/* * i386 CPU dump to FILE * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "qemu/qemu-print.h" #ifndef CONFIG_USER_ONLY #include "hw/i386/apic_internal.h" #endif /***********************************************************/ /* x86 debug */ static const char *cc_op_str[CC_OP_NB] = { [CC_OP_DYNAMIC] = "DYNAMIC", [CC_OP_EFLAGS] = "EFLAGS", [CC_OP_ADCX] = "ADCX", [CC_OP_ADOX] = "ADOX", [CC_OP_ADCOX] = "ADCOX", [CC_OP_MULB] = "MULB", [CC_OP_MULW] = "MULW", [CC_OP_MULL] = "MULL", [CC_OP_MULQ] = "MULQ", [CC_OP_ADDB] = "ADDB", [CC_OP_ADDW] = "ADDW", [CC_OP_ADDL] = "ADDL", [CC_OP_ADDQ] = "ADDQ", [CC_OP_ADCB] = "ADCB", [CC_OP_ADCW] = "ADCW", [CC_OP_ADCL] = "ADCL", [CC_OP_ADCQ] = "ADCQ", [CC_OP_SUBB] = "SUBB", [CC_OP_SUBW] = "SUBW", [CC_OP_SUBL] = "SUBL", [CC_OP_SUBQ] = "SUBQ", [CC_OP_SBBB] = "SBBB", [CC_OP_SBBW] = "SBBW", [CC_OP_SBBL] = "SBBL", [CC_OP_SBBQ] = "SBBQ", [CC_OP_LOGICB] = "LOGICB", [CC_OP_LOGICW] = "LOGICW", [CC_OP_LOGICL] = "LOGICL", [CC_OP_LOGICQ] = "LOGICQ", [CC_OP_INCB] = "INCB", [CC_OP_INCW] = "INCW", [CC_OP_INCL] = "INCL", [CC_OP_INCQ] = "INCQ", [CC_OP_DECB] = "DECB", [CC_OP_DECW] = "DECW", [CC_OP_DECL] = "DECL", [CC_OP_DECQ] = "DECQ", [CC_OP_SHLB] = "SHLB", [CC_OP_SHLW] = "SHLW", [CC_OP_SHLL] = "SHLL", [CC_OP_SHLQ] = "SHLQ", [CC_OP_SARB] = "SARB", [CC_OP_SARW] = "SARW", [CC_OP_SARL] = "SARL", [CC_OP_SARQ] = "SARQ", [CC_OP_BMILGB] = "BMILGB", [CC_OP_BMILGW] = "BMILGW", [CC_OP_BMILGL] = "BMILGL", [CC_OP_BMILGQ] = "BMILGQ", [CC_OP_POPCNT] = "POPCNT", [CC_OP_CLR] = "CLR", }; static void cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f, const char *name, struct SegmentCache *sc) { #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { qemu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name, sc->selector, sc->base, sc->limit, sc->flags & 0x00ffff00); } else #endif { qemu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector, (uint32_t)sc->base, sc->limit, sc->flags & 0x00ffff00); } if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK)) goto done; qemu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT); if (sc->flags & DESC_S_MASK) { if (sc->flags & DESC_CS_MASK) { qemu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" : ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16")); qemu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-', (sc->flags & DESC_R_MASK) ? 'R' : '-'); } else { qemu_fprintf(f, (sc->flags & DESC_B_MASK || env->hflags & HF_LMA_MASK) ? "DS " : "DS16"); qemu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-', (sc->flags & DESC_W_MASK) ? 'W' : '-'); } qemu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-'); } else { static const char *sys_type_name[2][16] = { { /* 32 bit mode */ "Reserved", "TSS16-avl", "LDT", "TSS16-busy", "CallGate16", "TaskGate", "IntGate16", "TrapGate16", "Reserved", "TSS32-avl", "Reserved", "TSS32-busy", "CallGate32", "Reserved", "IntGate32", "TrapGate32" }, { /* 64 bit mode */ "", "Reserved", "LDT", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64", "Reserved", "IntGate64", "TrapGate64" } }; qemu_fprintf(f, "%s", sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0] [(sc->flags & DESC_TYPE_MASK) >> DESC_TYPE_SHIFT]); } done: qemu_fprintf(f, "\n"); } #ifndef CONFIG_USER_ONLY /* ARRAY_SIZE check is not required because * DeliveryMode(dm) has a size of 3 bit. */ static inline const char *dm2str(uint32_t dm) { static const char *str[] = { "Fixed", "...", "SMI", "...", "NMI", "INIT", "...", "ExtINT" }; return str[dm]; } static void dump_apic_lvt(const char *name, uint32_t lvt, bool is_timer) { uint32_t dm = (lvt & APIC_LVT_DELIV_MOD) >> APIC_LVT_DELIV_MOD_SHIFT; qemu_printf("%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s", name, lvt, lvt & APIC_LVT_INT_POLARITY ? "active-lo" : "active-hi", lvt & APIC_LVT_LEVEL_TRIGGER ? "level" : "edge", lvt & APIC_LVT_MASKED ? "masked" : "", lvt & APIC_LVT_DELIV_STS ? "pending" : "", !is_timer ? "" : lvt & APIC_LVT_TIMER_PERIODIC ? "periodic" : lvt & APIC_LVT_TIMER_TSCDEADLINE ? "tsc-deadline" : "one-shot", dm2str(dm)); if (dm != APIC_DM_NMI) { qemu_printf(" (vec %u)\n", lvt & APIC_VECTOR_MASK); } else { qemu_printf("\n"); } } /* ARRAY_SIZE check is not required because * destination shorthand has a size of 2 bit. */ static inline const char *shorthand2str(uint32_t shorthand) { const char *str[] = { "no-shorthand", "self", "all-self", "all" }; return str[shorthand]; } static inline uint8_t divider_conf(uint32_t divide_conf) { uint8_t divide_val = ((divide_conf & 0x8) >> 1) | (divide_conf & 0x3); return divide_val == 7 ? 1 : 2 << divide_val; } static inline void mask2str(char *str, uint32_t val, uint8_t size) { while (size--) { *str++ = (val >> size) & 1 ? '1' : '0'; } *str = 0; } #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16 static void dump_apic_icr(APICCommonState *s, CPUX86State *env) { uint32_t icr = s->icr[0], icr2 = s->icr[1]; uint8_t dest_shorthand = \ (icr & APIC_ICR_DEST_SHORT) >> APIC_ICR_DEST_SHORT_SHIFT; bool logical_mod = icr & APIC_ICR_DEST_MOD; char apic_id_str[MAX_LOGICAL_APIC_ID_MASK_SIZE + 1]; uint32_t dest_field; bool x2apic; qemu_printf("ICR\t 0x%08x %s %s %s %s\n", icr, logical_mod ? "logical" : "physical", icr & APIC_ICR_TRIGGER_MOD ? "level" : "edge", icr & APIC_ICR_LEVEL ? "assert" : "de-assert", shorthand2str(dest_shorthand)); qemu_printf("ICR2\t 0x%08x", icr2); if (dest_shorthand != 0) { qemu_printf("\n"); return; } x2apic = env->features[FEAT_1_ECX] & CPUID_EXT_X2APIC; dest_field = x2apic ? icr2 : icr2 >> APIC_ICR_DEST_SHIFT; if (!logical_mod) { if (x2apic) { qemu_printf(" cpu %u (X2APIC ID)\n", dest_field); } else { qemu_printf(" cpu %u (APIC ID)\n", dest_field & APIC_LOGDEST_XAPIC_ID); } return; } if (s->dest_mode == 0xf) { /* flat mode */ mask2str(apic_id_str, icr2 >> APIC_ICR_DEST_SHIFT, 8); qemu_printf(" mask %s (APIC ID)\n", apic_id_str); } else if (s->dest_mode == 0) { /* cluster mode */ if (x2apic) { mask2str(apic_id_str, dest_field & APIC_LOGDEST_X2APIC_ID, 16); qemu_printf(" cluster %u mask %s (X2APIC ID)\n", dest_field >> APIC_LOGDEST_X2APIC_SHIFT, apic_id_str); } else { mask2str(apic_id_str, dest_field & APIC_LOGDEST_XAPIC_ID, 4); qemu_printf(" cluster %u mask %s (APIC ID)\n", dest_field >> APIC_LOGDEST_XAPIC_SHIFT, apic_id_str); } } } static void dump_apic_interrupt(const char *name, uint32_t *ireg_tab, uint32_t *tmr_tab) { int i, empty = true; qemu_printf("%s\t ", name); for (i = 0; i < 256; i++) { if (apic_get_bit(ireg_tab, i)) { qemu_printf("%u%s ", i, apic_get_bit(tmr_tab, i) ? "(level)" : ""); empty = false; } } qemu_printf("%s\n", empty ? "(none)" : ""); } void x86_cpu_dump_local_apic_state(CPUState *cs, int flags) { X86CPU *cpu = X86_CPU(cs); APICCommonState *s = APIC_COMMON(cpu->apic_state); if (!s) { qemu_printf("local apic state not available\n"); return; } uint32_t *lvt = s->lvt; qemu_printf("dumping local APIC state for CPU %-2u\n\n", CPU(cpu)->cpu_index); dump_apic_lvt("LVT0", lvt[APIC_LVT_LINT0], false); dump_apic_lvt("LVT1", lvt[APIC_LVT_LINT1], false); dump_apic_lvt("LVTPC", lvt[APIC_LVT_PERFORM], false); dump_apic_lvt("LVTERR", lvt[APIC_LVT_ERROR], false); dump_apic_lvt("LVTTHMR", lvt[APIC_LVT_THERMAL], false); dump_apic_lvt("LVTT", lvt[APIC_LVT_TIMER], true); qemu_printf("Timer\t DCR=0x%x (divide by %u) initial_count = %u" " current_count = %u\n", s->divide_conf & APIC_DCR_MASK, divider_conf(s->divide_conf), s->initial_count, apic_get_current_count(s)); qemu_printf("SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n", s->spurious_vec, s->spurious_vec & APIC_SPURIO_ENABLED ? "enabled" : "disabled", s->spurious_vec & APIC_SPURIO_FOCUS ? "on" : "off", s->spurious_vec & APIC_VECTOR_MASK); dump_apic_icr(s, &cpu->env); qemu_printf("ESR\t 0x%08x\n", s->esr); dump_apic_interrupt("ISR", s->isr, s->tmr); dump_apic_interrupt("IRR", s->irr, s->tmr); qemu_printf("\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x", s->arb_id, s->tpr, s->dest_mode, s->log_dest); if (s->dest_mode == 0) { qemu_printf("(cluster %u: id %u)", s->log_dest >> APIC_LOGDEST_XAPIC_SHIFT, s->log_dest & APIC_LOGDEST_XAPIC_ID); } qemu_printf(" PPR 0x%02x\n", apic_get_ppr(s)); } #endif /* !CONFIG_USER_ONLY */ #define DUMP_CODE_BYTES_TOTAL 50 #define DUMP_CODE_BYTES_BACKWARD 20 void x86_cpu_dump_state(CPUState *cs, FILE *f, int flags) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; int eflags, i, nb; char cc_op_name[32]; static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" }; eflags = cpu_compute_eflags(env); #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { qemu_fprintf(f, "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n" "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n" "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n" "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n" "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n", env->regs[R_EAX], env->regs[R_EBX], env->regs[R_ECX], env->regs[R_EDX], env->regs[R_ESI], env->regs[R_EDI], env->regs[R_EBP], env->regs[R_ESP], env->regs[8], env->regs[9], env->regs[10], env->regs[11], env->regs[12], env->regs[13], env->regs[14], env->regs[15], env->eip, eflags, eflags & DF_MASK ? 'D' : '-', eflags & CC_O ? 'O' : '-', eflags & CC_S ? 'S' : '-', eflags & CC_Z ? 'Z' : '-', eflags & CC_A ? 'A' : '-', eflags & CC_P ? 'P' : '-', eflags & CC_C ? 'C' : '-', env->hflags & HF_CPL_MASK, (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1, (env->a20_mask >> 20) & 1, (env->hflags >> HF_SMM_SHIFT) & 1, cs->halted); } else #endif { qemu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n" "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n" "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n", (uint32_t)env->regs[R_EAX], (uint32_t)env->regs[R_EBX], (uint32_t)env->regs[R_ECX], (uint32_t)env->regs[R_EDX], (uint32_t)env->regs[R_ESI], (uint32_t)env->regs[R_EDI], (uint32_t)env->regs[R_EBP], (uint32_t)env->regs[R_ESP], (uint32_t)env->eip, eflags, eflags & DF_MASK ? 'D' : '-', eflags & CC_O ? 'O' : '-', eflags & CC_S ? 'S' : '-', eflags & CC_Z ? 'Z' : '-', eflags & CC_A ? 'A' : '-', eflags & CC_P ? 'P' : '-', eflags & CC_C ? 'C' : '-', env->hflags & HF_CPL_MASK, (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1, (env->a20_mask >> 20) & 1, (env->hflags >> HF_SMM_SHIFT) & 1, cs->halted); } for(i = 0; i < 6; i++) { cpu_x86_dump_seg_cache(env, f, seg_name[i], &env->segs[i]); } cpu_x86_dump_seg_cache(env, f, "LDT", &env->ldt); cpu_x86_dump_seg_cache(env, f, "TR", &env->tr); #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { qemu_fprintf(f, "GDT= %016" PRIx64 " %08x\n", env->gdt.base, env->gdt.limit); qemu_fprintf(f, "IDT= %016" PRIx64 " %08x\n", env->idt.base, env->idt.limit); qemu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n", (uint32_t)env->cr[0], env->cr[2], env->cr[3], (uint32_t)env->cr[4]); for(i = 0; i < 4; i++) qemu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]); qemu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n", env->dr[6], env->dr[7]); } else #endif { qemu_fprintf(f, "GDT= %08x %08x\n", (uint32_t)env->gdt.base, env->gdt.limit); qemu_fprintf(f, "IDT= %08x %08x\n", (uint32_t)env->idt.base, env->idt.limit); qemu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n", (uint32_t)env->cr[0], (uint32_t)env->cr[2], (uint32_t)env->cr[3], (uint32_t)env->cr[4]); for(i = 0; i < 4; i++) { qemu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]); } qemu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n", env->dr[6], env->dr[7]); } if (flags & CPU_DUMP_CCOP) { if ((unsigned)env->cc_op < CC_OP_NB) snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]); else snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op); #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { qemu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%s\n", env->cc_src, env->cc_dst, cc_op_name); } else #endif { qemu_fprintf(f, "CCS=%08x CCD=%08x CCO=%s\n", (uint32_t)env->cc_src, (uint32_t)env->cc_dst, cc_op_name); } } qemu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer); if (flags & CPU_DUMP_FPU) { int fptag; const uint64_t avx512_mask = XSTATE_OPMASK_MASK | \ XSTATE_ZMM_Hi256_MASK | \ XSTATE_Hi16_ZMM_MASK | \ XSTATE_YMM_MASK | XSTATE_SSE_MASK, avx_mask = XSTATE_YMM_MASK | XSTATE_SSE_MASK; fptag = 0; for(i = 0; i < 8; i++) { fptag |= ((!env->fptags[i]) << i); } update_mxcsr_from_sse_status(env); qemu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n", env->fpuc, (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11, env->fpstt, fptag, env->mxcsr); for(i=0;i<8;i++) { CPU_LDoubleU u; u.d = env->fpregs[i].d; qemu_fprintf(f, "FPR%d=%016" PRIx64 " %04x", i, u.l.lower, u.l.upper); if ((i & 1) == 1) qemu_fprintf(f, "\n"); else qemu_fprintf(f, " "); } if ((env->xcr0 & avx512_mask) == avx512_mask) { /* XSAVE enabled AVX512 */ for (i = 0; i < NB_OPMASK_REGS; i++) { qemu_fprintf(f, "Opmask%02d=%016"PRIx64"%s", i, env->opmask_regs[i], ((i & 3) == 3) ? "\n" : " "); } nb = (env->hflags & HF_CS64_MASK) ? 32 : 8; for (i = 0; i < nb; i++) { qemu_fprintf(f, "ZMM%02d=%016"PRIx64" %016"PRIx64" %016"PRIx64 " %016"PRIx64" %016"PRIx64" %016"PRIx64 " %016"PRIx64" %016"PRIx64"\n", i, env->xmm_regs[i].ZMM_Q(7), env->xmm_regs[i].ZMM_Q(6), env->xmm_regs[i].ZMM_Q(5), env->xmm_regs[i].ZMM_Q(4), env->xmm_regs[i].ZMM_Q(3), env->xmm_regs[i].ZMM_Q(2), env->xmm_regs[i].ZMM_Q(1), env->xmm_regs[i].ZMM_Q(0)); } } else if ((env->xcr0 & avx_mask) == avx_mask) { /* XSAVE enabled AVX */ nb = env->hflags & HF_CS64_MASK ? 16 : 8; for (i = 0; i < nb; i++) { qemu_fprintf(f, "YMM%02d=%016"PRIx64" %016"PRIx64" %016"PRIx64 " %016"PRIx64"\n", i, env->xmm_regs[i].ZMM_Q(3), env->xmm_regs[i].ZMM_Q(2), env->xmm_regs[i].ZMM_Q(1), env->xmm_regs[i].ZMM_Q(0)); } } else { /* SSE and below cases */ nb = env->hflags & HF_CS64_MASK ? 16 : 8; for (i = 0; i < nb; i++) { qemu_fprintf(f, "XMM%02d=%016"PRIx64" %016"PRIx64"%s", i, env->xmm_regs[i].ZMM_Q(1), env->xmm_regs[i].ZMM_Q(0), (i & 1) ? "\n" : " "); } } } if (flags & CPU_DUMP_CODE) { target_ulong base = env->segs[R_CS].base + env->eip; target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD); uint8_t code; char codestr[3]; qemu_fprintf(f, "Code="); for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) { if (cpu_memory_rw_debug(cs, base - offs + i, &code, 1, 0) == 0) { snprintf(codestr, sizeof(codestr), "%02x", code); } else { snprintf(codestr, sizeof(codestr), "??"); } qemu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "", i == offs ? "<" : "", codestr, i == offs ? ">" : ""); } qemu_fprintf(f, "\n"); } }