/* * Helpers for HPPA instructions. * * Copyright (c) 2016 Richard Henderson * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "exec/cpu_ldst.h" #include "sysemu/sysemu.h" #include "qemu/timer.h" #include "fpu/softfloat.h" void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp) { HPPACPU *cpu = hppa_env_get_cpu(env); CPUState *cs = CPU(cpu); cs->exception_index = excp; cpu_loop_exit(cs); } void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra) { HPPACPU *cpu = hppa_env_get_cpu(env); CPUState *cs = CPU(cpu); cs->exception_index = excp; cpu_loop_exit_restore(cs, ra); } void HELPER(tsv)(CPUHPPAState *env, target_ureg cond) { if (unlikely((target_sreg)cond < 0)) { hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC()); } } void HELPER(tcond)(CPUHPPAState *env, target_ureg cond) { if (unlikely(cond)) { hppa_dynamic_excp(env, EXCP_COND, GETPC()); } } static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val, uint32_t mask, uintptr_t ra) { #ifdef CONFIG_USER_ONLY uint32_t old, new, cmp; uint32_t *haddr = g2h(addr - 1); old = *haddr; while (1) { new = (old & ~mask) | (val & mask); cmp = atomic_cmpxchg(haddr, old, new); if (cmp == old) { return; } old = cmp; } #else /* FIXME -- we can do better. */ cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); #endif } static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val, bool parallel, uintptr_t ra) { switch (addr & 3) { case 3: cpu_stb_data_ra(env, addr, val, ra); break; case 2: cpu_stw_data_ra(env, addr, val, ra); break; case 1: /* The 3 byte store must appear atomic. */ if (parallel) { atomic_store_3(env, addr, val, 0x00ffffffu, ra); } else { cpu_stb_data_ra(env, addr, val >> 16, ra); cpu_stw_data_ra(env, addr + 1, val, ra); } break; default: cpu_stl_data_ra(env, addr, val, ra); break; } } void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val) { do_stby_b(env, addr, val, false, GETPC()); } void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr, target_ureg val) { do_stby_b(env, addr, val, true, GETPC()); } static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val, bool parallel, uintptr_t ra) { switch (addr & 3) { case 3: /* The 3 byte store must appear atomic. */ if (parallel) { atomic_store_3(env, addr - 3, val, 0xffffff00u, ra); } else { cpu_stw_data_ra(env, addr - 3, val >> 16, ra); cpu_stb_data_ra(env, addr - 1, val >> 8, ra); } break; case 2: cpu_stw_data_ra(env, addr - 2, val >> 16, ra); break; case 1: cpu_stb_data_ra(env, addr - 1, val >> 24, ra); break; default: /* Nothing is stored, but protection is checked and the cacheline is marked dirty. */ #ifndef CONFIG_USER_ONLY probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra); #endif break; } } void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val) { do_stby_e(env, addr, val, false, GETPC()); } void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr, target_ureg val) { do_stby_e(env, addr, val, true, GETPC()); } target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr, uint32_t level, uint32_t want) { #ifdef CONFIG_USER_ONLY return page_check_range(addr, 1, want); #else int prot, excp; hwaddr phys; /* Fail if the requested privilege level is higher than current. */ if (level < (env->iaoq_f & 3)) { return 0; } excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot); if (excp >= 0) { if (env->psw & PSW_Q) { /* ??? Needs tweaking for hppa64. */ env->cr[CR_IOR] = addr; env->cr[CR_ISR] = addr >> 32; } if (excp == EXCP_DTLB_MISS) { excp = EXCP_NA_DTLB_MISS; } hppa_dynamic_excp(env, excp, GETPC()); } return (want & prot) != 0; #endif } void HELPER(loaded_fr0)(CPUHPPAState *env) { uint32_t shadow = env->fr[0] >> 32; int rm, d; env->fr0_shadow = shadow; switch (extract32(shadow, 9, 2)) { default: rm = float_round_nearest_even; break; case 1: rm = float_round_to_zero; break; case 2: rm = float_round_up; break; case 3: rm = float_round_down; break; } set_float_rounding_mode(rm, &env->fp_status); d = extract32(shadow, 5, 1); set_flush_to_zero(d, &env->fp_status); set_flush_inputs_to_zero(d, &env->fp_status); } void cpu_hppa_loaded_fr0(CPUHPPAState *env) { helper_loaded_fr0(env); } #define CONVERT_BIT(X, SRC, DST) \ ((SRC) > (DST) \ ? (X) / ((SRC) / (DST)) & (DST) \ : ((X) & (SRC)) * ((DST) / (SRC))) static void update_fr0_op(CPUHPPAState *env, uintptr_t ra) { uint32_t soft_exp = get_float_exception_flags(&env->fp_status); uint32_t hard_exp = 0; uint32_t shadow = env->fr0_shadow; if (likely(soft_exp == 0)) { env->fr[0] = (uint64_t)shadow << 32; return; } set_float_exception_flags(0, &env->fp_status); hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact, 1u << 0); hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1); hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow, 1u << 2); hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3); hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid, 1u << 4); shadow |= hard_exp << (32 - 5); env->fr0_shadow = shadow; env->fr[0] = (uint64_t)shadow << 32; if (hard_exp & shadow) { hppa_dynamic_excp(env, EXCP_ASSIST, ra); } } float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg) { float32 ret = float32_sqrt(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg) { float32 ret = float32_round_to_int(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b) { float32 ret = float32_add(a, b, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b) { float32 ret = float32_sub(a, b, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b) { float32 ret = float32_mul(a, b, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b) { float32 ret = float32_div(a, b, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg) { float64 ret = float64_sqrt(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg) { float64 ret = float64_round_to_int(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b) { float64 ret = float64_add(a, b, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b) { float64 ret = float64_sub(a, b, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b) { float64 ret = float64_mul(a, b, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b) { float64 ret = float64_div(a, b, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg) { float64 ret = float32_to_float64(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg) { float32 ret = float64_to_float32(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg) { float32 ret = int32_to_float32(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg) { float32 ret = int64_to_float32(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg) { float64 ret = int32_to_float64(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg) { float64 ret = int64_to_float64(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg) { int32_t ret = float32_to_int32(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg) { int32_t ret = float64_to_int32(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg) { int64_t ret = float32_to_int64(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg) { int64_t ret = float64_to_int64(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg) { int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg) { int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg) { int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg) { int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg) { float32 ret = uint32_to_float32(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg) { float32 ret = uint64_to_float32(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg) { float64 ret = uint32_to_float64(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg) { float64 ret = uint64_to_float64(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg) { uint32_t ret = float32_to_uint32(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg) { uint32_t ret = float64_to_uint32(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg) { uint64_t ret = float32_to_uint64(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg) { uint64_t ret = float64_to_uint64(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg) { uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg) { uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg) { uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg) { uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } static void update_fr0_cmp(CPUHPPAState *env, uint32_t y, uint32_t c, int r) { uint32_t shadow = env->fr0_shadow; switch (r) { case float_relation_greater: c = extract32(c, 4, 1); break; case float_relation_less: c = extract32(c, 3, 1); break; case float_relation_equal: c = extract32(c, 2, 1); break; case float_relation_unordered: c = extract32(c, 1, 1); break; default: g_assert_not_reached(); } if (y) { /* targeted comparison */ /* set fpsr[ca[y - 1]] to current compare */ shadow = deposit32(shadow, 21 - (y - 1), 1, c); } else { /* queued comparison */ /* shift cq right by one place */ shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10)); /* move fpsr[c] to fpsr[cq[0]] */ shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1)); /* set fpsr[c] to current compare */ shadow = deposit32(shadow, 26, 1, c); } env->fr0_shadow = shadow; env->fr[0] = (uint64_t)shadow << 32; } void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b, uint32_t y, uint32_t c) { int r; if (c & 1) { r = float32_compare(a, b, &env->fp_status); } else { r = float32_compare_quiet(a, b, &env->fp_status); } update_fr0_op(env, GETPC()); update_fr0_cmp(env, y, c, r); } void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b, uint32_t y, uint32_t c) { int r; if (c & 1) { r = float64_compare(a, b, &env->fp_status); } else { r = float64_compare_quiet(a, b, &env->fp_status); } update_fr0_op(env, GETPC()); update_fr0_cmp(env, y, c, r); } float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c) { float32 ret = float32_muladd(a, b, c, 0, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c) { float32 ret = float32_muladd(a, b, c, float_muladd_negate_product, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c) { float64 ret = float64_muladd(a, b, c, 0, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c) { float64 ret = float64_muladd(a, b, c, float_muladd_negate_product, &env->fp_status); update_fr0_op(env, GETPC()); return ret; } target_ureg HELPER(read_interval_timer)(void) { #ifdef CONFIG_USER_ONLY /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist. Just pass through the host cpu clock ticks. */ return cpu_get_host_ticks(); #else /* In system mode we have access to a decent high-resolution clock. In order to make OS-level time accounting work with the cr16, present it with a well-timed clock fixed at 250MHz. */ return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2; #endif } #ifndef CONFIG_USER_ONLY void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val) { HPPACPU *cpu = hppa_env_get_cpu(env); uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t timeout; /* Even in 64-bit mode, the comparator is always 32-bit. But the value we expose to the guest is 1/4 of the speed of the clock, so moosh in 34 bits. */ timeout = deposit64(current, 0, 34, (uint64_t)val << 2); /* If the mooshing puts the clock in the past, advance to next round. */ if (timeout < current + 1000) { timeout += 1ULL << 34; } cpu->env.cr[CR_IT] = timeout; timer_mod(cpu->alarm_timer, timeout); } void HELPER(halt)(CPUHPPAState *env) { qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); helper_excp(env, EXCP_HLT); } void HELPER(reset)(CPUHPPAState *env) { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); helper_excp(env, EXCP_HLT); } target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm) { target_ulong psw = env->psw; /* * Setting the PSW Q bit to 1, if it was not already 1, is an * undefined operation. * * However, HP-UX 10.20 does this with the SSM instruction. * Tested this on HP9000/712 and HP9000/785/C3750 and both * machines set the Q bit from 0 to 1 without an exception, * so let this go without comment. */ env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM); return psw & PSW_SM; } void HELPER(rfi)(CPUHPPAState *env) { /* ??? On second reading this condition simply seems to be undefined rather than a diagnosed trap. */ if (env->psw & (PSW_I | PSW_R | PSW_Q)) { helper_excp(env, EXCP_ILL); } env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32; env->iasq_b = (uint64_t)env->cr_back[0] << 32; env->iaoq_f = env->cr[CR_IIAOQ]; env->iaoq_b = env->cr_back[1]; cpu_hppa_put_psw(env, env->cr[CR_IPSW]); } void HELPER(rfi_r)(CPUHPPAState *env) { env->gr[1] = env->shadow[0]; env->gr[8] = env->shadow[1]; env->gr[9] = env->shadow[2]; env->gr[16] = env->shadow[3]; env->gr[17] = env->shadow[4]; env->gr[24] = env->shadow[5]; env->gr[25] = env->shadow[6]; helper_rfi(env); } #endif