#ifndef TARGET_ARM_TRANSLATE_H #define TARGET_ARM_TRANSLATE_H #include "cpu.h" #include "tcg/tcg-op.h" #include "tcg/tcg-op-gvec.h" #include "exec/exec-all.h" #include "exec/translator.h" #include "exec/helper-gen.h" #include "internals.h" #include "cpu-features.h" /* internal defines */ /* * Save pc_save across a branch, so that we may restore the value from * before the branch at the point the label is emitted. */ typedef struct DisasLabel { TCGLabel *label; target_ulong pc_save; } DisasLabel; typedef struct DisasContext { DisasContextBase base; const ARMISARegisters *isar; /* The address of the current instruction being translated. */ target_ulong pc_curr; /* * For CF_PCREL, the full value of cpu_pc is not known * (although the page offset is known). For convenience, the * translation loop uses the full virtual address that triggered * the translation, from base.pc_start through pc_curr. * For efficiency, we do not update cpu_pc for every instruction. * Instead, pc_save has the value of pc_curr at the time of the * last update to cpu_pc, which allows us to compute the addend * needed to bring cpu_pc current: pc_curr - pc_save. * If cpu_pc now contains the destination of an indirect branch, * pc_save contains -1 to indicate that relative updates are no * longer possible. */ target_ulong pc_save; target_ulong page_start; uint32_t insn; /* Nonzero if this instruction has been conditionally skipped. */ int condjmp; /* The label that will be jumped to when the instruction is skipped. */ DisasLabel condlabel; /* Thumb-2 conditional execution bits. */ int condexec_mask; int condexec_cond; /* M-profile ECI/ICI exception-continuable instruction state */ int eci; /* * trans_ functions for insns which are continuable should set this true * after decode (ie after any UNDEF checks) */ bool eci_handled; int sctlr_b; MemOp be_data; #if !defined(CONFIG_USER_ONLY) int user; #endif ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */ uint8_t tbii; /* TBI1|TBI0 for insns */ uint8_t tbid; /* TBI1|TBI0 for data */ uint8_t tcma; /* TCMA1|TCMA0 for MTE */ bool ns; /* Use non-secure CPREG bank on access */ int fp_excp_el; /* FP exception EL or 0 if enabled */ int sve_excp_el; /* SVE exception EL or 0 if enabled */ int sme_excp_el; /* SME exception EL or 0 if enabled */ int vl; /* current vector length in bytes */ int svl; /* current streaming vector length in bytes */ bool vfp_enabled; /* FP enabled via FPSCR.EN */ int vec_len; int vec_stride; bool v7m_handler_mode; bool v8m_secure; /* true if v8M and we're in Secure mode */ bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */ bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */ bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */ bool v7m_lspact; /* FPCCR.LSPACT set */ /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI * so that top level loop can generate correct syndrome information. */ uint32_t svc_imm; int current_el; GHashTable *cp_regs; uint64_t features; /* CPU features bits */ bool aarch64; bool thumb; bool lse2; /* Because unallocated encodings generate different exception syndrome * information from traps due to FP being disabled, we can't do a single * "is fp access disabled" check at a high level in the decode tree. * To help in catching bugs where the access check was forgotten in some * code path, we set this flag when the access check is done, and assert * that it is set at the point where we actually touch the FP regs. */ bool fp_access_checked; bool sve_access_checked; /* ARMv8 single-step state (this is distinct from the QEMU gdbstub * single-step support). */ bool ss_active; bool pstate_ss; /* True if the insn just emitted was a load-exclusive instruction * (necessary for syndrome information for single step exceptions), * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*. */ bool is_ldex; /* True if AccType_UNPRIV should be used for LDTR et al */ bool unpriv; /* True if v8.3-PAuth is active. */ bool pauth_active; /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */ bool ata[2]; /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */ bool mte_active[2]; /* True with v8.5-BTI and SCTLR_ELx.BT* set. */ bool bt; /* True if any CP15 access is trapped by HSTR_EL2 */ bool hstr_active; /* True if memory operations require alignment */ bool align_mem; /* True if PSTATE.IL is set */ bool pstate_il; /* True if PSTATE.SM is set. */ bool pstate_sm; /* True if PSTATE.ZA is set. */ bool pstate_za; /* True if non-streaming insns should raise an SME Streaming exception. */ bool sme_trap_nonstreaming; /* True if the current instruction is non-streaming. */ bool is_nonstreaming; /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */ bool mve_no_pred; /* True if fine-grained traps are active */ bool fgt_active; /* True if fine-grained trap on SVC is enabled */ bool fgt_svc; /* True if a trap on ERET is enabled (FGT or NV) */ bool trap_eret; /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */ bool naa; /* True if FEAT_NV HCR_EL2.NV is enabled */ bool nv; /* True if NV enabled and HCR_EL2.NV1 is set */ bool nv1; /* True if NV enabled and HCR_EL2.NV2 is set */ bool nv2; /* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */ bool nv2_mem_e20; /* True if NV2 enabled and NV2 RAM accesses are big-endian */ bool nv2_mem_be; /* * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI. * < 0, set by the current instruction. */ int8_t btype; /* A copy of cpu->dcz_blocksize. */ uint8_t dcz_blocksize; /* A copy of cpu->gm_blocksize. */ uint8_t gm_blocksize; /* True if this page is guarded. */ bool guarded_page; /* True if the current insn_start has been updated. */ bool insn_start_updated; /* Bottom two bits of XScale c15_cpar coprocessor access control reg */ int c15_cpar; /* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */ uint32_t nv2_redirect_offset; } DisasContext; typedef struct DisasCompare { TCGCond cond; TCGv_i32 value; } DisasCompare; /* Share the TCG temporaries common between 32 and 64 bit modes. */ extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF; extern TCGv_i64 cpu_exclusive_addr; extern TCGv_i64 cpu_exclusive_val; /* * Constant expanders for the decoders. */ static inline int negate(DisasContext *s, int x) { return -x; } static inline int plus_1(DisasContext *s, int x) { return x + 1; } static inline int plus_2(DisasContext *s, int x) { return x + 2; } static inline int plus_12(DisasContext *s, int x) { return x + 12; } static inline int times_2(DisasContext *s, int x) { return x * 2; } static inline int times_4(DisasContext *s, int x) { return x * 4; } static inline int times_8(DisasContext *s, int x) { return x * 8; } static inline int times_2_plus_1(DisasContext *s, int x) { return x * 2 + 1; } static inline int rsub_64(DisasContext *s, int x) { return 64 - x; } static inline int rsub_32(DisasContext *s, int x) { return 32 - x; } static inline int rsub_16(DisasContext *s, int x) { return 16 - x; } static inline int rsub_8(DisasContext *s, int x) { return 8 - x; } static inline int shl_12(DisasContext *s, int x) { return x << 12; } static inline int xor_2(DisasContext *s, int x) { return x ^ 2; } static inline int neon_3same_fp_size(DisasContext *s, int x) { /* Convert 0==fp32, 1==fp16 into a MO_* value */ return MO_32 - x; } static inline int arm_dc_feature(DisasContext *dc, int feature) { return (dc->features & (1ULL << feature)) != 0; } static inline int get_mem_index(DisasContext *s) { return arm_to_core_mmu_idx(s->mmu_idx); } static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) { /* We don't need to save all of the syndrome so we mask and shift * out unneeded bits to help the sleb128 encoder do a better job. */ syn &= ARM_INSN_START_WORD2_MASK; syn >>= ARM_INSN_START_WORD2_SHIFT; /* Check for multiple updates. */ assert(!s->insn_start_updated); s->insn_start_updated = true; tcg_set_insn_start_param(s->base.insn_start, 2, syn); } static inline int curr_insn_len(DisasContext *s) { return s->base.pc_next - s->pc_curr; } /* is_jmp field values */ #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ /* CPU state was modified dynamically; exit to main loop for interrupts. */ #define DISAS_UPDATE_EXIT DISAS_TARGET_1 /* These instructions trap after executing, so the A32/T32 decoder must * defer them until after the conditional execution state has been updated. * WFI also needs special handling when single-stepping. */ #define DISAS_WFI DISAS_TARGET_2 #define DISAS_SWI DISAS_TARGET_3 /* WFE */ #define DISAS_WFE DISAS_TARGET_4 #define DISAS_HVC DISAS_TARGET_5 #define DISAS_SMC DISAS_TARGET_6 #define DISAS_YIELD DISAS_TARGET_7 /* M profile branch which might be an exception return (and so needs * custom end-of-TB code) */ #define DISAS_BX_EXCRET DISAS_TARGET_8 /* * For instructions which want an immediate exit to the main loop, as opposed * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this * doesn't write the PC on exiting the translation loop so you need to ensure * something (gen_a64_update_pc or runtime helper) has done so before we reach * return from cpu_tb_exec. */ #define DISAS_EXIT DISAS_TARGET_9 /* CPU state was modified dynamically; no need to exit, but do not chain. */ #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10 #ifdef TARGET_AARCH64 void a64_translate_init(void); void gen_a64_update_pc(DisasContext *s, target_long diff); extern const TranslatorOps aarch64_translator_ops; #else static inline void a64_translate_init(void) { } static inline void gen_a64_update_pc(DisasContext *s, target_long diff) { } #endif void arm_test_cc(DisasCompare *cmp, int cc); void arm_jump_cc(DisasCompare *cmp, TCGLabel *label); void arm_gen_test_cc(int cc, TCGLabel *label); MemOp pow2_align(unsigned i); void unallocated_encoding(DisasContext *s); void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, uint32_t syn, uint32_t target_el); void gen_exception_insn(DisasContext *s, target_long pc_diff, int excp, uint32_t syn); /* Return state of Alternate Half-precision flag, caller frees result */ static inline TCGv_i32 get_ahp_flag(void) { TCGv_i32 ret = tcg_temp_new_i32(); tcg_gen_ld_i32(ret, tcg_env, offsetoflow32(CPUARMState, vfp.fpcr)); tcg_gen_extract_i32(ret, ret, 26, 1); return ret; } /* Set bits within PSTATE. */ static inline void set_pstate_bits(uint32_t bits) { TCGv_i32 p = tcg_temp_new_i32(); tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); tcg_gen_ori_i32(p, p, bits); tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); } /* Clear bits within PSTATE. */ static inline void clear_pstate_bits(uint32_t bits) { TCGv_i32 p = tcg_temp_new_i32(); tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); tcg_gen_andi_i32(p, p, ~bits); tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); } /* If the singlestep state is Active-not-pending, advance to Active-pending. */ static inline void gen_ss_advance(DisasContext *s) { if (s->ss_active) { s->pstate_ss = 0; clear_pstate_bits(PSTATE_SS); } } /* Generate an architectural singlestep exception */ static inline void gen_swstep_exception(DisasContext *s, int isv, int ex) { /* Fill in the same_el field of the syndrome in the helper. */ uint32_t syn = syn_swstep(false, isv, ex); gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn)); } /* * Given a VFP floating point constant encoded into an 8 bit immediate in an * instruction, expand it to the actual constant value of the specified * size, as per the VFPExpandImm() pseudocode in the Arm ARM. */ uint64_t vfp_expand_imm(int size, uint8_t imm8); static inline void gen_vfp_absh(TCGv_i32 d, TCGv_i32 s) { tcg_gen_andi_i32(d, s, INT16_MAX); } static inline void gen_vfp_abss(TCGv_i32 d, TCGv_i32 s) { tcg_gen_andi_i32(d, s, INT32_MAX); } static inline void gen_vfp_absd(TCGv_i64 d, TCGv_i64 s) { tcg_gen_andi_i64(d, s, INT64_MAX); } static inline void gen_vfp_negh(TCGv_i32 d, TCGv_i32 s) { tcg_gen_xori_i32(d, s, 1u << 15); } static inline void gen_vfp_negs(TCGv_i32 d, TCGv_i32 s) { tcg_gen_xori_i32(d, s, 1u << 31); } static inline void gen_vfp_negd(TCGv_i64 d, TCGv_i64 s) { tcg_gen_xori_i64(d, s, 1ull << 63); } /* Vector operations shared between ARM and AArch64. */ void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b, MemOp esz); void gen_uqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b, MemOp esz); void gen_sqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b, MemOp esz); void gen_uqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b, MemOp esz); void gen_sqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh); void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh); void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh); void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh); void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); /* * Forward to the isar_feature_* tests given a DisasContext pointer. */ #define dc_isar_feature(name, ctx) \ ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); }) /* Note that the gvec expanders operate on offsets + sizes. */ typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, uint32_t, uint32_t); typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t); typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t); /* Function prototype for gen_ functions for calling Neon helpers */ typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32); typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32); typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr); typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64); typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp); typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift); typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32); typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift); typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); /** * arm_tbflags_from_tb: * @tb: the TranslationBlock * * Extract the flag values from @tb. */ static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb) { return (CPUARMTBFlags){ tb->flags, tb->cs_base }; } /* * Enum for argument to fpstatus_ptr(). */ typedef enum ARMFPStatusFlavour { FPST_FPCR, FPST_FPCR_F16, FPST_STD, FPST_STD_F16, } ARMFPStatusFlavour; /** * fpstatus_ptr: return TCGv_ptr to the specified fp_status field * * We have multiple softfloat float_status fields in the Arm CPU state struct * (see the comment in cpu.h for details). Return a TCGv_ptr which has * been set up to point to the requested field in the CPU state struct. * The options are: * * FPST_FPCR * for non-FP16 operations controlled by the FPCR * FPST_FPCR_F16 * for operations controlled by the FPCR where FPCR.FZ16 is to be used * FPST_STD * for A32/T32 Neon operations using the "standard FPSCR value" * FPST_STD_F16 * as FPST_STD, but where FPCR.FZ16 is to be used */ static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour) { TCGv_ptr statusptr = tcg_temp_new_ptr(); int offset; switch (flavour) { case FPST_FPCR: offset = offsetof(CPUARMState, vfp.fp_status); break; case FPST_FPCR_F16: offset = offsetof(CPUARMState, vfp.fp_status_f16); break; case FPST_STD: offset = offsetof(CPUARMState, vfp.standard_fp_status); break; case FPST_STD_F16: offset = offsetof(CPUARMState, vfp.standard_fp_status_f16); break; default: g_assert_not_reached(); } tcg_gen_addi_ptr(statusptr, tcg_env, offset); return statusptr; } /** * finalize_memop_atom: * @s: DisasContext * @opc: size+sign+align of the memory operation * @atom: atomicity of the memory operation * * Build the complete MemOp for a memory operation, including alignment, * endianness, and atomicity. * * If (op & MO_AMASK) then the operation already contains the required * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally * unaligned operation, e.g. for AccType_NORMAL. * * In the latter case, there are configuration bits that require alignment, * and this is applied here. Note that there is no way to indicate that * no alignment should ever be enforced; this must be handled manually. */ static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom) { if (s->align_mem && !(opc & MO_AMASK)) { opc |= MO_ALIGN; } return opc | atom | s->be_data; } /** * finalize_memop: * @s: DisasContext * @opc: size+sign+align of the memory operation * * Like finalize_memop_atom, but with default atomicity. */ static inline MemOp finalize_memop(DisasContext *s, MemOp opc) { MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN; return finalize_memop_atom(s, opc, atom); } /** * finalize_memop_pair: * @s: DisasContext * @opc: size+sign+align of the memory operation * * Like finalize_memop_atom, but with atomicity for a pair. * C.f. Pseudocode for Mem[], operand ispair. */ static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc) { MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR; return finalize_memop_atom(s, opc, atom); } /** * finalize_memop_asimd: * @s: DisasContext * @opc: size+sign+align of the memory operation * * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD. */ static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc) { /* * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16, * if IsAligned(8), the first case provides separate atomicity for * the pair of 64-bit accesses. If !IsAligned(8), the middle cases * do not apply, and we're left with the final case of no atomicity. * Thus MO_ATOM_IFALIGN_PAIR. * * For other sizes, normal LSE2 rules apply. */ if ((opc & MO_SIZE) == MO_128) { return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR); } return finalize_memop(s, opc); } /** * asimd_imm_const: Expand an encoded SIMD constant value * * Expand a SIMD constant value. This is essentially the pseudocode * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for * VMVN and VBIC (when cmode < 14 && op == 1). * * The combination cmode == 15 op == 1 is a reserved encoding for AArch32; * callers must catch this; we return the 64-bit constant value defined * for AArch64. * * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A; * we produce an immediate constant value of 0 in these cases. */ uint64_t asimd_imm_const(uint32_t imm, int cmode, int op); /* * gen_disas_label: * Create a label and cache a copy of pc_save. */ static inline DisasLabel gen_disas_label(DisasContext *s) { return (DisasLabel){ .label = gen_new_label(), .pc_save = s->pc_save, }; } /* * set_disas_label: * Emit a label and restore the cached copy of pc_save. */ static inline void set_disas_label(DisasContext *s, DisasLabel l) { gen_set_label(l.label); s->pc_save = l.pc_save; } static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key) { TCGv_ptr ret = tcg_temp_new_ptr(); gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key)); return ret; } /* * Set and reset rounding mode around another operation. */ static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst) { TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode)); TCGv_i32 old = tcg_temp_new_i32(); gen_helper_set_rmode(old, new, fpst); return old; } static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst) { gen_helper_set_rmode(old, old, fpst); } /* * Helpers for implementing sets of trans_* functions. * Defer the implementation of NAME to FUNC, with optional extra arguments. */ #define TRANS(NAME, FUNC, ...) \ static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ { return FUNC(s, __VA_ARGS__); } #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \ static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); } #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \ static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ { \ s->is_nonstreaming = true; \ return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \ } #endif /* TARGET_ARM_TRANSLATE_H */