#!/usr/bin/env python3 ## ## Copyright(c) 2022-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sys import re import string import hex_common ## ## Helpers for gen_analyze_func ## def is_predicated(tag): return 'A_CONDEXEC' in hex_common.attribdict[tag] def analyze_opn_old(f, tag, regtype, regid, regno): regN = "%s%sN" % (regtype, regid) predicated = "true" if is_predicated(tag) else "false" if (regtype == "R"): if (regid in {"ss", "tt"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"dd", "ee", "xx", "yy"}): f.write(" const int %s = insn->regno[%d];\n" % (regN, regno)) f.write(" ctx_log_reg_write_pair(ctx, %s, %s);\n" % \ (regN, predicated)) elif (regid in {"s", "t", "u", "v"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"d", "e", "x", "y"}): f.write(" const int %s = insn->regno[%d];\n" % (regN, regno)) f.write(" ctx_log_reg_write(ctx, %s, %s);\n" % \ (regN, predicated)) else: print("Bad register parse: ", regtype, regid) elif (regtype == "P"): if (regid in {"s", "t", "u", "v"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"d", "e", "x"}): f.write(" const int %s = insn->regno[%d];\n" % (regN, regno)) f.write(" ctx_log_pred_write(ctx, %s);\n" % (regN)) else: print("Bad register parse: ", regtype, regid) elif (regtype == "C"): if (regid == "ss"): f.write("// const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \ (regN, regno)) elif (regid == "dd"): f.write(" const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \ (regN, regno)) f.write(" ctx_log_reg_write_pair(ctx, %s, %s);\n" % \ (regN, predicated)) elif (regid == "s"): f.write("// const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \ (regN, regno)) elif (regid == "d"): f.write(" const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \ (regN, regno)) f.write(" ctx_log_reg_write(ctx, %s, %s);\n" % \ (regN, predicated)) else: print("Bad register parse: ", regtype, regid) elif (regtype == "M"): if (regid == "u"): f.write("// const int %s = insn->regno[%d];\n"% \ (regN, regno)) else: print("Bad register parse: ", regtype, regid) elif (regtype == "V"): newv = "EXT_DFL" if (hex_common.is_new_result(tag)): newv = "EXT_NEW" elif (hex_common.is_tmp_result(tag)): newv = "EXT_TMP" if (regid in {"dd", "xx"}): f.write(" const int %s = insn->regno[%d];\n" %\ (regN, regno)) f.write(" ctx_log_vreg_write_pair(ctx, %s, %s, %s);\n" % \ (regN, newv, predicated)) elif (regid in {"uu", "vv"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"s", "u", "v", "w"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"d", "x", "y"}): f.write(" const int %s = insn->regno[%d];\n" % \ (regN, regno)) f.write(" ctx_log_vreg_write(ctx, %s, %s, %s);\n" % \ (regN, newv, predicated)) else: print("Bad register parse: ", regtype, regid) elif (regtype == "Q"): if (regid in {"d", "e", "x"}): f.write(" const int %s = insn->regno[%d];\n" % \ (regN, regno)) f.write(" ctx_log_qreg_write(ctx, %s);\n" % (regN)) elif (regid in {"s", "t", "u", "v"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) else: print("Bad register parse: ", regtype, regid) elif (regtype == "G"): if (regid in {"dd"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"d"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"ss"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"s"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) else: print("Bad register parse: ", regtype, regid) elif (regtype == "S"): if (regid in {"dd"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"d"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"ss"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) elif (regid in {"s"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) else: print("Bad register parse: ", regtype, regid) else: print("Bad register parse: ", regtype, regid) def analyze_opn_new(f, tag, regtype, regid, regno): regN = "%s%sN" % (regtype, regid) if (regtype == "N"): if (regid in {"s", "t"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) else: print("Bad register parse: ", regtype, regid) elif (regtype == "P"): if (regid in {"t", "u", "v"}): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) else: print("Bad register parse: ", regtype, regid) elif (regtype == "O"): if (regid == "s"): f.write("// const int %s = insn->regno[%d];\n" % \ (regN, regno)) else: print("Bad register parse: ", regtype, regid) else: print("Bad register parse: ", regtype, regid) def analyze_opn(f, tag, regtype, regid, toss, numregs, i): if (hex_common.is_pair(regid)): analyze_opn_old(f, tag, regtype, regid, i) elif (hex_common.is_single(regid)): if hex_common.is_old_val(regtype, regid, tag): analyze_opn_old(f,tag, regtype, regid, i) elif hex_common.is_new_val(regtype, regid, tag): analyze_opn_new(f, tag, regtype, regid, i) else: print("Bad register parse: ", regtype, regid, toss, numregs) else: print("Bad register parse: ", regtype, regid, toss, numregs) ## ## Generate the code to analyze the instruction ## For A2_add: Rd32=add(Rs32,Rt32), { RdV=RsV+RtV;} ## We produce: ## static void analyze_A2_add(DisasContext *ctx) ## { ## Insn *insn G_GNUC_UNUSED = ctx->insn; ## const int RdN = insn->regno[0]; ## ctx_log_reg_write(ctx, RdN, false); ## // const int RsN = insn->regno[1]; ## // const int RtN = insn->regno[2]; ## } ## def gen_analyze_func(f, tag, regs, imms): f.write("static void analyze_%s(DisasContext *ctx)\n" %tag) f.write('{\n') f.write(" Insn *insn G_GNUC_UNUSED = ctx->insn;\n") i=0 ## Analyze all the registers for regtype, regid, toss, numregs in regs: analyze_opn(f, tag, regtype, regid, toss, numregs, i) i += 1 has_generated_helper = (not hex_common.skip_qemu_helper(tag) and not hex_common.is_idef_parser_enabled(tag)) if (has_generated_helper and 'A_SCALAR_LOAD' in hex_common.attribdict[tag]): f.write(" ctx->need_pkt_has_store_s1 = true;\n") f.write("}\n\n") def main(): hex_common.read_semantics_file(sys.argv[1]) hex_common.read_attribs_file(sys.argv[2]) hex_common.read_overrides_file(sys.argv[3]) hex_common.read_overrides_file(sys.argv[4]) ## Whether or not idef-parser is enabled is ## determined by the number of arguments to ## this script: ## ## 5 args. -> not enabled, ## 6 args. -> idef-parser enabled. ## ## The 6:th arg. then holds a list of the successfully ## parsed instructions. is_idef_parser_enabled = len(sys.argv) > 6 if is_idef_parser_enabled: hex_common.read_idef_parser_enabled_file(sys.argv[5]) hex_common.calculate_attribs() tagregs = hex_common.get_tagregs() tagimms = hex_common.get_tagimms() with open(sys.argv[-1], 'w') as f: f.write("#ifndef HEXAGON_TCG_FUNCS_H\n") f.write("#define HEXAGON_TCG_FUNCS_H\n\n") for tag in hex_common.tags: gen_analyze_func(f, tag, tagregs[tag], tagimms[tag]) f.write("#endif /* HEXAGON_TCG_FUNCS_H */\n") if __name__ == "__main__": main()