/* * HPPA memory access helper routines * * Copyright (c) 2017 Helge Deller * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/page-protection.h" #include "exec/helper-proto.h" #include "hw/core/cpu.h" #include "trace.h" hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr) { /* * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes * an algorithm in which a 62-bit absolute address is transformed to * a 64-bit physical address. This must then be combined with that * pictured in Figure H-11 "Physical Address Space Mapping", in which * the full physical address is truncated to the N-bit physical address * supported by the implementation. * * Since the supported physical address space is below 54 bits, the * H-8 algorithm is moot and all that is left is to truncate. */ QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54); return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS); } hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr) { /* * See Figure H-10, "Absolute Accesses when PSW W-bit is 0", * combined with Figure H-11, as above. */ if (likely(extract32(addr, 28, 4) != 0xf)) { /* Memory address space */ addr = (uint32_t)addr; } else if (extract32(addr, 24, 4) != 0) { /* I/O address space */ addr = (int32_t)addr; } else { /* * PDC address space: * Figures H-10 and H-11 of the parisc2.0 spec do not specify * where to map into the 64-bit PDC address space. * We map with an offset which equals the 32-bit address, which * is what can be seen on physical machines too. */ addr = (uint32_t)addr; addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4); } return addr; } static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr) { IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr); if (i) { HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree); trace_hppa_tlb_find_entry(env, ent, ent->entry_valid, ent->itree.start, ent->itree.last, ent->pa); return ent; } trace_hppa_tlb_find_entry_not_found(env, addr); return NULL; } static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent, bool force_flush_btlb) { CPUState *cs = env_cpu(env); bool is_btlb; if (!ent->entry_valid) { return; } trace_hppa_tlb_flush_ent(env, ent, ent->itree.start, ent->itree.last, ent->pa); tlb_flush_range_by_mmuidx(cs, ent->itree.start, ent->itree.last - ent->itree.start + 1, HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS); /* Never clear BTLBs, unless forced to do so. */ is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)]; if (is_btlb && !force_flush_btlb) { return; } interval_tree_remove(&ent->itree, &env->tlb_root); memset(ent, 0, sizeof(*ent)); if (!is_btlb) { ent->unused_next = env->tlb_unused; env->tlb_unused = ent; } } static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e) { IntervalTreeNode *i, *n; i = interval_tree_iter_first(&env->tlb_root, va_b, va_e); for (; i ; i = n) { HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree); /* * Find the next entry now: In the normal case the current entry * will be removed, but in the BTLB case it will remain. */ n = interval_tree_iter_next(i, va_b, va_e); hppa_flush_tlb_ent(env, ent, false); } } static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env) { HPPATLBEntry *ent = env->tlb_unused; if (ent == NULL) { uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); uint32_t i = env->tlb_last; if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) { i = btlb_entries; } env->tlb_last = i + 1; ent = &env->tlb[i]; hppa_flush_tlb_ent(env, ent, false); } env->tlb_unused = ent->unused_next; return ent; } #define ACCESS_ID_MASK 0xffff /* Return the set of protections allowed by a PID match. */ static int match_prot_id_1(uint32_t access_id, uint32_t prot_id) { if (((access_id ^ (prot_id >> 1)) & ACCESS_ID_MASK) == 0) { return (prot_id & 1 ? PAGE_EXEC | PAGE_READ : PAGE_EXEC | PAGE_READ | PAGE_WRITE); } return 0; } static int match_prot_id32(CPUHPPAState *env, uint32_t access_id) { int r, i; for (i = CR_PID1; i <= CR_PID4; ++i) { r = match_prot_id_1(access_id, env->cr[i]); if (r) { return r; } } return 0; } static int match_prot_id64(CPUHPPAState *env, uint32_t access_id) { int r, i; for (i = CR_PID1; i <= CR_PID4; ++i) { r = match_prot_id_1(access_id, env->cr[i]); if (r) { return r; } r = match_prot_id_1(access_id, env->cr[i] >> 32); if (r) { return r; } } return 0; } int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx, int type, hwaddr *pphys, int *pprot) { hwaddr phys; int prot, r_prot, w_prot, x_prot, priv; HPPATLBEntry *ent; int ret = -1; /* Virtual translation disabled. Map absolute to physical. */ if (MMU_IDX_MMU_DISABLED(mmu_idx)) { switch (mmu_idx) { case MMU_ABS_W_IDX: phys = hppa_abs_to_phys_pa2_w1(addr); break; case MMU_ABS_IDX: if (hppa_is_pa20(env)) { phys = hppa_abs_to_phys_pa2_w0(addr); } else { phys = (uint32_t)addr; } break; default: g_assert_not_reached(); } prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; goto egress; } /* Find a valid tlb entry that matches the virtual address. */ ent = hppa_find_tlb(env, addr); if (ent == NULL) { phys = 0; prot = 0; ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS; goto egress; } /* We now know the physical address. */ phys = ent->pa + (addr - ent->itree.start); /* Map TLB access_rights field to QEMU protection. */ priv = MMU_IDX_TO_PRIV(mmu_idx); r_prot = (priv <= ent->ar_pl1) * PAGE_READ; w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE; x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC; switch (ent->ar_type) { case 0: /* read-only: data page */ prot = r_prot; break; case 1: /* read/write: dynamic data page */ prot = r_prot | w_prot; break; case 2: /* read/execute: normal code page */ prot = r_prot | x_prot; break; case 3: /* read/write/execute: dynamic code page */ prot = r_prot | w_prot | x_prot; break; default: /* execute: promote to privilege level type & 3 */ prot = x_prot; break; } /* * No guest access type indicates a non-architectural access from * within QEMU. Bypass checks for access, D, B, P and T bits. */ if (type == 0) { goto egress; } /* access_id == 0 means public page and no check is performed */ if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) { int access_prot = (hppa_is_pa20(env) ? match_prot_id64(env, ent->access_id) : match_prot_id32(env, ent->access_id)); if (unlikely(!(type & access_prot))) { /* Not allowed -- Inst/Data Memory Protection Id Fault. */ ret = type & PAGE_EXEC ? EXCP_IMP : EXCP_DMPI; goto egress; } /* Otherwise exclude permissions not allowed (i.e WD). */ prot &= access_prot; } if (unlikely(!(prot & type))) { /* Not allowed -- Inst/Data Memory Access Rights Fault. */ ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR; goto egress; } /* * In priority order, check for conditions which raise faults. * Remove PROT bits that cover the condition we want to check, * so that the resulting PROT will force a re-check of the * architectural TLB entry for the next access. */ if (unlikely(ent->t)) { prot &= PAGE_EXEC; if (!(type & PAGE_EXEC)) { /* The T bit is set -- Page Reference Fault. */ ret = EXCP_PAGE_REF; } } else if (!ent->d) { prot &= PAGE_READ | PAGE_EXEC; if (type & PAGE_WRITE) { /* The D bit is not set -- TLB Dirty Bit Fault. */ ret = EXCP_TLB_DIRTY; } } else if (unlikely(ent->b)) { prot &= PAGE_READ | PAGE_EXEC; if (type & PAGE_WRITE) { /* * The B bit is set -- Data Memory Break Fault. * Except when PSW_X is set, allow this single access to succeed. * The write bit will be invalidated for subsequent accesses. */ if (env->psw_xb & PSW_X) { prot |= PAGE_WRITE_INV; } else { ret = EXCP_DMB; } } } egress: *pphys = phys; *pprot = prot; trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys); return ret; } hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { HPPACPU *cpu = HPPA_CPU(cs); hwaddr phys; int prot, excp, mmu_idx; /* If the (data) mmu is disabled, bypass translation. */ /* ??? We really ought to know if the code mmu is disabled too, in order to get the correct debugging dumps. */ mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX : cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX); excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0, &phys, &prot); /* Since we're translating for debugging, the only error that is a hard error is no translation at all. Otherwise, while a real cpu access might not have permission, the debugger does. */ return excp == EXCP_DTLB_MISS ? -1 : phys; } void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled) { if (env->psw & PSW_Q) { /* * For pa1.x, the offset and space never overlap, and so we * simply extract the high and low part of the virtual address. * * For pa2.0, the formation of these are described in section * "Interruption Parameter Registers", page 2-15. */ env->cr[CR_IOR] = (uint32_t)addr; env->cr[CR_ISR] = addr >> 32; if (hppa_is_pa20(env)) { if (mmu_disabled) { /* * If data translation was disabled, the ISR contains * the upper portion of the abs address, zero-extended. */ env->cr[CR_ISR] &= 0x3fffffff; } else { /* * If data translation was enabled, the upper two bits * of the IOR (the b field) are equal to the two space * bits from the base register used to form the gva. */ uint64_t b; b = env->unwind_breg ? env->gr[env->unwind_breg] : 0; b >>= (env->psw & PSW_W ? 62 : 30); env->cr[CR_IOR] |= b << 62; } } } } G_NORETURN static void raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr, vaddr addr, bool mmu_disabled) { CPUState *cs = env_cpu(env); cs->exception_index = excp; cpu_restore_state(cs, retaddr); hppa_set_ior_and_isr(env, addr, mmu_disabled); cpu_loop_exit(cs); } void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr) { CPUHPPAState *env = cpu_env(cs); qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx " while accessing I/O at %#08" HWADDR_PRIx "\n", env->iasq_f, env->iaoq_f, physaddr); /* FIXME: Enable HPMC exceptions when firmware has clean device probing */ if (0) { raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr, MMU_IDX_MMU_DISABLED(mmu_idx)); } } bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size, MMUAccessType type, int mmu_idx, bool probe, uintptr_t retaddr) { HPPACPU *cpu = HPPA_CPU(cs); CPUHPPAState *env = &cpu->env; int prot, excp, a_prot; hwaddr phys; switch (type) { case MMU_INST_FETCH: a_prot = PAGE_EXEC; break; case MMU_DATA_STORE: a_prot = PAGE_WRITE; break; default: a_prot = PAGE_READ; break; } excp = hppa_get_physical_address(env, addr, mmu_idx, a_prot, &phys, &prot); if (unlikely(excp >= 0)) { if (probe) { return false; } trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx); /* Failure. Raise the indicated exception. */ raise_exception_with_ior(env, excp, retaddr, addr, MMU_IDX_MMU_DISABLED(mmu_idx)); } trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK, size, type, mmu_idx); /* * Success! Store the translation into the QEMU TLB. * Note that we always install a single-page entry, because that * is what works best with softmmu -- anything else will trigger * the large page protection mask. We do not require this, * because we record the large page here in the hppa tlb. */ tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK, prot, mmu_idx, TARGET_PAGE_SIZE); return true; } /* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */ void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg) { HPPATLBEntry *ent; /* Zap any old entries covering ADDR. */ addr &= TARGET_PAGE_MASK; hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1); ent = env->tlb_partial; if (ent == NULL) { ent = hppa_alloc_tlb_ent(env); env->tlb_partial = ent; } /* Note that ent->entry_valid == 0 already. */ ent->itree.start = addr; ent->itree.last = addr + TARGET_PAGE_SIZE - 1; ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS; trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa); } static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent, target_ulong reg) { ent->access_id = extract32(reg, 1, 18); ent->u = extract32(reg, 19, 1); ent->ar_pl2 = extract32(reg, 20, 2); ent->ar_pl1 = extract32(reg, 22, 2); ent->ar_type = extract32(reg, 24, 3); ent->b = extract32(reg, 27, 1); ent->d = extract32(reg, 28, 1); ent->t = extract32(reg, 29, 1); ent->entry_valid = 1; interval_tree_insert(&ent->itree, &env->tlb_root); trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2, ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t); } /* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */ void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg) { HPPATLBEntry *ent = env->tlb_partial; if (ent) { env->tlb_partial = NULL; if (ent->itree.start <= addr && addr <= ent->itree.last) { set_access_bits_pa11(env, ent, reg); return; } } qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n"); } static void itlbt_pa20(CPUHPPAState *env, target_ulong r1, target_ulong r2, vaddr va_b) { HPPATLBEntry *ent; vaddr va_e; uint64_t va_size; int mask_shift; mask_shift = 2 * (r1 & 0xf); va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift; va_b &= -va_size; va_e = va_b + va_size - 1; hppa_flush_tlb_range(env, va_b, va_e); ent = hppa_alloc_tlb_ent(env); ent->itree.start = va_b; ent->itree.last = va_e; /* Extract all 52 bits present in the page table entry. */ ent->pa = r1 << (TARGET_PAGE_BITS - 5); /* Align per the page size. */ ent->pa &= TARGET_PAGE_MASK << mask_shift; /* Ignore the bits beyond physical address space. */ ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS); ent->t = extract64(r2, 61, 1); ent->d = extract64(r2, 60, 1); ent->b = extract64(r2, 59, 1); ent->ar_type = extract64(r2, 56, 3); ent->ar_pl1 = extract64(r2, 54, 2); ent->ar_pl2 = extract64(r2, 52, 2); ent->u = extract64(r2, 51, 1); /* o = bit 50 */ /* p = bit 49 */ ent->access_id = extract64(r2, 1, 31); ent->entry_valid = 1; interval_tree_insert(&ent->itree, &env->tlb_root); trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa); trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2, ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t); } void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2) { vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]); itlbt_pa20(env, r1, r2, va_b); } void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2) { vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]); itlbt_pa20(env, r1, r2, va_b); } /* Purge (Insn/Data) TLB. */ static void ptlb_work(CPUState *cpu, run_on_cpu_data data) { vaddr start = data.target_ptr; vaddr end; /* * PA2.0 allows a range of pages encoded into GR[b], which we have * copied into the bottom bits of the otherwise page-aligned address. * PA1.x will always provide zero here, for a single page flush. */ end = start & 0xf; start &= TARGET_PAGE_MASK; end = (vaddr)TARGET_PAGE_SIZE << (2 * end); end = start + end - 1; hppa_flush_tlb_range(cpu_env(cpu), start, end); } /* This is local to the current cpu. */ void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr) { trace_hppa_tlb_ptlb_local(env); ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr)); } /* This is synchronous across all processors. */ void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr) { CPUState *src = env_cpu(env); CPUState *cpu; bool wait = false; trace_hppa_tlb_ptlb(env); run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr); CPU_FOREACH(cpu) { if (cpu != src) { async_run_on_cpu(cpu, ptlb_work, data); wait = true; } } if (wait) { async_safe_run_on_cpu(src, ptlb_work, data); } else { ptlb_work(src, data); } } void hppa_ptlbe(CPUHPPAState *env) { uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); uint32_t i; /* Zap the (non-btlb) tlb entries themselves. */ memset(&env->tlb[btlb_entries], 0, sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0])); env->tlb_last = btlb_entries; env->tlb_partial = NULL; /* Put them all onto the unused list. */ env->tlb_unused = &env->tlb[btlb_entries]; for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) { env->tlb[i].unused_next = &env->tlb[i + 1]; } /* Re-initialize the interval tree with only the btlb entries. */ memset(&env->tlb_root, 0, sizeof(env->tlb_root)); for (i = 0; i < btlb_entries; ++i) { if (env->tlb[i].entry_valid) { interval_tree_insert(&env->tlb[i].itree, &env->tlb_root); } } tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK); } /* Purge (Insn/Data) TLB entry. This affects an implementation-defined number of pages/entries (we choose all), and is local to the cpu. */ void HELPER(ptlbe)(CPUHPPAState *env) { trace_hppa_tlb_ptlbe(env); qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n"); hppa_ptlbe(env); } void cpu_hppa_change_prot_id(CPUHPPAState *env) { tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK); } void HELPER(change_prot_id)(CPUHPPAState *env) { cpu_hppa_change_prot_id(env); } target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr) { hwaddr phys; int prot, excp; excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0, &phys, &prot); if (excp >= 0) { if (excp == EXCP_DTLB_MISS) { excp = EXCP_NA_DTLB_MISS; } trace_hppa_tlb_lpa_failed(env, addr); raise_exception_with_ior(env, excp, GETPC(), addr, false); } trace_hppa_tlb_lpa_success(env, addr, phys); return phys; } /* * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to * allow operating systems to modify the Block TLB (BTLB) entries. * For implementation details see page 1-13 in * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf */ void HELPER(diag_btlb)(CPUHPPAState *env) { unsigned int phys_page, len, slot; int mmu_idx = cpu_mmu_index(env_cpu(env), 0); uintptr_t ra = GETPC(); HPPATLBEntry *btlb; uint64_t virt_page; uint32_t *vaddr; uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); /* BTLBs are not supported on 64-bit CPUs */ if (btlb_entries == 0) { env->gr[28] = -1; /* nonexistent procedure */ return; } env->gr[28] = 0; /* PDC_OK */ switch (env->gr[25]) { case 0: /* return BTLB parameters */ qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n"); vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t), MMU_DATA_STORE, mmu_idx, ra); if (vaddr == NULL) { env->gr[28] = -10; /* invalid argument */ } else { vaddr[0] = cpu_to_be32(1); vaddr[1] = cpu_to_be32(16 * 1024); vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED); vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE); } break; case 1: /* insert BTLB entry */ virt_page = env->gr[24]; /* upper 32 bits */ virt_page <<= 32; virt_page |= env->gr[23]; /* lower 32 bits */ phys_page = env->gr[22]; len = env->gr[21]; slot = env->gr[19]; qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT " "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d " "into slot %d\n", (long long) virt_page << TARGET_PAGE_BITS, (long long) (virt_page + len) << TARGET_PAGE_BITS, (long long) virt_page, phys_page, len, slot); if (slot < btlb_entries) { btlb = &env->tlb[slot]; /* Force flush of possibly existing BTLB entry. */ hppa_flush_tlb_ent(env, btlb, true); /* Create new BTLB entry */ btlb->itree.start = virt_page << TARGET_PAGE_BITS; btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1; btlb->pa = phys_page << TARGET_PAGE_BITS; set_access_bits_pa11(env, btlb, env->gr[20]); btlb->t = 0; btlb->d = 1; } else { env->gr[28] = -10; /* invalid argument */ } break; case 2: /* Purge BTLB entry */ slot = env->gr[22]; qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n", slot); if (slot < btlb_entries) { btlb = &env->tlb[slot]; hppa_flush_tlb_ent(env, btlb, true); } else { env->gr[28] = -10; /* invalid argument */ } break; case 3: /* Purge all BTLB entries */ qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n"); for (slot = 0; slot < btlb_entries; slot++) { btlb = &env->tlb[slot]; hppa_flush_tlb_ent(env, btlb, true); } break; default: env->gr[28] = -2; /* nonexistent option */ break; } } uint64_t HELPER(b_gate_priv)(CPUHPPAState *env, uint64_t iaoq_f) { uint64_t gva = hppa_form_gva(env, env->iasq_f, iaoq_f); HPPATLBEntry *ent = hppa_find_tlb(env, gva); if (ent == NULL) { raise_exception_with_ior(env, EXCP_ITLB_MISS, GETPC(), gva, false); } /* * There should be no need to check page permissions, as that will * already have been done by tb_lookup via get_page_addr_code. * All we need at this point is to check the ar_type. * * No change for non-gateway pages or for priv decrease. */ if (ent->ar_type & 4) { int old_priv = iaoq_f & 3; int new_priv = ent->ar_type & 3; if (new_priv < old_priv) { iaoq_f = (iaoq_f & -4) | new_priv; } } return iaoq_f; }