/*
 *  HPPA interrupt helper routines
 *
 *  Copyright (c) 2017 Richard Henderson
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "hw/core/cpu.h"
#include "hw/hppa/hppa_hardware.h"

static void eval_interrupt(HPPACPU *cpu)
{
    CPUState *cs = CPU(cpu);
    if (cpu->env.cr[CR_EIRR]) {
        cpu_interrupt(cs, CPU_INTERRUPT_HARD);
    } else {
        cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
    }
}

/* Each CPU has a word mapped into the GSC bus.  Anything on the GSC bus
 * can write to this word to raise an external interrupt on the target CPU.
 * This includes the system controller (DINO) for regular devices, or
 * another CPU for SMP interprocessor interrupts.
 */
static uint64_t io_eir_read(void *opaque, hwaddr addr, unsigned size)
{
    HPPACPU *cpu = opaque;

    /* ??? What does a read of this register over the GSC bus do?  */
    return cpu->env.cr[CR_EIRR];
}

static void io_eir_write(void *opaque, hwaddr addr,
                         uint64_t data, unsigned size)
{
    HPPACPU *cpu = opaque;
    CPUHPPAState *env = &cpu->env;
    int widthm1 = 31;
    int le_bit;

    /* The default PSW.W controls the width of EIRR. */
    if (hppa_is_pa20(env) && env->cr[CR_PSW_DEFAULT] & PDC_PSW_WIDE_BIT) {
        widthm1 = 63;
    }
    le_bit = ~data & widthm1;

    env->cr[CR_EIRR] |= 1ull << le_bit;
    eval_interrupt(cpu);
}

const MemoryRegionOps hppa_io_eir_ops = {
    .read = io_eir_read,
    .write = io_eir_write,
    .valid.min_access_size = 4,
    .valid.max_access_size = 4,
    .impl.min_access_size = 4,
    .impl.max_access_size = 4,
};

void hppa_cpu_alarm_timer(void *opaque)
{
    /* Raise interrupt 0.  */
    io_eir_write(opaque, 0, 0, 4);
}

void HELPER(write_eirr)(CPUHPPAState *env, target_ulong val)
{
    env->cr[CR_EIRR] &= ~val;
    bql_lock();
    eval_interrupt(env_archcpu(env));
    bql_unlock();
}

void hppa_cpu_do_interrupt(CPUState *cs)
{
    HPPACPU *cpu = HPPA_CPU(cs);
    CPUHPPAState *env = &cpu->env;
    int i = cs->exception_index;
    uint64_t old_psw;

    /* As documented in pa2.0 -- interruption handling.  */
    /* step 1 */
    env->cr[CR_IPSW] = old_psw = cpu_hppa_get_psw(env);

    /* step 2 -- Note PSW_W is masked out again for pa1.x */
    cpu_hppa_put_psw(env,
                     (env->cr[CR_PSW_DEFAULT] & PDC_PSW_WIDE_BIT ? PSW_W : 0) |
                     (i == EXCP_HPMC ? PSW_M : 0));

    /* step 3 */
    /*
     * IIASQ is the top bits of the virtual address, or zero if translation
     * is disabled -- with PSW_W == 0, this will reduce to the space.
     */
    if (old_psw & PSW_C) {
        env->cr[CR_IIASQ] =
            hppa_form_gva_psw(old_psw, env->iasq_f, env->iaoq_f) >> 32;
        env->cr_back[0] =
            hppa_form_gva_psw(old_psw, env->iasq_b, env->iaoq_b) >> 32;
    } else {
        env->cr[CR_IIASQ] = 0;
        env->cr_back[0] = 0;
    }
    /* IIAOQ is the full offset for wide mode, or 32 bits for narrow mode. */
    if (old_psw & PSW_W) {
        env->cr[CR_IIAOQ] = env->iaoq_f;
        env->cr_back[1] = env->iaoq_b;
    } else {
        env->cr[CR_IIAOQ] = (uint32_t)env->iaoq_f;
        env->cr_back[1] = (uint32_t)env->iaoq_b;
    }

    if (old_psw & PSW_Q) {
        /* step 5 */
        /* ISR and IOR will be set elsewhere.  */
        switch (i) {
        case EXCP_ILL:
        case EXCP_BREAK:
        case EXCP_OVERFLOW:
        case EXCP_COND:
        case EXCP_PRIV_REG:
        case EXCP_PRIV_OPR:
            /* IIR set via translate.c.  */
            break;

        case EXCP_ASSIST:
        case EXCP_DTLB_MISS:
        case EXCP_NA_ITLB_MISS:
        case EXCP_NA_DTLB_MISS:
        case EXCP_DMAR:
        case EXCP_DMPI:
        case EXCP_UNALIGN:
        case EXCP_DMP:
        case EXCP_DMB:
        case EXCP_TLB_DIRTY:
        case EXCP_PAGE_REF:
        case EXCP_ASSIST_EMU:
            {
                /* Avoid reading directly from the virtual address, lest we
                   raise another exception from some sort of TLB issue.  */
                /* ??? An alternate fool-proof method would be to store the
                   instruction data into the unwind info.  That's probably
                   a bit too much in the way of extra storage required.  */
                vaddr vaddr = env->iaoq_f & -4;
                hwaddr paddr = vaddr;

                if (old_psw & PSW_C) {
                    int prot, t;

                    vaddr = hppa_form_gva_psw(old_psw, env->iasq_f, vaddr);
                    t = hppa_get_physical_address(env, vaddr, MMU_KERNEL_IDX,
                                                  0, &paddr, &prot);
                    if (t >= 0) {
                        /* We can't re-load the instruction.  */
                        env->cr[CR_IIR] = 0;
                        break;
                    }
                }
                env->cr[CR_IIR] = ldl_phys(cs->as, paddr);
            }
            break;

        default:
            /* Other exceptions do not set IIR.  */
            break;
        }

        /* step 6 */
        env->shadow[0] = env->gr[1];
        env->shadow[1] = env->gr[8];
        env->shadow[2] = env->gr[9];
        env->shadow[3] = env->gr[16];
        env->shadow[4] = env->gr[17];
        env->shadow[5] = env->gr[24];
        env->shadow[6] = env->gr[25];
    }

    /* step 7 */
    if (i == EXCP_TOC) {
        env->iaoq_f = hppa_form_gva(env, 0, FIRMWARE_START);
        /* help SeaBIOS and provide iaoq_b and iasq_back in shadow regs */
        env->gr[24] = env->cr_back[0];
        env->gr[25] = env->cr_back[1];
    } else {
        env->iaoq_f = hppa_form_gva(env, 0, env->cr[CR_IVA] + 32 * i);
    }
    env->iaoq_b = hppa_form_gva(env, 0, env->iaoq_f + 4);
    env->iasq_f = 0;
    env->iasq_b = 0;

    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        static const char * const names[] = {
            [EXCP_HPMC]          = "high priority machine check",
            [EXCP_POWER_FAIL]    = "power fail interrupt",
            [EXCP_RC]            = "recovery counter trap",
            [EXCP_EXT_INTERRUPT] = "external interrupt",
            [EXCP_LPMC]          = "low priority machine check",
            [EXCP_ITLB_MISS]     = "instruction tlb miss fault",
            [EXCP_IMP]           = "instruction memory protection trap",
            [EXCP_ILL]           = "illegal instruction trap",
            [EXCP_BREAK]         = "break instruction trap",
            [EXCP_PRIV_OPR]      = "privileged operation trap",
            [EXCP_PRIV_REG]      = "privileged register trap",
            [EXCP_OVERFLOW]      = "overflow trap",
            [EXCP_COND]          = "conditional trap",
            [EXCP_ASSIST]        = "assist exception trap",
            [EXCP_DTLB_MISS]     = "data tlb miss fault",
            [EXCP_NA_ITLB_MISS]  = "non-access instruction tlb miss",
            [EXCP_NA_DTLB_MISS]  = "non-access data tlb miss",
            [EXCP_DMP]           = "data memory protection trap",
            [EXCP_DMB]           = "data memory break trap",
            [EXCP_TLB_DIRTY]     = "tlb dirty bit trap",
            [EXCP_PAGE_REF]      = "page reference trap",
            [EXCP_ASSIST_EMU]    = "assist emulation trap",
            [EXCP_HPT]           = "high-privilege transfer trap",
            [EXCP_LPT]           = "low-privilege transfer trap",
            [EXCP_TB]            = "taken branch trap",
            [EXCP_DMAR]          = "data memory access rights trap",
            [EXCP_DMPI]          = "data memory protection id trap",
            [EXCP_UNALIGN]       = "unaligned data reference trap",
            [EXCP_PER_INTERRUPT] = "performance monitor interrupt",
            [EXCP_SYSCALL]       = "syscall",
            [EXCP_SYSCALL_LWS]   = "syscall-lws",
            [EXCP_TOC]           = "TOC (transfer of control)",
        };

        FILE *logfile = qemu_log_trylock();
        if (logfile) {
            const char *name = NULL;

            if (i >= 0 && i < ARRAY_SIZE(names)) {
                name = names[i];
            }
            if (name) {
                fprintf(logfile, "INT: cpu %d %s\n", cs->cpu_index, name);
            } else {
                fprintf(logfile, "INT: cpu %d unknown %d\n", cs->cpu_index, i);
            }
            hppa_cpu_dump_state(cs, logfile, 0);
            qemu_log_unlock(logfile);
        }
    }
    cs->exception_index = -1;
}

bool hppa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
    HPPACPU *cpu = HPPA_CPU(cs);
    CPUHPPAState *env = &cpu->env;

    if (interrupt_request & CPU_INTERRUPT_NMI) {
        /* Raise TOC (NMI) interrupt */
        cpu_reset_interrupt(cs, CPU_INTERRUPT_NMI);
        cs->exception_index = EXCP_TOC;
        hppa_cpu_do_interrupt(cs);
        return true;
    }

    /* If interrupts are requested and enabled, raise them.  */
    if ((interrupt_request & CPU_INTERRUPT_HARD)
        && (env->psw & PSW_I)
        && (env->cr[CR_EIRR] & env->cr[CR_EIEM])) {
        cs->exception_index = EXCP_EXT_INTERRUPT;
        hppa_cpu_do_interrupt(cs);
        return true;
    }
    return false;
}