/* * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #define QEMU_GENERATE #include "qemu/osdep.h" #include "cpu.h" #include "tcg/tcg-op.h" #include "tcg/tcg-op-gvec.h" #include "exec/helper-gen.h" #include "exec/helper-proto.h" #include "exec/translation-block.h" #include "exec/log.h" #include "internal.h" #include "attribs.h" #include "insn.h" #include "decode.h" #include "translate.h" #include "genptr.h" #include "printinsn.h" #define HELPER_H "helper.h" #include "exec/helper-info.c.inc" #undef HELPER_H #include "analyze_funcs_generated.c.inc" typedef void (*AnalyzeInsn)(DisasContext *ctx); static const AnalyzeInsn opcode_analyze[XX_LAST_OPCODE] = { #define OPCODE(X) [X] = analyze_##X #include "opcodes_def_generated.h.inc" #undef OPCODE }; TCGv hex_gpr[TOTAL_PER_THREAD_REGS]; TCGv hex_pred[NUM_PREGS]; TCGv hex_slot_cancelled; TCGv hex_new_value_usr; TCGv hex_reg_written[TOTAL_PER_THREAD_REGS]; TCGv hex_store_addr[STORES_MAX]; TCGv hex_store_width[STORES_MAX]; TCGv hex_store_val32[STORES_MAX]; TCGv_i64 hex_store_val64[STORES_MAX]; TCGv hex_llsc_addr; TCGv hex_llsc_val; TCGv_i64 hex_llsc_val_i64; TCGv hex_vstore_addr[VSTORES_MAX]; TCGv hex_vstore_size[VSTORES_MAX]; TCGv hex_vstore_pending[VSTORES_MAX]; static const char * const hexagon_prednames[] = { "p0", "p1", "p2", "p3" }; intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum, int num, bool alloc_ok) { intptr_t offset; if (!ctx->need_commit) { return offsetof(CPUHexagonState, VRegs[regnum]); } /* See if it is already allocated */ for (int i = 0; i < ctx->future_vregs_idx; i++) { if (ctx->future_vregs_num[i] == regnum) { return offsetof(CPUHexagonState, future_VRegs[i]); } } g_assert(alloc_ok); offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]); for (int i = 0; i < num; i++) { ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++; } ctx->future_vregs_idx += num; g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX); return offset; } intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum, int num, bool alloc_ok) { intptr_t offset; /* See if it is already allocated */ for (int i = 0; i < ctx->tmp_vregs_idx; i++) { if (ctx->tmp_vregs_num[i] == regnum) { return offsetof(CPUHexagonState, tmp_VRegs[i]); } } g_assert(alloc_ok); offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]); for (int i = 0; i < num; i++) { ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++; } ctx->tmp_vregs_idx += num; g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX); return offset; } static void gen_exception_raw(int excp) { gen_helper_raise_exception(tcg_env, tcg_constant_i32(excp)); } static void gen_exec_counters(DisasContext *ctx) { tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT], hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets); tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT], hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns); tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT], hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns); } static bool use_goto_tb(DisasContext *ctx, target_ulong dest) { return translator_use_goto_tb(&ctx->base, dest); } static void gen_goto_tb(DisasContext *ctx, int idx, target_ulong dest, bool move_to_pc) { if (use_goto_tb(ctx, dest)) { tcg_gen_goto_tb(idx); if (move_to_pc) { tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest); } tcg_gen_exit_tb(ctx->base.tb, idx); } else { if (move_to_pc) { tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest); } tcg_gen_lookup_and_goto_ptr(); } } static void gen_end_tb(DisasContext *ctx) { Packet *pkt = ctx->pkt; gen_exec_counters(ctx); if (ctx->branch_cond != TCG_COND_NEVER) { if (ctx->branch_cond != TCG_COND_ALWAYS) { TCGLabel *skip = gen_new_label(); tcg_gen_brcondi_tl(ctx->branch_cond, ctx->branch_taken, 0, skip); gen_goto_tb(ctx, 0, ctx->branch_dest, true); gen_set_label(skip); gen_goto_tb(ctx, 1, ctx->next_PC, false); } else { gen_goto_tb(ctx, 0, ctx->branch_dest, true); } } else if (ctx->is_tight_loop && pkt->insn[pkt->num_insns - 1].opcode == J2_endloop0) { /* * When we're in a tight loop, we defer the endloop0 processing * to take advantage of direct block chaining */ TCGLabel *skip = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, skip); tcg_gen_subi_tl(hex_gpr[HEX_REG_LC0], hex_gpr[HEX_REG_LC0], 1); gen_goto_tb(ctx, 0, ctx->base.tb->pc, true); gen_set_label(skip); gen_goto_tb(ctx, 1, ctx->next_PC, false); } else { tcg_gen_lookup_and_goto_ptr(); } ctx->base.is_jmp = DISAS_NORETURN; } static void gen_exception_end_tb(DisasContext *ctx, int excp) { gen_exec_counters(ctx); tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->next_PC); gen_exception_raw(excp); ctx->base.is_jmp = DISAS_NORETURN; } #define PACKET_BUFFER_LEN 1028 static void print_pkt(Packet *pkt) { GString *buf = g_string_sized_new(PACKET_BUFFER_LEN); snprint_a_pkt_debug(buf, pkt); HEX_DEBUG_LOG("%s", buf->str); g_string_free(buf, true); } #define HEX_DEBUG_PRINT_PKT(pkt) \ do { \ if (HEX_DEBUG) { \ print_pkt(pkt); \ } \ } while (0) static int read_packet_words(CPUHexagonState *env, DisasContext *ctx, uint32_t words[]) { bool found_end = false; int nwords, max_words; memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t)); for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) { words[nwords] = translator_ldl(env, &ctx->base, ctx->base.pc_next + nwords * sizeof(uint32_t)); found_end = is_packet_end(words[nwords]); } if (!found_end) { /* Read too many words without finding the end */ return 0; } /* Check for page boundary crossing */ max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t); if (nwords > max_words) { /* We can only cross a page boundary at the beginning of a TB */ g_assert(ctx->base.num_insns == 1); } HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next); HEX_DEBUG_LOG(" words = { "); for (int i = 0; i < nwords; i++) { HEX_DEBUG_LOG("0x%x, ", words[i]); } HEX_DEBUG_LOG("}\n"); return nwords; } static bool check_for_attrib(Packet *pkt, int attrib) { for (int i = 0; i < pkt->num_insns; i++) { if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) { return true; } } return false; } static bool need_slot_cancelled(Packet *pkt) { /* We only need slot_cancelled for conditional store instructions */ for (int i = 0; i < pkt->num_insns; i++) { uint16_t opcode = pkt->insn[i].opcode; if (GET_ATTRIB(opcode, A_CONDEXEC) && GET_ATTRIB(opcode, A_SCALAR_STORE)) { return true; } } return false; } static bool need_next_PC(DisasContext *ctx) { Packet *pkt = ctx->pkt; /* Check for conditional control flow or HW loop end */ for (int i = 0; i < pkt->num_insns; i++) { uint16_t opcode = pkt->insn[i].opcode; if (GET_ATTRIB(opcode, A_CONDEXEC) && GET_ATTRIB(opcode, A_COF)) { return true; } if (GET_ATTRIB(opcode, A_HWLOOP0_END) || GET_ATTRIB(opcode, A_HWLOOP1_END)) { return true; } } return false; } /* * The opcode_analyze functions mark most of the writes in a packet * However, there are some implicit writes marked as attributes * of the applicable instructions. */ static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum) { uint16_t opcode = ctx->insn->opcode; if (GET_ATTRIB(opcode, attrib)) { /* * USR is used to set overflow and FP exceptions, * so treat it as conditional */ bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) || rnum == HEX_REG_USR; /* LC0/LC1 is conditionally written by endloop instructions */ if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) && (opcode == J2_endloop0 || opcode == J2_endloop1 || opcode == J2_endloop01)) { is_predicated = true; } ctx_log_reg_write(ctx, rnum, is_predicated); } } static void mark_implicit_reg_writes(DisasContext *ctx) { mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP, HEX_REG_FP); mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP, HEX_REG_SP); mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR, HEX_REG_LR); mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0); mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0); mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1); mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1); mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR); mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR); } static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum) { if (GET_ATTRIB(ctx->insn->opcode, attrib)) { ctx_log_pred_write(ctx, pnum); } } static void mark_implicit_pred_writes(DisasContext *ctx) { mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0); mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1); mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2); mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3); } static bool pkt_raises_exception(Packet *pkt) { if (check_for_attrib(pkt, A_LOAD) || check_for_attrib(pkt, A_STORE)) { return true; } return false; } static bool need_commit(DisasContext *ctx) { Packet *pkt = ctx->pkt; /* * If the short-circuit property is set to false, we'll always do the commit */ if (!ctx->short_circuit) { return true; } if (pkt_raises_exception(pkt)) { return true; } /* Registers with immutability flags require new_value */ for (int i = 0; i < ctx->reg_log_idx; i++) { int rnum = ctx->reg_log[i]; if (reg_immut_masks[rnum]) { return true; } } /* Floating point instructions are hard-coded to use new_value */ if (check_for_attrib(pkt, A_FPOP)) { return true; } if (pkt->num_insns == 1) { if (pkt->pkt_has_hvx) { /* * The HVX instructions with generated helpers use * pass-by-reference, so they need the read/write overlap * check below. * The HVX instructions with overrides are OK. */ if (!ctx->has_hvx_helper) { return false; } } else { return false; } } /* Check for overlap between register reads and writes */ for (int i = 0; i < ctx->reg_log_idx; i++) { int rnum = ctx->reg_log[i]; if (test_bit(rnum, ctx->regs_read)) { return true; } } /* Check for overlap between predicate reads and writes */ for (int i = 0; i < ctx->preg_log_idx; i++) { int pnum = ctx->preg_log[i]; if (test_bit(pnum, ctx->pregs_read)) { return true; } } /* Check for overlap between HVX reads and writes */ for (int i = 0; i < ctx->vreg_log_idx; i++) { int vnum = ctx->vreg_log[i]; if (test_bit(vnum, ctx->vregs_read)) { return true; } } if (!bitmap_empty(ctx->vregs_updated_tmp, NUM_VREGS)) { int i = find_first_bit(ctx->vregs_updated_tmp, NUM_VREGS); while (i < NUM_VREGS) { if (test_bit(i, ctx->vregs_read)) { return true; } i = find_next_bit(ctx->vregs_updated_tmp, NUM_VREGS, i + 1); } } if (!bitmap_empty(ctx->vregs_select, NUM_VREGS)) { int i = find_first_bit(ctx->vregs_select, NUM_VREGS); while (i < NUM_VREGS) { if (test_bit(i, ctx->vregs_read)) { return true; } i = find_next_bit(ctx->vregs_select, NUM_VREGS, i + 1); } } /* Check for overlap between HVX predicate reads and writes */ for (int i = 0; i < ctx->qreg_log_idx; i++) { int qnum = ctx->qreg_log[i]; if (test_bit(qnum, ctx->qregs_read)) { return true; } } return false; } static void mark_implicit_pred_read(DisasContext *ctx, int attrib, int pnum) { if (GET_ATTRIB(ctx->insn->opcode, attrib)) { ctx_log_pred_read(ctx, pnum); } } static void mark_implicit_pred_reads(DisasContext *ctx) { mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P0, 0); mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P1, 1); mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 2); mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 3); } static void analyze_packet(DisasContext *ctx) { Packet *pkt = ctx->pkt; ctx->has_hvx_helper = false; for (int i = 0; i < pkt->num_insns; i++) { Insn *insn = &pkt->insn[i]; ctx->insn = insn; if (opcode_analyze[insn->opcode]) { opcode_analyze[insn->opcode](ctx); } mark_implicit_reg_writes(ctx); mark_implicit_pred_writes(ctx); mark_implicit_pred_reads(ctx); } ctx->need_commit = need_commit(ctx); } static void gen_start_packet(DisasContext *ctx) { Packet *pkt = ctx->pkt; target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes; int i; /* Clear out the disassembly context */ ctx->next_PC = next_PC; ctx->reg_log_idx = 0; bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS); bitmap_zero(ctx->regs_read, TOTAL_PER_THREAD_REGS); bitmap_zero(ctx->predicated_regs, TOTAL_PER_THREAD_REGS); ctx->preg_log_idx = 0; bitmap_zero(ctx->pregs_written, NUM_PREGS); bitmap_zero(ctx->pregs_read, NUM_PREGS); ctx->future_vregs_idx = 0; ctx->tmp_vregs_idx = 0; ctx->vreg_log_idx = 0; bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS); bitmap_zero(ctx->vregs_updated, NUM_VREGS); bitmap_zero(ctx->vregs_select, NUM_VREGS); bitmap_zero(ctx->predicated_future_vregs, NUM_VREGS); bitmap_zero(ctx->predicated_tmp_vregs, NUM_VREGS); bitmap_zero(ctx->vregs_read, NUM_VREGS); bitmap_zero(ctx->qregs_read, NUM_QREGS); ctx->qreg_log_idx = 0; for (i = 0; i < STORES_MAX; i++) { ctx->store_width[i] = 0; } ctx->s1_store_processed = false; ctx->pre_commit = true; for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) { ctx->new_value[i] = NULL; } for (i = 0; i < NUM_PREGS; i++) { ctx->new_pred_value[i] = NULL; } analyze_packet(ctx); /* * pregs_written is used both in the analyze phase as well as the code * gen phase, so clear it again. */ bitmap_zero(ctx->pregs_written, NUM_PREGS); if (HEX_DEBUG) { /* Handy place to set a breakpoint before the packet executes */ gen_helper_debug_start_packet(tcg_env); } /* Initialize the runtime state for packet semantics */ if (need_slot_cancelled(pkt)) { tcg_gen_movi_tl(hex_slot_cancelled, 0); } ctx->branch_taken = NULL; if (pkt->pkt_has_cof) { ctx->branch_taken = tcg_temp_new(); if (pkt->pkt_has_multi_cof) { tcg_gen_movi_tl(ctx->branch_taken, 0); } if (need_next_PC(ctx)) { tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], next_PC); } } if (HEX_DEBUG) { ctx->pred_written = tcg_temp_new(); tcg_gen_movi_tl(ctx->pred_written, 0); } /* Preload the predicated registers into get_result_gpr(ctx, i) */ if (ctx->need_commit && !bitmap_empty(ctx->predicated_regs, TOTAL_PER_THREAD_REGS)) { int i = find_first_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS); while (i < TOTAL_PER_THREAD_REGS) { tcg_gen_mov_tl(get_result_gpr(ctx, i), hex_gpr[i]); i = find_next_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS, i + 1); } } /* * Preload the predicated pred registers into ctx->new_pred_value[pred_num] * Only endloop instructions conditionally write to pred registers */ if (ctx->need_commit && pkt->pkt_has_endloop) { for (int i = 0; i < ctx->preg_log_idx; i++) { int pred_num = ctx->preg_log[i]; ctx->new_pred_value[pred_num] = tcg_temp_new(); tcg_gen_mov_tl(ctx->new_pred_value[pred_num], hex_pred[pred_num]); } } /* Preload the predicated HVX registers into future_VRegs and tmp_VRegs */ if (!bitmap_empty(ctx->predicated_future_vregs, NUM_VREGS)) { int i = find_first_bit(ctx->predicated_future_vregs, NUM_VREGS); while (i < NUM_VREGS) { const intptr_t VdV_off = ctx_future_vreg_off(ctx, i, 1, true); intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]); tcg_gen_gvec_mov(MO_64, VdV_off, src_off, sizeof(MMVector), sizeof(MMVector)); i = find_next_bit(ctx->predicated_future_vregs, NUM_VREGS, i + 1); } } if (!bitmap_empty(ctx->predicated_tmp_vregs, NUM_VREGS)) { int i = find_first_bit(ctx->predicated_tmp_vregs, NUM_VREGS); while (i < NUM_VREGS) { const intptr_t VdV_off = ctx_tmp_vreg_off(ctx, i, 1, true); intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]); tcg_gen_gvec_mov(MO_64, VdV_off, src_off, sizeof(MMVector), sizeof(MMVector)); i = find_next_bit(ctx->predicated_tmp_vregs, NUM_VREGS, i + 1); } } } bool is_gather_store_insn(DisasContext *ctx) { Packet *pkt = ctx->pkt; Insn *insn = ctx->insn; if (GET_ATTRIB(insn->opcode, A_CVI_NEW) && insn->new_value_producer_slot == 1) { /* Look for gather instruction */ for (int i = 0; i < pkt->num_insns; i++) { Insn *in = &pkt->insn[i]; if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) { return true; } } } return false; } static void mark_store_width(DisasContext *ctx) { uint16_t opcode = ctx->insn->opcode; uint32_t slot = ctx->insn->slot; uint8_t width = 0; if (GET_ATTRIB(opcode, A_SCALAR_STORE)) { if (GET_ATTRIB(opcode, A_MEMSIZE_0B)) { return; } if (GET_ATTRIB(opcode, A_MEMSIZE_1B)) { width |= 1; } if (GET_ATTRIB(opcode, A_MEMSIZE_2B)) { width |= 2; } if (GET_ATTRIB(opcode, A_MEMSIZE_4B)) { width |= 4; } if (GET_ATTRIB(opcode, A_MEMSIZE_8B)) { width |= 8; } tcg_debug_assert(is_power_of_2(width)); ctx->store_width[slot] = width; } } static void gen_insn(DisasContext *ctx) { if (ctx->insn->generate) { ctx->insn->generate(ctx); mark_store_width(ctx); } else { gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE); } } /* * Helpers for generating the packet commit */ static void gen_reg_writes(DisasContext *ctx) { int i; /* Early exit if not needed */ if (!ctx->need_commit) { return; } for (i = 0; i < ctx->reg_log_idx; i++) { int reg_num = ctx->reg_log[i]; tcg_gen_mov_tl(hex_gpr[reg_num], get_result_gpr(ctx, reg_num)); /* * ctx->is_tight_loop is set when SA0 points to the beginning of the TB. * If we write to SA0, we have to turn off tight loop handling. */ if (reg_num == HEX_REG_SA0) { ctx->is_tight_loop = false; } } } static void gen_pred_writes(DisasContext *ctx) { /* Early exit if not needed or the log is empty */ if (!ctx->need_commit || !ctx->preg_log_idx) { return; } for (int i = 0; i < ctx->preg_log_idx; i++) { int pred_num = ctx->preg_log[i]; tcg_gen_mov_tl(hex_pred[pred_num], ctx->new_pred_value[pred_num]); } } static void gen_check_store_width(DisasContext *ctx, int slot_num) { if (HEX_DEBUG) { TCGv slot = tcg_constant_tl(slot_num); TCGv check = tcg_constant_tl(ctx->store_width[slot_num]); gen_helper_debug_check_store_width(tcg_env, slot, check); } } static bool slot_is_predicated(Packet *pkt, int slot_num) { for (int i = 0; i < pkt->num_insns; i++) { if (pkt->insn[i].slot == slot_num) { return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC); } } /* If we get to here, we didn't find an instruction in the requested slot */ g_assert_not_reached(); } void process_store(DisasContext *ctx, int slot_num) { bool is_predicated = slot_is_predicated(ctx->pkt, slot_num); TCGLabel *label_end = NULL; /* * We may have already processed this store * See CHECK_NOSHUF in macros.h */ if (slot_num == 1 && ctx->s1_store_processed) { return; } ctx->s1_store_processed = true; if (is_predicated) { TCGv cancelled = tcg_temp_new(); label_end = gen_new_label(); /* Don't do anything if the slot was cancelled */ tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1); tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end); } { TCGv address = tcg_temp_new(); tcg_gen_mov_tl(address, hex_store_addr[slot_num]); /* * If we know the width from the DisasContext, we can * generate much cleaner code. * Unfortunately, not all instructions execute the fSTORE * macro during code generation. Anything that uses the * generic helper will have this problem. Instructions * that use fWRAP to generate proper TCG code will be OK. */ switch (ctx->store_width[slot_num]) { case 1: gen_check_store_width(ctx, slot_num); tcg_gen_qemu_st_tl(hex_store_val32[slot_num], hex_store_addr[slot_num], ctx->mem_idx, MO_UB); break; case 2: gen_check_store_width(ctx, slot_num); tcg_gen_qemu_st_tl(hex_store_val32[slot_num], hex_store_addr[slot_num], ctx->mem_idx, MO_TEUW); break; case 4: gen_check_store_width(ctx, slot_num); tcg_gen_qemu_st_tl(hex_store_val32[slot_num], hex_store_addr[slot_num], ctx->mem_idx, MO_TEUL); break; case 8: gen_check_store_width(ctx, slot_num); tcg_gen_qemu_st_i64(hex_store_val64[slot_num], hex_store_addr[slot_num], ctx->mem_idx, MO_TEUQ); break; default: { /* * If we get to here, we don't know the width at * TCG generation time, we'll use a helper to * avoid branching based on the width at runtime. */ TCGv slot = tcg_constant_tl(slot_num); gen_helper_commit_store(tcg_env, slot); } } } if (is_predicated) { gen_set_label(label_end); } } static void process_store_log(DisasContext *ctx) { /* * When a packet has two stores, the hardware processes * slot 1 and then slot 0. This will be important when * the memory accesses overlap. */ Packet *pkt = ctx->pkt; if (pkt->pkt_has_store_s1) { g_assert(!pkt->pkt_has_dczeroa); process_store(ctx, 1); } if (pkt->pkt_has_store_s0) { g_assert(!pkt->pkt_has_dczeroa); process_store(ctx, 0); } } /* Zero out a 32-bit cache line */ static void process_dczeroa(DisasContext *ctx) { if (ctx->pkt->pkt_has_dczeroa) { /* Store 32 bytes of zero starting at (addr & ~0x1f) */ TCGv addr = tcg_temp_new(); TCGv_i64 zero = tcg_constant_i64(0); tcg_gen_andi_tl(addr, ctx->dczero_addr, ~0x1f); tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); tcg_gen_addi_tl(addr, addr, 8); tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); tcg_gen_addi_tl(addr, addr, 8); tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); tcg_gen_addi_tl(addr, addr, 8); tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ); } } static bool pkt_has_hvx_store(Packet *pkt) { int i; for (i = 0; i < pkt->num_insns; i++) { int opcode = pkt->insn[i].opcode; if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) { return true; } } return false; } static void gen_commit_hvx(DisasContext *ctx) { int i; /* Early exit if not needed */ if (!ctx->need_commit) { g_assert(!pkt_has_hvx_store(ctx->pkt)); return; } /* * for (i = 0; i < ctx->vreg_log_idx; i++) { * int rnum = ctx->vreg_log[i]; * env->VRegs[rnum] = env->future_VRegs[rnum]; * } */ for (i = 0; i < ctx->vreg_log_idx; i++) { int rnum = ctx->vreg_log[i]; intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]); intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false); size_t size = sizeof(MMVector); tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size); } /* * for (i = 0; i < ctx->qreg_log_idx; i++) { * int rnum = ctx->qreg_log[i]; * env->QRegs[rnum] = env->future_QRegs[rnum]; * } */ for (i = 0; i < ctx->qreg_log_idx; i++) { int rnum = ctx->qreg_log[i]; intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]); intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]); size_t size = sizeof(MMQReg); tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size); } if (pkt_has_hvx_store(ctx->pkt)) { gen_helper_commit_hvx_stores(tcg_env); } } static void update_exec_counters(DisasContext *ctx) { Packet *pkt = ctx->pkt; int num_insns = pkt->num_insns; int num_real_insns = 0; int num_hvx_insns = 0; for (int i = 0; i < num_insns; i++) { if (!pkt->insn[i].is_endloop && !pkt->insn[i].part1 && !GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) { num_real_insns++; } if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) { num_hvx_insns++; } } ctx->num_packets++; ctx->num_insns += num_real_insns; ctx->num_hvx_insns += num_hvx_insns; } static void gen_commit_packet(DisasContext *ctx) { /* * If there is more than one store in a packet, make sure they are all OK * before proceeding with the rest of the packet commit. * * dczeroa has to be the only store operation in the packet, so we go * ahead and process that first. * * When there is an HVX store, there can also be a scalar store in either * slot 0 or slot1, so we create a mask for the helper to indicate what * work to do. * * When there are two scalar stores, we probe the one in slot 0. * * Note that we don't call the probe helper for packets with only one * store. Therefore, we call process_store_log before anything else * involved in committing the packet. */ Packet *pkt = ctx->pkt; bool has_store_s0 = pkt->pkt_has_store_s0; bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed); bool has_hvx_store = pkt_has_hvx_store(pkt); if (pkt->pkt_has_dczeroa) { /* * The dczeroa will be the store in slot 0, check that we don't have * a store in slot 1 or an HVX store. */ g_assert(!has_store_s1 && !has_hvx_store); process_dczeroa(ctx); } else if (has_hvx_store) { if (!has_store_s0 && !has_store_s1) { TCGv mem_idx = tcg_constant_tl(ctx->mem_idx); gen_helper_probe_hvx_stores(tcg_env, mem_idx); } else { int mask = 0; if (has_store_s0) { mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0, 1); } if (has_store_s1) { mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1, 1); } if (has_hvx_store) { mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_HVX_STORES, 1); } if (has_store_s0 && slot_is_predicated(pkt, 0)) { mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, S0_IS_PRED, 1); } if (has_store_s1 && slot_is_predicated(pkt, 1)) { mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, S1_IS_PRED, 1); } mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, MMU_IDX, ctx->mem_idx); gen_helper_probe_pkt_scalar_hvx_stores(tcg_env, tcg_constant_tl(mask)); } } else if (has_store_s0 && has_store_s1) { /* * process_store_log will execute the slot 1 store first, * so we only have to probe the store in slot 0 */ int args = 0; args = FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX, ctx->mem_idx); if (slot_is_predicated(pkt, 0)) { args = FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED, 1); } TCGv args_tcgv = tcg_constant_tl(args); gen_helper_probe_pkt_scalar_store_s0(tcg_env, args_tcgv); } process_store_log(ctx); gen_reg_writes(ctx); gen_pred_writes(ctx); if (pkt->pkt_has_hvx) { gen_commit_hvx(ctx); } update_exec_counters(ctx); if (HEX_DEBUG) { TCGv has_st0 = tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa); TCGv has_st1 = tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa); /* Handy place to set a breakpoint at the end of execution */ gen_helper_debug_commit_end(tcg_env, tcg_constant_tl(ctx->pkt->pc), ctx->pred_written, has_st0, has_st1); } if (pkt->vhist_insn != NULL) { ctx->pre_commit = false; ctx->insn = pkt->vhist_insn; pkt->vhist_insn->generate(ctx); } if (pkt->pkt_has_cof) { gen_end_tb(ctx); } } static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx) { uint32_t words[PACKET_WORDS_MAX]; int nwords; Packet pkt; int i; nwords = read_packet_words(env, ctx, words); if (!nwords) { gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET); return; } if (decode_packet(nwords, words, &pkt, false) > 0) { pkt.pc = ctx->base.pc_next; HEX_DEBUG_PRINT_PKT(&pkt); ctx->pkt = &pkt; gen_start_packet(ctx); for (i = 0; i < pkt.num_insns; i++) { ctx->insn = &pkt.insn[i]; gen_insn(ctx); } gen_commit_packet(ctx); ctx->base.pc_next += pkt.encod_pkt_size_in_bytes; } else { gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET); } } static void hexagon_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) { DisasContext *ctx = container_of(dcbase, DisasContext, base); HexagonCPU *hex_cpu = env_archcpu(cpu_env(cs)); uint32_t hex_flags = dcbase->tb->flags; ctx->mem_idx = MMU_USER_IDX; ctx->num_packets = 0; ctx->num_insns = 0; ctx->num_hvx_insns = 0; ctx->branch_cond = TCG_COND_NEVER; ctx->is_tight_loop = FIELD_EX32(hex_flags, TB_FLAGS, IS_TIGHT_LOOP); ctx->short_circuit = hex_cpu->short_circuit; } static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu) { } static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *ctx = container_of(dcbase, DisasContext, base); tcg_gen_insn_start(ctx->base.pc_next); } static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx) { target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK; bool found_end = false; int nwords; for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) { uint32_t word = cpu_ldl_code(env, ctx->base.pc_next + nwords * sizeof(uint32_t)); found_end = is_packet_end(word); } uint32_t next_ptr = ctx->base.pc_next + nwords * sizeof(uint32_t); return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE; } static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *ctx = container_of(dcbase, DisasContext, base); CPUHexagonState *env = cpu_env(cpu); decode_and_translate_packet(env, ctx); if (ctx->base.is_jmp == DISAS_NEXT) { target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK; target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong); if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE || (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max && pkt_crosses_page(env, ctx))) { ctx->base.is_jmp = DISAS_TOO_MANY; } /* * The CPU log is used to compare against LLDB single stepping, * so end the TLB after every packet. */ HexagonCPU *hex_cpu = env_archcpu(env); if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) { ctx->base.is_jmp = DISAS_TOO_MANY; } } } static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *ctx = container_of(dcbase, DisasContext, base); switch (ctx->base.is_jmp) { case DISAS_TOO_MANY: gen_exec_counters(ctx); tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next); tcg_gen_exit_tb(NULL, 0); break; case DISAS_NORETURN: break; default: g_assert_not_reached(); } } static void hexagon_tr_disas_log(const DisasContextBase *dcbase, CPUState *cpu, FILE *logfile) { fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size); } static const TranslatorOps hexagon_tr_ops = { .init_disas_context = hexagon_tr_init_disas_context, .tb_start = hexagon_tr_tb_start, .insn_start = hexagon_tr_insn_start, .translate_insn = hexagon_tr_translate_packet, .tb_stop = hexagon_tr_tb_stop, .disas_log = hexagon_tr_disas_log, }; void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns, target_ulong pc, void *host_pc) { DisasContext ctx; translator_loop(cs, tb, max_insns, pc, host_pc, &hexagon_tr_ops, &ctx.base); } #define NAME_LEN 64 static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN]; static char store_addr_names[STORES_MAX][NAME_LEN]; static char store_width_names[STORES_MAX][NAME_LEN]; static char store_val32_names[STORES_MAX][NAME_LEN]; static char store_val64_names[STORES_MAX][NAME_LEN]; static char vstore_addr_names[VSTORES_MAX][NAME_LEN]; static char vstore_size_names[VSTORES_MAX][NAME_LEN]; static char vstore_pending_names[VSTORES_MAX][NAME_LEN]; void hexagon_translate_init(void) { int i; opcode_init(); for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) { hex_gpr[i] = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, gpr[i]), hexagon_regnames[i]); if (HEX_DEBUG) { snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s", hexagon_regnames[i]); hex_reg_written[i] = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, reg_written[i]), reg_written_names[i]); } } hex_new_value_usr = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, new_value_usr), "new_value_usr"); for (i = 0; i < NUM_PREGS; i++) { hex_pred[i] = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, pred[i]), hexagon_prednames[i]); } hex_slot_cancelled = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled"); hex_llsc_addr = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, llsc_addr), "llsc_addr"); hex_llsc_val = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, llsc_val), "llsc_val"); hex_llsc_val_i64 = tcg_global_mem_new_i64(tcg_env, offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64"); for (i = 0; i < STORES_MAX; i++) { snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i); hex_store_addr[i] = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, mem_log_stores[i].va), store_addr_names[i]); snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i); hex_store_width[i] = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, mem_log_stores[i].width), store_width_names[i]); snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i); hex_store_val32[i] = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, mem_log_stores[i].data32), store_val32_names[i]); snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i); hex_store_val64[i] = tcg_global_mem_new_i64(tcg_env, offsetof(CPUHexagonState, mem_log_stores[i].data64), store_val64_names[i]); } for (int i = 0; i < VSTORES_MAX; i++) { snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i); hex_vstore_addr[i] = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, vstore[i].va), vstore_addr_names[i]); snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i); hex_vstore_size[i] = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, vstore[i].size), vstore_size_names[i]); snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i); hex_vstore_pending[i] = tcg_global_mem_new(tcg_env, offsetof(CPUHexagonState, vstore_pending[i]), vstore_pending_names[i]); } }