuid8000001e(cs, cpu, eax, ebx, ecx, edx); break; case 0xC0000000: *eax = env->cpuid_xlevel2; *ebx = 0; *ecx = 0; *edx = 0; break; case 0xC0000001: /* Support for VIA CPU's CPUID instruction */ *eax = env->cpuid_version; *ebx = 0; *ecx = 0; *edx = env->features[FEAT_C000_0001_EDX]; break; case 0xC0000002: case 0xC0000003: case 0xC0000004: /* Reserved for the future, and now filled with zero */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; case 0x8000001F: *eax = sev_enabled() ? 0x2 : 0; *ebx = sev_get_cbit_position(); *ebx |= sev_get_reduced_phys_bits() << 6; *ecx = 0; *edx = 0; break; default: /* reserved values: zero */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } } /* CPUClass::reset() */ static void x86_cpu_reset(CPUState *s) { X86CPU *cpu = X86_CPU(s); X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu); CPUX86State *env = &cpu->env; target_ulong cr4; uint64_t xcr0; int i; xcc->parent_reset(s); memset(env, 0, offsetof(CPUX86State, end_reset_fields)); env->old_exception = -1; /* init to reset state */ env->hflags2 |= HF2_GIF_MASK; cpu_x86_update_cr0(env, 0x60000010); env->a20_mask = ~0x0; env->smbase = 0x30000; env->msr_smi_count = 0; env->idt.limit = 0xffff; env->gdt.limit = 0xffff; env->ldt.limit = 0xffff; env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT); env->tr.limit = 0xffff; env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT); cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); env->eip = 0xfff0; env->regs[R_EDX] = env->cpuid_version; env->eflags = 0x2; /* FPU init */ for (i = 0; i < 8; i++) { env->fptags[i] = 1; } cpu_set_fpuc(env, 0x37f); env->mxcsr = 0x1f80; /* All units are in INIT state. */ env->xstate_bv = 0; env->pat = 0x0007040600070406ULL; env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT; if (env->features[FEAT_1_ECX] & CPUID_EXT_MONITOR) { env->msr_ia32_misc_enable |= MSR_IA32_MISC_ENABLE_MWAIT; } memset(env->dr, 0, sizeof(env->dr)); env->dr[6] = DR6_FIXED_1; env->dr[7] = DR7_FIXED_1; cpu_breakpoint_remove_all(s, BP_CPU); cpu_watchpoint_remove_all(s, BP_CPU); cr4 = 0; xcr0 = XSTATE_FP_MASK; #ifdef CONFIG_USER_ONLY /* Enable all the features for user-mode. */ if (env->features[FEAT_1_EDX] & CPUID_SSE) { xcr0 |= XSTATE_SSE_MASK; } for (i = 2; i < ARRAY_SIZE(x86_ext_save_areas); i++) { const ExtSaveArea *esa = &x86_ext_save_areas[i]; if (env->features[esa->feature] & esa->bits) { xcr0 |= 1ull << i; } } if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) { cr4 |= CR4_OSFXSR_MASK | CR4_OSXSAVE_MASK; } if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_FSGSBASE) { cr4 |= CR4_FSGSBASE_MASK; } #endif env->xcr0 = xcr0; cpu_x86_update_cr4(env, cr4); /* * SDM 11.11.5 requires: * - IA32_MTRR_DEF_TYPE MSR.E = 0 * - IA32_MTRR_PHYSMASKn.V = 0 * All other bits are undefined. For simplification, zero it all. */ env->mtrr_deftype = 0; memset(env->mtrr_var, 0, sizeof(env->mtrr_var)); memset(env->mtrr_fixed, 0, sizeof(env->mtrr_fixed)); env->interrupt_injected = -1; env->exception_nr = -1; env->exception_pending = 0; env->exception_injected = 0; env->exception_has_payload = false; env->exception_payload = 0; env->nmi_injected = false; #if !defined(CONFIG_USER_ONLY) /* We hard-wire the BSP to the first CPU. */ apic_designate_bsp(cpu->apic_state, s->cpu_index == 0); s->halted = !cpu_is_bsp(cpu); if (kvm_enabled()) { kvm_arch_reset_vcpu(cpu); } else if (hvf_enabled()) { hvf_reset_vcpu(s); } #endif } #ifndef CONFIG_USER_ONLY bool cpu_is_bsp(X86CPU *cpu) { return cpu_get_apic_base(cpu->apic_state) & MSR_IA32_APICBASE_BSP; } /* TODO: remove me, when reset over QOM tree is implemented */ static void x86_cpu_machine_reset_cb(void *opaque) { X86CPU *cpu = opaque; cpu_reset(CPU(cpu)); } #endif static void mce_init(X86CPU *cpu) { CPUX86State *cenv = &cpu->env; unsigned int bank; if (((cenv->cpuid_version >> 8) & 0xf) >= 6 && (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == (CPUID_MCE | CPUID_MCA)) { cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF | (cpu->enable_lmce ? MCG_LMCE_P : 0); cenv->mcg_ctl = ~(uint64_t)0; for (bank = 0; bank < MCE_BANKS_DEF; bank++) { cenv->mce_banks[bank * 4] = ~(uint64_t)0; } } } #ifndef CONFIG_USER_ONLY APICCommonClass *apic_get_class(void) { const char *apic_type = "apic"; /* TODO: in-kernel irqchip for hvf */ if (kvm_apic_in_kernel()) { apic_type = "kvm-apic"; } else if (xen_enabled()) { apic_type = "xen-apic"; } return APIC_COMMON_CLASS(object_class_by_name(apic_type)); } static void x86_cpu_apic_create(X86CPU *cpu, Error **errp) { APICCommonState *apic; ObjectClass *apic_class = OBJECT_CLASS(apic_get_class()); cpu->apic_state = DEVICE(object_new(object_class_get_name(apic_class))); object_property_add_child(OBJECT(cpu), "lapic", OBJECT(cpu->apic_state), &error_abort); object_unref(OBJECT(cpu->apic_state)); qdev_prop_set_uint32(cpu->apic_state, "id", cpu->apic_id); /* TODO: convert to link<> */ apic = APIC_COMMON(cpu->apic_state); apic->cpu = cpu; apic->apicbase = APIC_DEFAULT_ADDRESS | MSR_IA32_APICBASE_ENABLE; } static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp) { APICCommonState *apic; static bool apic_mmio_map_once; if (cpu->apic_state == NULL) { return; } object_property_set_bool(OBJECT(cpu->apic_state), true, "realized", errp); /* Map APIC MMIO area */ apic = APIC_COMMON(cpu->apic_state); if (!apic_mmio_map_once) { memory_region_add_subregion_overlap(get_system_memory(), apic->apicbase & MSR_IA32_APICBASE_BASE, &apic->io_memory, 0x1000); apic_mmio_map_once = true; } } static void x86_cpu_machine_done(Notifier *n, void *unused) { X86CPU *cpu = container_of(n, X86CPU, machine_done); MemoryRegion *smram = (MemoryRegion *) object_resolve_path("/machine/smram", NULL); if (smram) { cpu->smram = g_new(MemoryRegion, 1); memory_region_init_alias(cpu->smram, OBJECT(cpu), "smram", smram, 0, 1ull << 32); memory_region_set_enabled(cpu->smram, true); memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->smram, 1); } } #else static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp) { } #endif /* Note: Only safe for use on x86(-64) hosts */ static uint32_t x86_host_phys_bits(void) { uint32_t eax; uint32_t host_phys_bits; host_cpuid(0x80000000, 0, &eax, NULL, NULL, NULL); if (eax >= 0x80000008) { host_cpuid(0x80000008, 0, &eax, NULL, NULL, NULL); /* Note: According to AMD doc 25481 rev 2.34 they have a field * at 23:16 that can specify a maximum physical address bits for * the guest that can override this value; but I've not seen * anything with that set. */ host_phys_bits = eax & 0xff; } else { /* It's an odd 64 bit machine that doesn't have the leaf for * physical address bits; fall back to 36 that's most older * Intel. */ host_phys_bits = 36; } return host_phys_bits; } static void x86_cpu_adjust_level(X86CPU *cpu, uint32_t *min, uint32_t value) { if (*min < value) { *min = value; } } /* Increase cpuid_min_{level,xlevel,xlevel2} automatically, if appropriate */ static void x86_cpu_adjust_feat_level(X86CPU *cpu, FeatureWord w) { CPUX86State *env = &cpu->env; FeatureWordInfo *fi = &feature_word_info[w]; uint32_t eax = fi->cpuid.eax; uint32_t region = eax & 0xF0000000; assert(feature_word_info[w].type == CPUID_FEATURE_WORD); if (!env->features[w]) { return; } switch (region) { case 0x00000000: x86_cpu_adjust_level(cpu, &env->cpuid_min_level, eax); break; case 0x80000000: x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, eax); break; case 0xC0000000: x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel2, eax); break; } if (eax == 7) { x86_cpu_adjust_level(cpu, &env->cpuid_min_level_func7, fi->cpuid.ecx); } } /* Calculate XSAVE components based on the configured CPU feature flags */ static void x86_cpu_enable_xsave_components(X86CPU *cpu) { CPUX86State *env = &cpu->env; int i; uint64_t mask; if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) { return; } mask = 0; for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) { const ExtSaveArea *esa = &x86_ext_save_areas[i]; if (env->features[esa->feature] & esa->bits) { mask |= (1ULL << i); } } env->features[FEAT_XSAVE_COMP_LO] = mask; env->features[FEAT_XSAVE_COMP_HI] = mask >> 32; } /***** Steps involved on loading and filtering CPUID data * * When initializing and realizing a CPU object, the steps * involved in setting up CPUID data are: * * 1) Loading CPU model definition (X86CPUDefinition). This is * implemented by x86_cpu_load_model() and should be completely * transparent, as it is done automatically by instance_init. * No code should need to look at X86CPUDefinition structs * outside instance_init. * * 2) CPU expansion. This is done by realize before CPUID * filtering, and will make sure host/accelerator data is * loaded for CPU models that depend on host capabilities * (e.g. "host"). Done by x86_cpu_expand_features(). * * 3) CPUID filtering. This initializes extra data related to * CPUID, and checks if the host supports all capabilities * required by the CPU. Runnability of a CPU model is * determined at this step. Done by x86_cpu_filter_features(). * * Some operations don't require all steps to be performed. * More precisely: * * - CPU instance creation (instance_init) will run only CPU * model loading. CPU expansion can't run at instance_init-time * because host/accelerator data may be not available yet. * - CPU realization will perform both CPU model expansion and CPUID * filtering, and return an error in case one of them fails. * - query-cpu-definitions needs to run all 3 steps. It needs * to run CPUID filtering, as the 'unavailable-features' * field is set based on the filtering results. * - The query-cpu-model-expansion QMP command only needs to run * CPU model loading and CPU expansion. It should not filter * any CPUID data based on host capabilities. */ /* Expand CPU configuration data, based on configured features * and host/accelerator capabilities when appropriate. */ static void x86_cpu_expand_features(X86CPU *cpu, Error **errp) { CPUX86State *env = &cpu->env; FeatureWord w; int i; GList *l; Error *local_err = NULL; for (l = plus_features; l; l = l->next) { const char *prop = l->data; object_property_set_bool(OBJECT(cpu), true, prop, &local_err); if (local_err) { goto out; } } for (l = minus_features; l; l = l->next) { const char *prop = l->data; object_property_set_bool(OBJECT(cpu), false, prop, &local_err); if (local_err) { goto out; } } /*TODO: Now cpu->max_features doesn't overwrite features * set using QOM properties, and we can convert * plus_features & minus_features to global properties * inside x86_cpu_parse_featurestr() too. */ if (cpu->max_features) { for (w = 0; w < FEATURE_WORDS; w++) { /* Override only features that weren't set explicitly * by the user. */ env->features[w] |= x86_cpu_get_supported_feature_word(w, cpu->migratable) & ~env->user_features[w] & \ ~feature_word_info[w].no_autoenable_flags; } } for (i = 0; i < ARRAY_SIZE(feature_dependencies); i++) { FeatureDep *d = &feature_dependencies[i]; if (!(env->features[d->from.index] & d->from.mask)) { uint64_t unavailable_features = env->features[d->to.index] & d->to.mask; /* Not an error unless the dependent feature was added explicitly. */ mark_unavailable_features(cpu, d->to.index, unavailable_features & env->user_features[d->to.index], "This feature depends on other features that were not requested"); env->user_features[d->to.index] |= unavailable_features; env->features[d->to.index] &= ~unavailable_features; } } if (!kvm_enabled() || !cpu->expose_kvm) { env->features[FEAT_KVM] = 0; } x86_cpu_enable_xsave_components(cpu); /* CPUID[EAX=7,ECX=0].EBX always increased level automatically: */ x86_cpu_adjust_feat_level(cpu, FEAT_7_0_EBX); if (cpu->full_cpuid_auto_level) { x86_cpu_adjust_feat_level(cpu, FEAT_1_EDX); x86_cpu_adjust_feat_level(cpu, FEAT_1_ECX); x86_cpu_adjust_feat_level(cpu, FEAT_6_EAX); x86_cpu_adjust_feat_level(cpu, FEAT_7_0_ECX); x86_cpu_adjust_feat_level(cpu, FEAT_7_1_EAX); x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_EDX); x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_ECX); x86_cpu_adjust_feat_level(cpu, FEAT_8000_0007_EDX); x86_cpu_adjust_feat_level(cpu, FEAT_8000_0008_EBX); x86_cpu_adjust_feat_level(cpu, FEAT_C000_0001_EDX); x86_cpu_adjust_feat_level(cpu, FEAT_SVM); x86_cpu_adjust_feat_level(cpu, FEAT_XSAVE); /* Intel Processor Trace requires CPUID[0x14] */ if ((env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) && kvm_enabled() && cpu->intel_pt_auto_level) { x86_cpu_adjust_level(cpu, &cpu->env.cpuid_min_level, 0x14); } /* CPU topology with multi-dies support requires CPUID[0x1F] */ if (env->nr_dies > 1) { x86_cpu_adjust_level(cpu, &env->cpuid_min_level, 0x1F); } /* SVM requires CPUID[0x8000000A] */ if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) { x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000000A); } /* SEV requires CPUID[0x8000001F] */ if (sev_enabled()) { x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000001F); } } /* Set cpuid_*level* based on cpuid_min_*level, if not explicitly set */ if (env->cpuid_level_func7 == UINT32_MAX) { env->cpuid_level_func7 = env->cpuid_min_level_func7; } if (env->cpuid_level == UINT32_MAX) { env->cpuid_level = env->cpuid_min_level; } if (env->cpuid_xlevel == UINT32_MAX) { env->cpuid_xlevel = env->cpuid_min_xlevel; } if (env->cpuid_xlevel2 == UINT32_MAX) { env->cpuid_xlevel2 = env->cpuid_min_xlevel2; } out: if (local_err != NULL) { error_propagate(errp, local_err); } } /* * Finishes initialization of CPUID data, filters CPU feature * words based on host availability of each feature. * * Returns: 0 if all flags are supported by the host, non-zero otherwise. */ static void x86_cpu_filter_features(X86CPU *cpu, bool verbose) { CPUX86State *env = &cpu->env; FeatureWord w; const char *prefix = NULL; if (verbose) { prefix = accel_uses_host_cpuid() ? "host doesn't support requested feature" : "TCG doesn't support requested feature"; } for (w = 0; w < FEATURE_WORDS; w++) { uint64_t host_feat = x86_cpu_get_supported_feature_word(w, false); uint64_t requested_features = env->features[w]; uint64_t unavailable_features = requested_features & ~host_feat; mark_unavailable_features(cpu, w, unavailable_features, prefix); } if ((env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) && kvm_enabled()) { KVMState *s = CPU(cpu)->kvm_state; uint32_t eax_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_EAX); uint32_t ebx_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_EBX); uint32_t ecx_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_ECX); uint32_t eax_1 = kvm_arch_get_supported_cpuid(s, 0x14, 1, R_EAX); uint32_t ebx_1 = kvm_arch_get_supported_cpuid(s, 0x14, 1, R_EBX); if (!eax_0 || ((ebx_0 & INTEL_PT_MINIMAL_EBX) != INTEL_PT_MINIMAL_EBX) || ((ecx_0 & INTEL_PT_MINIMAL_ECX) != INTEL_PT_MINIMAL_ECX) || ((eax_1 & INTEL_PT_MTC_BITMAP) != INTEL_PT_MTC_BITMAP) || ((eax_1 & INTEL_PT_ADDR_RANGES_NUM_MASK) < INTEL_PT_ADDR_RANGES_NUM) || ((ebx_1 & (INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP)) != (INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP)) || (ecx_0 & INTEL_PT_IP_LIP)) { /* * Processor Trace capabilities aren't configurable, so if the * host can't emulate the capabilities we report on * cpu_x86_cpuid(), intel-pt can't be enabled on the current host. */ mark_unavailable_features(cpu, FEAT_7_0_EBX, CPUID_7_0_EBX_INTEL_PT, prefix); } } } static void x86_cpu_realizefn(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); X86CPU *cpu = X86_CPU(dev); X86CPUClass *xcc = X86_CPU_GET_CLASS(dev); CPUX86State *env = &cpu->env; Error *local_err = NULL; static bool ht_warned; if (xcc->host_cpuid_required) { if (!accel_uses_host_cpuid()) { char *name = x86_cpu_class_get_model_name(xcc); error_setg(&local_err, "CPU model '%s' requires KVM", name); g_free(name); goto out; } if (enable_cpu_pm) { host_cpuid(5, 0, &cpu->mwait.eax, &cpu->mwait.ebx, &cpu->mwait.ecx, &cpu->mwait.edx); env->features[FEAT_1_ECX] |= CPUID_EXT_MONITOR; } } /* mwait extended info: needed for Core compatibility */ /* We always wake on interrupt even if host does not have the capability */ cpu->mwait.ecx |= CPUID_MWAIT_EMX | CPUID_MWAIT_IBE; if (cpu->apic_id == UNASSIGNED_APIC_ID) { error_setg(errp, "apic-id property was not initialized properly"); return; } x86_cpu_expand_features(cpu, &local_err); if (local_err) { goto out; } x86_cpu_filter_features(cpu, cpu->check_cpuid || cpu->enforce_cpuid); if (cpu->enforce_cpuid && x86_cpu_have_filtered_features(cpu)) { error_setg(&local_err, accel_uses_host_cpuid() ? "Host doesn't support requested features" : "TCG doesn't support requested features"); goto out; } /* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on * CPUID[1].EDX. */ if (IS_AMD_CPU(env)) { env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES; env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX] & CPUID_EXT2_AMD_ALIASES); } /* For 64bit systems think about the number of physical bits to present. * ideally this should be the same as the host; anything other than matching * the host can cause incorrect guest behaviour. * QEMU used to pick the magic value of 40 bits that corresponds to * consumer AMD devices but nothing else. */ if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) { if (accel_uses_host_cpuid()) { uint32_t host_phys_bits = x86_host_phys_bits(); static bool warned; /* Print a warning if the user set it to a value that's not the * host value. */ if (cpu->phys_bits != host_phys_bits && cpu->phys_bits != 0 && !warned) { warn_report("Host physical bits (%u)" " does not match phys-bits property (%u)", host_phys_bits, cpu->phys_bits); warned = true; } if (cpu->host_phys_bits) { /* The user asked for us to use the host physical bits */ cpu->phys_bits = host_phys_bits; if (cpu->host_phys_bits_limit && cpu->phys_bits > cpu->host_phys_bits_limit) { cpu->phys_bits = cpu->host_phys_bits_limit; } } if (cpu->phys_bits && (cpu->phys_bits > TARGET_PHYS_ADDR_SPACE_BITS || cpu->phys_bits < 32)) { error_setg(errp, "phys-bits should be between 32 and %u " " (but is %u)", TARGET_PHYS_ADDR_SPACE_BITS, cpu->phys_bits); return; } } else { if (cpu->phys_bits && cpu->phys_bits != TCG_PHYS_ADDR_BITS) { error_setg(errp, "TCG only supports phys-bits=%u", TCG_PHYS_ADDR_BITS); return; } } /* 0 means it was not explicitly set by the user (or by machine * compat_props or by the host code above). In this case, the default * is the value used by TCG (40). */ if (cpu->phys_bits == 0) { cpu->phys_bits = TCG_PHYS_ADDR_BITS; } } else { /* For 32 bit systems don't use the user set value, but keep * phys_bits consistent with what we tell the guest. */ if (cpu->phys_bits != 0) { error_setg(errp, "phys-bits is not user-configurable in 32 bit"); return; } if (env->features[FEAT_1_EDX] & CPUID_PSE36) { cpu->phys_bits = 36; } else { cpu->phys_bits = 32; } } /* Cache information initialization */ if (!cpu->legacy_cache) { if (!xcc->model || !xcc->model->cpudef->cache_info) { char *name = x86_cpu_class_get_model_name(xcc); error_setg(errp, "CPU model '%s' doesn't support legacy-cache=off", name); g_free(name); return; } env->cache_info_cpuid2 = env->cache_info_cpuid4 = env->cache_info_amd = *xcc->model->cpudef->cache_info; } else { /* Build legacy cache information */ env->cache_info_cpuid2.l1d_cache = &legacy_l1d_cache; env->cache_info_cpuid2.l1i_cache = &legacy_l1i_cache; env->cache_info_cpuid2.l2_cache = &legacy_l2_cache_cpuid2; env->cache_info_cpuid2.l3_cache = &legacy_l3_cache; env->cache_info_cpuid4.l1d_cache = &legacy_l1d_cache; env->cache_info_cpuid4.l1i_cache = &legacy_l1i_cache; env->cache_info_cpuid4.l2_cache = &legacy_l2_cache; env->cache_info_cpuid4.l3_cache = &legacy_l3_cache; env->cache_info_amd.l1d_cache = &legacy_l1d_cache_amd; env->cache_info_amd.l1i_cache = &legacy_l1i_cache_amd; env->cache_info_amd.l2_cache = &legacy_l2_cache_amd; env->cache_info_amd.l3_cache = &legacy_l3_cache; } cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } #ifndef CONFIG_USER_ONLY MachineState *ms = MACHINE(qdev_get_machine()); qemu_register_reset(x86_cpu_machine_reset_cb, cpu); if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || ms->smp.cpus > 1) { x86_cpu_apic_create(cpu, &local_err); if (local_err != NULL) { goto out; } } #endif mce_init(cpu); #ifndef CONFIG_USER_ONLY if (tcg_enabled()) { cpu->cpu_as_mem = g_new(MemoryRegion, 1); cpu->cpu_as_root = g_new(MemoryRegion, 1); /* Outer container... */ memory_region_init(cpu->cpu_as_root, OBJECT(cpu), "memory", ~0ull); memory_region_set_enabled(cpu->cpu_as_root, true); /* ... with two regions inside: normal system memory with low * priority, and... */ memory_region_init_alias(cpu->cpu_as_mem, OBJECT(cpu), "memory", get_system_memory(), 0, ~0ull); memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->cpu_as_mem, 0); memory_region_set_enabled(cpu->cpu_as_mem, true); cs->num_ases = 2; cpu_address_space_init(cs, 0, "cpu-memory", cs->memory); cpu_address_space_init(cs, 1, "cpu-smm", cpu->cpu_as_root); /* ... SMRAM with higher priority, linked from /machine/smram. */ cpu->machine_done.notify = x86_cpu_machine_done; qemu_add_machine_init_done_notifier(&cpu->machine_done); } #endif qemu_init_vcpu(cs); /* * Most Intel and certain AMD CPUs support hyperthreading. Even though QEMU * fixes this issue by adjusting CPUID_0000_0001_EBX and CPUID_8000_0008_ECX * based on inputs (sockets,cores,threads), it is still better to give * users a warning. * * NOTE: the following code has to follow qemu_init_vcpu(). Otherwise * cs->nr_threads hasn't be populated yet and the checking is incorrect. */ if (IS_AMD_CPU(env) && !(env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_TOPOEXT) && cs->nr_threads > 1 && !ht_warned) { warn_report("This family of AMD CPU doesn't support " "hyperthreading(%d)", cs->nr_threads); error_printf("Please configure -smp options properly" " or try enabling topoext feature.\n"); ht_warned = true; } x86_cpu_apic_realize(cpu, &local_err); if (local_err != NULL) { goto out; } cpu_reset(cs); xcc->parent_realize(dev, &local_err); out: if (local_err != NULL) { error_propagate(errp, local_err); return; } } static void x86_cpu_unrealizefn(DeviceState *dev, Error **errp) { X86CPU *cpu = X86_CPU(dev); X86CPUClass *xcc = X86_CPU_GET_CLASS(dev); Error *local_err = NULL; #ifndef CONFIG_USER_ONLY cpu_remove_sync(CPU(dev)); qemu_unregister_reset(x86_cpu_machine_reset_cb, dev); #endif if (cpu->apic_state) { object_unparent(OBJECT(cpu->apic_state)); cpu->apic_state = NULL; } xcc->parent_unrealize(dev, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } } typedef struct BitProperty { FeatureWord w; uint64_t mask; } BitProperty; static void x86_cpu_get_bit_prop(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86CPU *cpu = X86_CPU(obj); BitProperty *fp = opaque; uint64_t f = cpu->env.features[fp->w]; bool value = (f & fp->mask) == fp->mask; visit_type_bool(v, name, &value, errp); } static void x86_cpu_set_bit_prop(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { DeviceState *dev = DEVICE(obj); X86CPU *cpu = X86_CPU(obj); BitProperty *fp = opaque; Error *local_err = NULL; bool value; if (dev->realized) { qdev_prop_set_after_realize(dev, name, errp); return; } visit_type_bool(v, name, &value, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (value) { cpu->env.features[fp->w] |= fp->mask; } else { cpu->env.features[fp->w] &= ~fp->mask; } cpu->env.user_features[fp->w] |= fp->mask; } static void x86_cpu_release_bit_prop(Object *obj, const char *name, void *opaque) { BitProperty *prop = opaque; g_free(prop); } /* Register a boolean property to get/set a single bit in a uint32_t field. * * The same property name can be registered multiple times to make it affect * multiple bits in the same FeatureWord. In that case, the getter will return * true only if all bits are set. */ static void x86_cpu_register_bit_prop(X86CPU *cpu, const char *prop_name, FeatureWord w, int bitnr) { BitProperty *fp; ObjectProperty *op; uint64_t mask = (1ULL << bitnr); op = object_property_find(OBJECT(cpu), prop_name, NULL); if (op) { fp = op->opaque; assert(fp->w == w); fp->mask |= mask; } else { fp = g_new0(BitProperty, 1); fp->w = w; fp->mask = mask; object_property_add(OBJECT(cpu), prop_name, "bool", x86_cpu_get_bit_prop, x86_cpu_set_bit_prop, x86_cpu_release_bit_prop, fp, &error_abort); } } static void x86_cpu_register_feature_bit_props(X86CPU *cpu, FeatureWord w, int bitnr) { FeatureWordInfo *fi = &feature_word_info[w]; const char *name = fi->feat_names[bitnr]; if (!name) { return; } /* Property names should use "-" instead of "_". * Old names containing underscores are registered as aliases * using object_property_add_alias() */ assert(!strchr(name, '_')); /* aliases don't use "|" delimiters anymore, they are registered * manually using object_property_add_alias() */ assert(!strchr(name, '|')); x86_cpu_register_bit_prop(cpu, name, w, bitnr); } static GuestPanicInformation *x86_cpu_get_crash_info(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; GuestPanicInformation *panic_info = NULL; if (env->features[FEAT_HYPERV_EDX] & HV_GUEST_CRASH_MSR_AVAILABLE) { panic_info = g_malloc0(sizeof(GuestPanicInformation)); panic_info->type = GUEST_PANIC_INFORMATION_TYPE_HYPER_V; assert(HV_CRASH_PARAMS >= 5); panic_info->u.hyper_v.arg1 = env->msr_hv_crash_params[0]; panic_info->u.hyper_v.arg2 = env->msr_hv_crash_params[1]; panic_info->u.hyper_v.arg3 = env->msr_hv_crash_params[2]; panic_info->u.hyper_v.arg4 = env->msr_hv_crash_params[3]; panic_info->u.hyper_v.arg5 = env->msr_hv_crash_params[4]; } return panic_info; } static void x86_cpu_get_crash_info_qom(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { CPUState *cs = CPU(obj); GuestPanicInformation *panic_info; if (!cs->crash_occurred) { error_setg(errp, "No crash occured"); return; } panic_info = x86_cpu_get_crash_info(cs); if (panic_info == NULL) { error_setg(errp, "No crash information"); return; } visit_type_GuestPanicInformation(v, "crash-information", &panic_info, errp); qapi_free_GuestPanicInformation(panic_info); } static void x86_cpu_initfn(Object *obj) { X86CPU *cpu = X86_CPU(obj); X86CPUClass *xcc = X86_CPU_GET_CLASS(obj); CPUX86State *env = &cpu->env; FeatureWord w; env->nr_dies = 1; cpu_set_cpustate_pointers(cpu); object_property_add(obj, "family", "int", x86_cpuid_version_get_family, x86_cpuid_version_set_family, NULL, NULL, NULL); object_property_add(obj, "model", "int", x86_cpuid_version_get_model, x86_cpuid_version_set_model, NULL, NULL, NULL); object_property_add(obj, "stepping", "int", x86_cpuid_version_get_stepping, x86_cpuid_version_set_stepping, NULL, NULL, NULL); object_property_add_str(obj, "vendor", x86_cpuid_get_vendor, x86_cpuid_set_vendor, NULL); object_property_add_str(obj, "model-id", x86_cpuid_get_model_id, x86_cpuid_set_model_id, NULL); object_property_add(obj, "tsc-frequency", "int", x86_cpuid_get_tsc_freq, x86_cpuid_set_tsc_freq, NULL, NULL, NULL); object_property_add(obj, "feature-words", "X86CPUFeatureWordInfo", x86_cpu_get_feature_words, NULL, NULL, (void *)env->features, NULL); object_property_add(obj, "filtered-features", "X86CPUFeatureWordInfo", x86_cpu_get_feature_words, NULL, NULL, (void *)cpu->filtered_features, NULL); /* * The "unavailable-features" property has the same semantics as * CpuDefinitionInfo.unavailable-features on the "query-cpu-definitions" * QMP command: they list the features that would have prevented the * CPU from running if the "enforce" flag was set. */ object_property_add(obj, "unavailable-features", "strList", x86_cpu_get_unavailable_features, NULL, NULL, NULL, &error_abort); object_property_add(obj, "crash-information", "GuestPanicInformation", x86_cpu_get_crash_info_qom, NULL, NULL, NULL, NULL); for (w = 0; w < FEATURE_WORDS; w++) { int bitnr; for (bitnr = 0; bitnr < 64; bitnr++) { x86_cpu_register_feature_bit_props(cpu, w, bitnr); } } object_property_add_alias(obj, "sse3", obj, "pni", &error_abort); object_property_add_alias(obj, "pclmuldq", obj, "pclmulqdq", &error_abort); object_property_add_alias(obj, "sse4-1", obj, "sse4.1", &error_abort); object_property_add_alias(obj, "sse4-2", obj, "sse4.2", &error_abort); object_property_add_alias(obj, "xd", obj, "nx", &error_abort); object_property_add_alias(obj, "ffxsr", obj, "fxsr-opt", &error_abort); object_property_add_alias(obj, "i64", obj, "lm", &error_abort); object_property_add_alias(obj, "ds_cpl", obj, "ds-cpl", &error_abort); object_property_add_alias(obj, "tsc_adjust", obj, "tsc-adjust", &error_abort); object_property_add_alias(obj, "fxsr_opt", obj, "fxsr-opt", &error_abort); object_property_add_alias(obj, "lahf_lm", obj, "lahf-lm", &error_abort); object_property_add_alias(obj, "cmp_legacy", obj, "cmp-legacy", &error_abort); object_property_add_alias(obj, "nodeid_msr", obj, "nodeid-msr", &error_abort); object_property_add_alias(obj, "perfctr_core", obj, "perfctr-core", &error_abort); object_property_add_alias(obj, "perfctr_nb", obj, "perfctr-nb", &error_abort); object_property_add_alias(obj, "kvm_nopiodelay", obj, "kvm-nopiodelay", &error_abort); object_property_add_alias(obj, "kvm_mmu", obj, "kvm-mmu", &error_abort); object_property_add_alias(obj, "kvm_asyncpf", obj, "kvm-asyncpf", &error_abort); object_property_add_alias(obj, "kvm_steal_time", obj, "kvm-steal-time", &error_abort); object_property_add_alias(obj, "kvm_pv_eoi", obj, "kvm-pv-eoi", &error_abort); object_property_add_alias(obj, "kvm_pv_unhalt", obj, "kvm-pv-unhalt", &error_abort); object_property_add_alias(obj, "kvm_poll_control", obj, "kvm-poll-control", &error_abort); object_property_add_alias(obj, "svm_lock", obj, "svm-lock", &error_abort); object_property_add_alias(obj, "nrip_save", obj, "nrip-save", &error_abort); object_property_add_alias(obj, "tsc_scale", obj, "tsc-scale", &error_abort); object_property_add_alias(obj, "vmcb_clean", obj, "vmcb-clean", &error_abort); object_property_add_alias(obj, "pause_filter", obj, "pause-filter", &error_abort); object_property_add_alias(obj, "sse4_1", obj, "sse4.1", &error_abort); object_property_add_alias(obj, "sse4_2", obj, "sse4.2", &error_abort); if (xcc->model) { x86_cpu_load_model(cpu, xcc->model, &error_abort); } } static int64_t x86_cpu_get_arch_id(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); return cpu->apic_id; } static bool x86_cpu_get_paging_enabled(const CPUState *cs) { X86CPU *cpu = X86_CPU(cs); return cpu->env.cr[0] & CR0_PG_MASK; } static void x86_cpu_set_pc(CPUState *cs, vaddr value) { X86CPU *cpu = X86_CPU(cs); cpu->env.eip = value; } static void x86_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) { X86CPU *cpu = X86_CPU(cs); cpu->env.eip = tb->pc - tb->cs_base; } int x86_cpu_pending_interrupt(CPUState *cs, int interrupt_request) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; #if !defined(CONFIG_USER_ONLY) if (interrupt_request & CPU_INTERRUPT_POLL) { return CPU_INTERRUPT_POLL; } #endif if (interrupt_request & CPU_INTERRUPT_SIPI) { return CPU_INTERRUPT_SIPI; } if (env->hflags2 & HF2_GIF_MASK) { if ((interrupt_request & CPU_INTERRUPT_SMI) && !(env->hflags & HF_SMM_MASK)) { return CPU_INTERRUPT_SMI; } else if ((interrupt_request & CPU_INTERRUPT_NMI) && !(env->hflags2 & HF2_NMI_MASK)) { return CPU_INTERRUPT_NMI; } else if (interrupt_request & CPU_INTERRUPT_MCE) { return CPU_INTERRUPT_MCE; } else if ((interrupt_request & CPU_INTERRUPT_HARD) && (((env->hflags2 & HF2_VINTR_MASK) && (env->hflags2 & HF2_HIF_MASK)) || (!(env->hflags2 & HF2_VINTR_MASK) && (env->eflags & IF_MASK && !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { return CPU_INTERRUPT_HARD; #if !defined(CONFIG_USER_ONLY) } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) { return CPU_INTERRUPT_VIRQ; #endif } } return 0; } static bool x86_cpu_has_work(CPUState *cs) { return x86_cpu_pending_interrupt(cs, cs->interrupt_request) != 0; } static void x86_disas_set_info(CPUState *cs, disassemble_info *info) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; info->mach = (env->hflags & HF_CS64_MASK ? bfd_mach_x86_64 : env->hflags & HF_CS32_MASK ? bfd_mach_i386_i386 : bfd_mach_i386_i8086); info->print_insn = print_insn_i386; info->cap_arch = CS_ARCH_X86; info->cap_mode = (env->hflags & HF_CS64_MASK ? CS_MODE_64 : env->hflags & HF_CS32_MASK ? CS_MODE_32 : CS_MODE_16); info->cap_insn_unit = 1; info->cap_insn_split = 8; } void x86_update_hflags(CPUX86State *env) { uint32_t hflags; #define HFLAG_COPY_MASK \ ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) hflags = env->hflags & HFLAG_COPY_MASK; hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); if (env->cr[4] & CR4_OSFXSR_MASK) { hflags |= HF_OSFXSR_MASK; } if (env->efer & MSR_EFER_LMA) { hflags |= HF_LMA_MASK; } if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; } else { hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> (DESC_B_SHIFT - HF_CS32_SHIFT); hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> (DESC_B_SHIFT - HF_SS32_SHIFT); if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || !(hflags & HF_CS32_MASK)) { hflags |= HF_ADDSEG_MASK; } else { hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; } } env->hflags = hflags; } static Property x86_cpu_properties[] = { #ifdef CONFIG_USER_ONLY /* apic_id = 0 by default for *-user, see commit 9886e834 */ DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, 0), DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, 0), DEFINE_PROP_INT32("core-id", X86CPU, core_id, 0), DEFINE_PROP_INT32("die-id", X86CPU, die_id, 0), DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, 0), #else DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, UNASSIGNED_APIC_ID), DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, -1), DEFINE_PROP_INT32("core-id", X86CPU, core_id, -1), DEFINE_PROP_INT32("die-id", X86CPU, die_id, -1), DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, -1), #endif DEFINE_PROP_INT32("node-id", X86CPU, node_id, CPU_UNSET_NUMA_NODE_ID), DEFINE_PROP_BOOL("pmu", X86CPU, enable_pmu, false), DEFINE_PROP_UINT32("hv-spinlocks", X86CPU, hyperv_spinlock_attempts, HYPERV_SPINLOCK_NEVER_RETRY), DEFINE_PROP_BIT64("hv-relaxed", X86CPU, hyperv_features, HYPERV_FEAT_RELAXED, 0), DEFINE_PROP_BIT64("hv-vapic", X86CPU, hyperv_features, HYPERV_FEAT_VAPIC, 0), DEFINE_PROP_BIT64("hv-time", X86CPU, hyperv_features, HYPERV_FEAT_TIME, 0), DEFINE_PROP_BIT64("hv-crash", X86CPU, hyperv_features, HYPERV_FEAT_CRASH, 0), DEFINE_PROP_BIT64("hv-reset", X86CPU, hyperv_features, HYPERV_FEAT_RESET, 0), DEFINE_PROP_BIT64("hv-vpindex", X86CPU, hyperv_features, HYPERV_FEAT_VPINDEX, 0), DEFINE_PROP_BIT64("hv-runtime", X86CPU, hyperv_features, HYPERV_FEAT_RUNTIME, 0), DEFINE_PROP_BIT64("hv-synic", X86CPU, hyperv_features, HYPERV_FEAT_SYNIC, 0), DEFINE_PROP_BIT64("hv-stimer", X86CPU, hyperv_features, HYPERV_FEAT_STIMER, 0), DEFINE_PROP_BIT64("hv-frequencies", X86CPU, hyperv_features, HYPERV_FEAT_FREQUENCIES, 0), DEFINE_PROP_BIT64("hv-reenlightenment", X86CPU, hyperv_features, HYPERV_FEAT_REENLIGHTENMENT, 0), DEFINE_PROP_BIT64("hv-tlbflush", X86CPU, hyperv_features, HYPERV_FEAT_TLBFLUSH, 0), DEFINE_PROP_BIT64("hv-evmcs", X86CPU, hyperv_features, HYPERV_FEAT_EVMCS, 0), DEFINE_PROP_BIT64("hv-ipi", X86CPU, hyperv_features, HYPERV_FEAT_IPI, 0), DEFINE_PROP_BIT64("hv-stimer-direct", X86CPU, hyperv_features, HYPERV_FEAT_STIMER_DIRECT, 0), DEFINE_PROP_BOOL("hv-passthrough", X86CPU, hyperv_passthrough, false), DEFINE_PROP_BOOL("check", X86CPU, check_cpuid, true), DEFINE_PROP_BOOL("enforce", X86CPU, enforce_cpuid, false), DEFINE_PROP_BOOL("x-force-features", X86CPU, force_features, false), DEFINE_PROP_BOOL("kvm", X86CPU, expose_kvm, true), DEFINE_PROP_UINT32("phys-bits", X86CPU, phys_bits, 0), DEFINE_PROP_BOOL("host-phys-bits", X86CPU, host_phys_bits, false), DEFINE_PROP_UINT8("host-phys-bits-limit", X86CPU, host_phys_bits_limit, 0), DEFINE_PROP_BOOL("fill-mtrr-mask", X86CPU, fill_mtrr_mask, true), DEFINE_PROP_UINT32("level-func7", X86CPU, env.cpuid_level_func7, UINT32_MAX), DEFINE_PROP_UINT32("level", X86CPU, env.cpuid_level, UINT32_MAX), DEFINE_PROP_UINT32("xlevel", X86CPU, env.cpuid_xlevel, UINT32_MAX), DEFINE_PROP_UINT32("xlevel2", X86CPU, env.cpuid_xlevel2, UINT32_MAX), DEFINE_PROP_UINT32("min-level", X86CPU, env.cpuid_min_level, 0), DEFINE_PROP_UINT32("min-xlevel", X86CPU, env.cpuid_min_xlevel, 0), DEFINE_PROP_UINT32("min-xlevel2", X86CPU, env.cpuid_min_xlevel2, 0), DEFINE_PROP_BOOL("full-cpuid-auto-level", X86CPU, full_cpuid_auto_level, true), DEFINE_PROP_STRING("hv-vendor-id", X86CPU, hyperv_vendor_id), DEFINE_PROP_BOOL("cpuid-0xb", X86CPU, enable_cpuid_0xb, true), DEFINE_PROP_BOOL("lmce", X86CPU, enable_lmce, false), DEFINE_PROP_BOOL("l3-cache", X86CPU, enable_l3_cache, true), DEFINE_PROP_BOOL("kvm-no-smi-migration", X86CPU, kvm_no_smi_migration, false), DEFINE_PROP_BOOL("vmware-cpuid-freq", X86CPU, vmware_cpuid_freq, true), DEFINE_PROP_BOOL("tcg-cpuid", X86CPU, expose_tcg, true), DEFINE_PROP_BOOL("x-migrate-smi-count", X86CPU, migrate_smi_count, true), /* * lecacy_cache defaults to true unless the CPU model provides its * own cache information (see x86_cpu_load_def()). */ DEFINE_PROP_BOOL("legacy-cache", X86CPU, legacy_cache, true), /* * From "Requirements for Implementing the Microsoft * Hypervisor Interface": * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs * * "Starting with Windows Server 2012 and Windows 8, if * CPUID.40000005.EAX contains a value of -1, Windows assumes that * the hypervisor imposes no specific limit to the number of VPs. * In this case, Windows Server 2012 guest VMs may use more than * 64 VPs, up to the maximum supported number of processors applicable * to the specific Windows version being used." */ DEFINE_PROP_INT32("x-hv-max-vps", X86CPU, hv_max_vps, -1), DEFINE_PROP_BOOL("x-hv-synic-kvm-only", X86CPU, hyperv_synic_kvm_only, false), DEFINE_PROP_BOOL("x-intel-pt-auto-level", X86CPU, intel_pt_auto_level, true), DEFINE_PROP_END_OF_LIST() }; static void x86_cpu_common_class_init(ObjectClass *oc, void *data) { X86CPUClass *xcc = X86_CPU_CLASS(oc); CPUClass *cc = CPU_CLASS(oc); DeviceClass *dc = DEVICE_CLASS(oc); device_class_set_parent_realize(dc, x86_cpu_realizefn, &xcc->parent_realize); device_class_set_parent_unrealize(dc, x86_cpu_unrealizefn, &xcc->parent_unrealize); dc->props = x86_cpu_properties; xcc->parent_reset = cc->reset; cc->reset = x86_cpu_reset; cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP; cc->class_by_name = x86_cpu_class_by_name; cc->parse_features = x86_cpu_parse_featurestr; cc->has_work = x86_cpu_has_work; #ifdef CONFIG_TCG cc->do_interrupt = x86_cpu_do_interrupt; cc->cpu_exec_interrupt = x86_cpu_exec_interrupt; #endif cc->dump_state = x86_cpu_dump_state; cc->get_crash_info = x86_cpu_get_crash_info; cc->set_pc = x86_cpu_set_pc; cc->synchronize_from_tb = x86_cpu_synchronize_from_tb; cc->gdb_read_register = x86_cpu_gdb_read_register; cc->gdb_write_register = x86_cpu_gdb_write_register; cc->get_arch_id = x86_cpu_get_arch_id; cc->get_paging_enabled = x86_cpu_get_paging_enabled; #ifndef CONFIG_USER_ONLY cc->asidx_from_attrs = x86_asidx_from_attrs; cc->get_memory_mapping = x86_cpu_get_memory_mapping; cc->get_phys_page_attrs_debug = x86_cpu_get_phys_page_attrs_debug; cc->write_elf64_note = x86_cpu_write_elf64_note; cc->write_elf64_qemunote = x86_cpu_write_elf64_qemunote; cc->write_elf32_note = x86_cpu_write_elf32_note; cc->write_elf32_qemunote = x86_cpu_write_elf32_qemunote; cc->vmsd = &vmstate_x86_cpu; #endif cc->gdb_arch_name = x86_gdb_arch_name; #ifdef TARGET_X86_64 cc->gdb_core_xml_file = "i386-64bit.xml"; cc->gdb_num_core_regs = 66; #else cc->gdb_core_xml_file = "i386-32bit.xml"; cc->gdb_num_core_regs = 50; #endif #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) cc->debug_excp_handler = breakpoint_handler; #endif cc->cpu_exec_enter = x86_cpu_exec_enter; cc->cpu_exec_exit = x86_cpu_exec_exit; #ifdef CONFIG_TCG cc->tcg_initialize = tcg_x86_init; cc->tlb_fill = x86_cpu_tlb_fill; #endif cc->disas_set_info = x86_disas_set_info; dc->user_creatable = true; } static const TypeInfo x86_cpu_type_info = { .name = TYPE_X86_CPU, .parent = TYPE_CPU, .instance_size = sizeof(X86CPU), .instance_init = x86_cpu_initfn, .abstract = true, .class_size = sizeof(X86CPUClass), .class_init = x86_cpu_common_class_init, }; /* "base" CPU model, used by query-cpu-model-expansion */ static void x86_cpu_base_class_init(ObjectClass *oc, void *data) { X86CPUClass *xcc = X86_CPU_CLASS(oc); xcc->static_model = true; xcc->migration_safe = true; xcc->model_description = "base CPU model type with no features enabled"; xcc->ordering = 8; } static const TypeInfo x86_base_cpu_type_info = { .name = X86_CPU_TYPE_NAME("base"), .parent = TYPE_X86_CPU, .class_init = x86_cpu_base_class_init, }; static void x86_cpu_register_types(void) { int i; type_register_static(&x86_cpu_type_info); for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) { x86_register_cpudef_types(&builtin_x86_defs[i]); } type_register_static(&max_x86_cpu_type_info); type_register_static(&x86_base_cpu_type_info); #if defined(CONFIG_KVM) || defined(CONFIG_HVF) type_register_static(&host_x86_cpu_type_info); #endif } type_init(x86_cpu_register_types)