/* * ARM SME Operations * * Copyright (c) 2022 Linaro, Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "internals.h" #include "tcg/tcg-gvec-desc.h" #include "exec/helper-proto.h" #include "exec/cpu_ldst.h" #include "exec/exec-all.h" #include "qemu/int128.h" #include "fpu/softfloat.h" #include "vec_internal.h" #include "sve_ldst_internal.h" void helper_set_svcr(CPUARMState *env, uint32_t val, uint32_t mask) { aarch64_set_svcr(env, val, mask); } void helper_sme_zero(CPUARMState *env, uint32_t imm, uint32_t svl) { uint32_t i; /* * Special case clearing the entire ZA space. * This falls into the CONSTRAINED UNPREDICTABLE zeroing of any * parts of the ZA storage outside of SVL. */ if (imm == 0xff) { memset(env->zarray, 0, sizeof(env->zarray)); return; } /* * Recall that ZAnH.D[m] is spread across ZA[n+8*m], * so each row is discontiguous within ZA[]. */ for (i = 0; i < svl; i++) { if (imm & (1 << (i % 8))) { memset(&env->zarray[i], 0, svl); } } } /* * When considering the ZA storage as an array of elements of * type T, the index within that array of the Nth element of * a vertical slice of a tile can be calculated like this, * regardless of the size of type T. This is because the tiles * are interleaved, so if type T is size N bytes then row 1 of * the tile is N rows away from row 0. The division by N to * convert a byte offset into an array index and the multiplication * by N to convert from vslice-index-within-the-tile to * the index within the ZA storage cancel out. */ #define tile_vslice_index(i) ((i) * sizeof(ARMVectorReg)) /* * When doing byte arithmetic on the ZA storage, the element * byteoff bytes away in a tile vertical slice is always this * many bytes away in the ZA storage, regardless of the * size of the tile element, assuming that byteoff is a multiple * of the element size. Again this is because of the interleaving * of the tiles. For instance if we have 1 byte per element then * each row of the ZA storage has one byte of the vslice data, * and (counting from 0) byte 8 goes in row 8 of the storage * at offset (8 * row-size-in-bytes). * If we have 8 bytes per element then each row of the ZA storage * has 8 bytes of the data, but there are 8 interleaved tiles and * so byte 8 of the data goes into row 1 of the tile, * which is again row 8 of the storage, so the offset is still * (8 * row-size-in-bytes). Similarly for other element sizes. */ #define tile_vslice_offset(byteoff) ((byteoff) * sizeof(ARMVectorReg)) /* * Move Zreg vector to ZArray column. */ #define DO_MOVA_C(NAME, TYPE, H) \ void HELPER(NAME)(void *za, void *vn, void *vg, uint32_t desc) \ { \ int i, oprsz = simd_oprsz(desc); \ for (i = 0; i < oprsz; ) { \ uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ do { \ if (pg & 1) { \ *(TYPE *)(za + tile_vslice_offset(i)) = *(TYPE *)(vn + H(i)); \ } \ i += sizeof(TYPE); \ pg >>= sizeof(TYPE); \ } while (i & 15); \ } \ } DO_MOVA_C(sme_mova_cz_b, uint8_t, H1) DO_MOVA_C(sme_mova_cz_h, uint16_t, H1_2) DO_MOVA_C(sme_mova_cz_s, uint32_t, H1_4) void HELPER(sme_mova_cz_d)(void *za, void *vn, void *vg, uint32_t desc) { int i, oprsz = simd_oprsz(desc) / 8; uint8_t *pg = vg; uint64_t *n = vn; uint64_t *a = za; for (i = 0; i < oprsz; i++) { if (pg[H1(i)] & 1) { a[tile_vslice_index(i)] = n[i]; } } } void HELPER(sme_mova_cz_q)(void *za, void *vn, void *vg, uint32_t desc) { int i, oprsz = simd_oprsz(desc) / 16; uint16_t *pg = vg; Int128 *n = vn; Int128 *a = za; /* * Int128 is used here simply to copy 16 bytes, and to simplify * the address arithmetic. */ for (i = 0; i < oprsz; i++) { if (pg[H2(i)] & 1) { a[tile_vslice_index(i)] = n[i]; } } } #undef DO_MOVA_C /* * Move ZArray column to Zreg vector. */ #define DO_MOVA_Z(NAME, TYPE, H) \ void HELPER(NAME)(void *vd, void *za, void *vg, uint32_t desc) \ { \ int i, oprsz = simd_oprsz(desc); \ for (i = 0; i < oprsz; ) { \ uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ do { \ if (pg & 1) { \ *(TYPE *)(vd + H(i)) = *(TYPE *)(za + tile_vslice_offset(i)); \ } \ i += sizeof(TYPE); \ pg >>= sizeof(TYPE); \ } while (i & 15); \ } \ } DO_MOVA_Z(sme_mova_zc_b, uint8_t, H1) DO_MOVA_Z(sme_mova_zc_h, uint16_t, H1_2) DO_MOVA_Z(sme_mova_zc_s, uint32_t, H1_4) void HELPER(sme_mova_zc_d)(void *vd, void *za, void *vg, uint32_t desc) { int i, oprsz = simd_oprsz(desc) / 8; uint8_t *pg = vg; uint64_t *d = vd; uint64_t *a = za; for (i = 0; i < oprsz; i++) { if (pg[H1(i)] & 1) { d[i] = a[tile_vslice_index(i)]; } } } void HELPER(sme_mova_zc_q)(void *vd, void *za, void *vg, uint32_t desc) { int i, oprsz = simd_oprsz(desc) / 16; uint16_t *pg = vg; Int128 *d = vd; Int128 *a = za; /* * Int128 is used here simply to copy 16 bytes, and to simplify * the address arithmetic. */ for (i = 0; i < oprsz; i++, za += sizeof(ARMVectorReg)) { if (pg[H2(i)] & 1) { d[i] = a[tile_vslice_index(i)]; } } } #undef DO_MOVA_Z /* * Clear elements in a tile slice comprising len bytes. */ typedef void ClearFn(void *ptr, size_t off, size_t len); static void clear_horizontal(void *ptr, size_t off, size_t len) { memset(ptr + off, 0, len); } static void clear_vertical_b(void *vptr, size_t off, size_t len) { for (size_t i = 0; i < len; ++i) { *(uint8_t *)(vptr + tile_vslice_offset(i + off)) = 0; } } static void clear_vertical_h(void *vptr, size_t off, size_t len) { for (size_t i = 0; i < len; i += 2) { *(uint16_t *)(vptr + tile_vslice_offset(i + off)) = 0; } } static void clear_vertical_s(void *vptr, size_t off, size_t len) { for (size_t i = 0; i < len; i += 4) { *(uint32_t *)(vptr + tile_vslice_offset(i + off)) = 0; } } static void clear_vertical_d(void *vptr, size_t off, size_t len) { for (size_t i = 0; i < len; i += 8) { *(uint64_t *)(vptr + tile_vslice_offset(i + off)) = 0; } } static void clear_vertical_q(void *vptr, size_t off, size_t len) { for (size_t i = 0; i < len; i += 16) { memset(vptr + tile_vslice_offset(i + off), 0, 16); } } /* * Copy elements from an array into a tile slice comprising len bytes. */ typedef void CopyFn(void *dst, const void *src, size_t len); static void copy_horizontal(void *dst, const void *src, size_t len) { memcpy(dst, src, len); } static void copy_vertical_b(void *vdst, const void *vsrc, size_t len) { const uint8_t *src = vsrc; uint8_t *dst = vdst; size_t i; for (i = 0; i < len; ++i) { dst[tile_vslice_index(i)] = src[i]; } } static void copy_vertical_h(void *vdst, const void *vsrc, size_t len) { const uint16_t *src = vsrc; uint16_t *dst = vdst; size_t i; for (i = 0; i < len / 2; ++i) { dst[tile_vslice_index(i)] = src[i]; } } static void copy_vertical_s(void *vdst, const void *vsrc, size_t len) { const uint32_t *src = vsrc; uint32_t *dst = vdst; size_t i; for (i = 0; i < len / 4; ++i) { dst[tile_vslice_index(i)] = src[i]; } } static void copy_vertical_d(void *vdst, const void *vsrc, size_t len) { const uint64_t *src = vsrc; uint64_t *dst = vdst; size_t i; for (i = 0; i < len / 8; ++i) { dst[tile_vslice_index(i)] = src[i]; } } static void copy_vertical_q(void *vdst, const void *vsrc, size_t len) { for (size_t i = 0; i < len; i += 16) { memcpy(vdst + tile_vslice_offset(i), vsrc + i, 16); } } /* * Host and TLB primitives for vertical tile slice addressing. */ #define DO_LD(NAME, TYPE, HOST, TLB) \ static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host) \ { \ TYPE val = HOST(host); \ *(TYPE *)(za + tile_vslice_offset(off)) = val; \ } \ static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \ intptr_t off, target_ulong addr, uintptr_t ra) \ { \ TYPE val = TLB(env, useronly_clean_ptr(addr), ra); \ *(TYPE *)(za + tile_vslice_offset(off)) = val; \ } #define DO_ST(NAME, TYPE, HOST, TLB) \ static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host) \ { \ TYPE val = *(TYPE *)(za + tile_vslice_offset(off)); \ HOST(host, val); \ } \ static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \ intptr_t off, target_ulong addr, uintptr_t ra) \ { \ TYPE val = *(TYPE *)(za + tile_vslice_offset(off)); \ TLB(env, useronly_clean_ptr(addr), val, ra); \ } /* * The ARMVectorReg elements are stored in host-endian 64-bit units. * For 128-bit quantities, the sequence defined by the Elem[] pseudocode * corresponds to storing the two 64-bit pieces in little-endian order. */ #define DO_LDQ(HNAME, VNAME, BE, HOST, TLB) \ static inline void HNAME##_host(void *za, intptr_t off, void *host) \ { \ uint64_t val0 = HOST(host), val1 = HOST(host + 8); \ uint64_t *ptr = za + off; \ ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1; \ } \ static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \ { \ HNAME##_host(za, tile_vslice_offset(off), host); \ } \ static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off, \ target_ulong addr, uintptr_t ra) \ { \ uint64_t val0 = TLB(env, useronly_clean_ptr(addr), ra); \ uint64_t val1 = TLB(env, useronly_clean_ptr(addr + 8), ra); \ uint64_t *ptr = za + off; \ ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1; \ } \ static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \ target_ulong addr, uintptr_t ra) \ { \ HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \ } #define DO_STQ(HNAME, VNAME, BE, HOST, TLB) \ static inline void HNAME##_host(void *za, intptr_t off, void *host) \ { \ uint64_t *ptr = za + off; \ HOST(host, ptr[BE]); \ HOST(host + 8, ptr[!BE]); \ } \ static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \ { \ HNAME##_host(za, tile_vslice_offset(off), host); \ } \ static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off, \ target_ulong addr, uintptr_t ra) \ { \ uint64_t *ptr = za + off; \ TLB(env, useronly_clean_ptr(addr), ptr[BE], ra); \ TLB(env, useronly_clean_ptr(addr + 8), ptr[!BE], ra); \ } \ static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \ target_ulong addr, uintptr_t ra) \ { \ HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \ } DO_LD(ld1b, uint8_t, ldub_p, cpu_ldub_data_ra) DO_LD(ld1h_be, uint16_t, lduw_be_p, cpu_lduw_be_data_ra) DO_LD(ld1h_le, uint16_t, lduw_le_p, cpu_lduw_le_data_ra) DO_LD(ld1s_be, uint32_t, ldl_be_p, cpu_ldl_be_data_ra) DO_LD(ld1s_le, uint32_t, ldl_le_p, cpu_ldl_le_data_ra) DO_LD(ld1d_be, uint64_t, ldq_be_p, cpu_ldq_be_data_ra) DO_LD(ld1d_le, uint64_t, ldq_le_p, cpu_ldq_le_data_ra) DO_LDQ(sve_ld1qq_be, sme_ld1q_be, 1, ldq_be_p, cpu_ldq_be_data_ra) DO_LDQ(sve_ld1qq_le, sme_ld1q_le, 0, ldq_le_p, cpu_ldq_le_data_ra) DO_ST(st1b, uint8_t, stb_p, cpu_stb_data_ra) DO_ST(st1h_be, uint16_t, stw_be_p, cpu_stw_be_data_ra) DO_ST(st1h_le, uint16_t, stw_le_p, cpu_stw_le_data_ra) DO_ST(st1s_be, uint32_t, stl_be_p, cpu_stl_be_data_ra) DO_ST(st1s_le, uint32_t, stl_le_p, cpu_stl_le_data_ra) DO_ST(st1d_be, uint64_t, stq_be_p, cpu_stq_be_data_ra) DO_ST(st1d_le, uint64_t, stq_le_p, cpu_stq_le_data_ra) DO_STQ(sve_st1qq_be, sme_st1q_be, 1, stq_be_p, cpu_stq_be_data_ra) DO_STQ(sve_st1qq_le, sme_st1q_le, 0, stq_le_p, cpu_stq_le_data_ra) #undef DO_LD #undef DO_ST #undef DO_LDQ #undef DO_STQ /* * Common helper for all contiguous predicated loads. */ static inline QEMU_ALWAYS_INLINE void sme_ld1(CPUARMState *env, void *za, uint64_t *vg, const target_ulong addr, uint32_t desc, const uintptr_t ra, const int esz, uint32_t mtedesc, bool vertical, sve_ldst1_host_fn *host_fn, sve_ldst1_tlb_fn *tlb_fn, ClearFn *clr_fn, CopyFn *cpy_fn) { const intptr_t reg_max = simd_oprsz(desc); const intptr_t esize = 1 << esz; intptr_t reg_off, reg_last; SVEContLdSt info; void *host; int flags; /* Find the active elements. */ if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) { /* The entire predicate was false; no load occurs. */ clr_fn(za, 0, reg_max); return; } /* Probe the page(s). Exit with exception for any invalid page. */ sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, ra); /* Handle watchpoints for all active elements. */ sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize, BP_MEM_READ, ra); /* * Handle mte checks for all active elements. * Since TBI must be set for MTE, !mtedesc => !mte_active. */ if (mtedesc) { sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize, mtedesc, ra); } flags = info.page[0].flags | info.page[1].flags; if (unlikely(flags != 0)) { #ifdef CONFIG_USER_ONLY g_assert_not_reached(); #else /* * At least one page includes MMIO. * Any bus operation can fail with cpu_transaction_failed, * which for ARM will raise SyncExternal. Perform the load * into scratch memory to preserve register state until the end. */ ARMVectorReg scratch = { }; reg_off = info.reg_off_first[0]; reg_last = info.reg_off_last[1]; if (reg_last < 0) { reg_last = info.reg_off_split; if (reg_last < 0) { reg_last = info.reg_off_last[0]; } } do { uint64_t pg = vg[reg_off >> 6]; do { if ((pg >> (reg_off & 63)) & 1) { tlb_fn(env, &scratch, reg_off, addr + reg_off, ra); } reg_off += esize; } while (reg_off & 63); } while (reg_off <= reg_last); cpy_fn(za, &scratch, reg_max); return; #endif } /* The entire operation is in RAM, on valid pages. */ reg_off = info.reg_off_first[0]; reg_last = info.reg_off_last[0]; host = info.page[0].host; if (!vertical) { memset(za, 0, reg_max); } else if (reg_off) { clr_fn(za, 0, reg_off); } set_helper_retaddr(ra); while (reg_off <= reg_last) { uint64_t pg = vg[reg_off >> 6]; do { if ((pg >> (reg_off & 63)) & 1) { host_fn(za, reg_off, host + reg_off); } else if (vertical) { clr_fn(za, reg_off, esize); } reg_off += esize; } while (reg_off <= reg_last && (reg_off & 63)); } clear_helper_retaddr(); /* * Use the slow path to manage the cross-page misalignment. * But we know this is RAM and cannot trap. */ reg_off = info.reg_off_split; if (unlikely(reg_off >= 0)) { tlb_fn(env, za, reg_off, addr + reg_off, ra); } reg_off = info.reg_off_first[1]; if (unlikely(reg_off >= 0)) { reg_last = info.reg_off_last[1]; host = info.page[1].host; set_helper_retaddr(ra); do { uint64_t pg = vg[reg_off >> 6]; do { if ((pg >> (reg_off & 63)) & 1) { host_fn(za, reg_off, host + reg_off); } else if (vertical) { clr_fn(za, reg_off, esize); } reg_off += esize; } while (reg_off & 63); } while (reg_off <= reg_last); clear_helper_retaddr(); } } static inline QEMU_ALWAYS_INLINE void sme_ld1_mte(CPUARMState *env, void *za, uint64_t *vg, target_ulong addr, uint32_t desc, uintptr_t ra, const int esz, bool vertical, sve_ldst1_host_fn *host_fn, sve_ldst1_tlb_fn *tlb_fn, ClearFn *clr_fn, CopyFn *cpy_fn) { uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); int bit55 = extract64(addr, 55, 1); /* Remove mtedesc from the normal sve descriptor. */ desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); /* Perform gross MTE suppression early. */ if (!tbi_check(mtedesc, bit55) || tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { mtedesc = 0; } sme_ld1(env, za, vg, addr, desc, ra, esz, mtedesc, vertical, host_fn, tlb_fn, clr_fn, cpy_fn); } #define DO_LD(L, END, ESZ) \ void HELPER(sme_ld1##L##END##_h)(CPUARMState *env, void *za, void *vg, \ target_ulong addr, uint32_t desc) \ { \ sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \ sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \ clear_horizontal, copy_horizontal); \ } \ void HELPER(sme_ld1##L##END##_v)(CPUARMState *env, void *za, void *vg, \ target_ulong addr, uint32_t desc) \ { \ sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \ sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \ clear_vertical_##L, copy_vertical_##L); \ } \ void HELPER(sme_ld1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \ target_ulong addr, uint32_t desc) \ { \ sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \ sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \ clear_horizontal, copy_horizontal); \ } \ void HELPER(sme_ld1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \ target_ulong addr, uint32_t desc) \ { \ sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \ sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \ clear_vertical_##L, copy_vertical_##L); \ } DO_LD(b, , MO_8) DO_LD(h, _be, MO_16) DO_LD(h, _le, MO_16) DO_LD(s, _be, MO_32) DO_LD(s, _le, MO_32) DO_LD(d, _be, MO_64) DO_LD(d, _le, MO_64) DO_LD(q, _be, MO_128) DO_LD(q, _le, MO_128) #undef DO_LD /* * Common helper for all contiguous predicated stores. */ static inline QEMU_ALWAYS_INLINE void sme_st1(CPUARMState *env, void *za, uint64_t *vg, const target_ulong addr, uint32_t desc, const uintptr_t ra, const int esz, uint32_t mtedesc, bool vertical, sve_ldst1_host_fn *host_fn, sve_ldst1_tlb_fn *tlb_fn) { const intptr_t reg_max = simd_oprsz(desc); const intptr_t esize = 1 << esz; intptr_t reg_off, reg_last; SVEContLdSt info; void *host; int flags; /* Find the active elements. */ if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) { /* The entire predicate was false; no store occurs. */ return; } /* Probe the page(s). Exit with exception for any invalid page. */ sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, ra); /* Handle watchpoints for all active elements. */ sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize, BP_MEM_WRITE, ra); /* * Handle mte checks for all active elements. * Since TBI must be set for MTE, !mtedesc => !mte_active. */ if (mtedesc) { sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize, mtedesc, ra); } flags = info.page[0].flags | info.page[1].flags; if (unlikely(flags != 0)) { #ifdef CONFIG_USER_ONLY g_assert_not_reached(); #else /* * At least one page includes MMIO. * Any bus operation can fail with cpu_transaction_failed, * which for ARM will raise SyncExternal. We cannot avoid * this fault and will leave with the store incomplete. */ reg_off = info.reg_off_first[0]; reg_last = info.reg_off_last[1]; if (reg_last < 0) { reg_last = info.reg_off_split; if (reg_last < 0) { reg_last = info.reg_off_last[0]; } } do { uint64_t pg = vg[reg_off >> 6]; do { if ((pg >> (reg_off & 63)) & 1) { tlb_fn(env, za, reg_off, addr + reg_off, ra); } reg_off += esize; } while (reg_off & 63); } while (reg_off <= reg_last); return; #endif } reg_off = info.reg_off_first[0]; reg_last = info.reg_off_last[0]; host = info.page[0].host; set_helper_retaddr(ra); while (reg_off <= reg_last) { uint64_t pg = vg[reg_off >> 6]; do { if ((pg >> (reg_off & 63)) & 1) { host_fn(za, reg_off, host + reg_off); } reg_off += 1 << esz; } while (reg_off <= reg_last && (reg_off & 63)); } clear_helper_retaddr(); /* * Use the slow path to manage the cross-page misalignment. * But we know this is RAM and cannot trap. */ reg_off = info.reg_off_split; if (unlikely(reg_off >= 0)) { tlb_fn(env, za, reg_off, addr + reg_off, ra); } reg_off = info.reg_off_first[1]; if (unlikely(reg_off >= 0)) { reg_last = info.reg_off_last[1]; host = info.page[1].host; set_helper_retaddr(ra); do { uint64_t pg = vg[reg_off >> 6]; do { if ((pg >> (reg_off & 63)) & 1) { host_fn(za, reg_off, host + reg_off); } reg_off += 1 << esz; } while (reg_off & 63); } while (reg_off <= reg_last); clear_helper_retaddr(); } } static inline QEMU_ALWAYS_INLINE void sme_st1_mte(CPUARMState *env, void *za, uint64_t *vg, target_ulong addr, uint32_t desc, uintptr_t ra, int esz, bool vertical, sve_ldst1_host_fn *host_fn, sve_ldst1_tlb_fn *tlb_fn) { uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); int bit55 = extract64(addr, 55, 1); /* Remove mtedesc from the normal sve descriptor. */ desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); /* Perform gross MTE suppression early. */ if (!tbi_check(mtedesc, bit55) || tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { mtedesc = 0; } sme_st1(env, za, vg, addr, desc, ra, esz, mtedesc, vertical, host_fn, tlb_fn); } #define DO_ST(L, END, ESZ) \ void HELPER(sme_st1##L##END##_h)(CPUARMState *env, void *za, void *vg, \ target_ulong addr, uint32_t desc) \ { \ sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \ sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \ } \ void HELPER(sme_st1##L##END##_v)(CPUARMState *env, void *za, void *vg, \ target_ulong addr, uint32_t desc) \ { \ sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \ sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \ } \ void HELPER(sme_st1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \ target_ulong addr, uint32_t desc) \ { \ sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \ sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \ } \ void HELPER(sme_st1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \ target_ulong addr, uint32_t desc) \ { \ sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \ sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \ } DO_ST(b, , MO_8) DO_ST(h, _be, MO_16) DO_ST(h, _le, MO_16) DO_ST(s, _be, MO_32) DO_ST(s, _le, MO_32) DO_ST(d, _be, MO_64) DO_ST(d, _le, MO_64) DO_ST(q, _be, MO_128) DO_ST(q, _le, MO_128) #undef DO_ST void HELPER(sme_addha_s)(void *vzda, void *vzn, void *vpn, void *vpm, uint32_t desc) { intptr_t row, col, oprsz = simd_oprsz(desc) / 4; uint64_t *pn = vpn, *pm = vpm; uint32_t *zda = vzda, *zn = vzn; for (row = 0; row < oprsz; ) { uint64_t pa = pn[row >> 4]; do { if (pa & 1) { for (col = 0; col < oprsz; ) { uint64_t pb = pm[col >> 4]; do { if (pb & 1) { zda[tile_vslice_index(row) + H4(col)] += zn[H4(col)]; } pb >>= 4; } while (++col & 15); } } pa >>= 4; } while (++row & 15); } } void HELPER(sme_addha_d)(void *vzda, void *vzn, void *vpn, void *vpm, uint32_t desc) { intptr_t row, col, oprsz = simd_oprsz(desc) / 8; uint8_t *pn = vpn, *pm = vpm; uint64_t *zda = vzda, *zn = vzn; for (row = 0; row < oprsz; ++row) { if (pn[H1(row)] & 1) { for (col = 0; col < oprsz; ++col) { if (pm[H1(col)] & 1) { zda[tile_vslice_index(row) + col] += zn[col]; } } } } } void HELPER(sme_addva_s)(void *vzda, void *vzn, void *vpn, void *vpm, uint32_t desc) { intptr_t row, col, oprsz = simd_oprsz(desc) / 4; uint64_t *pn = vpn, *pm = vpm; uint32_t *zda = vzda, *zn = vzn; for (row = 0; row < oprsz; ) { uint64_t pa = pn[row >> 4]; do { if (pa & 1) { uint32_t zn_row = zn[H4(row)]; for (col = 0; col < oprsz; ) { uint64_t pb = pm[col >> 4]; do { if (pb & 1) { zda[tile_vslice_index(row) + H4(col)] += zn_row; } pb >>= 4; } while (++col & 15); } } pa >>= 4; } while (++row & 15); } } void HELPER(sme_addva_d)(void *vzda, void *vzn, void *vpn, void *vpm, uint32_t desc) { intptr_t row, col, oprsz = simd_oprsz(desc) / 8; uint8_t *pn = vpn, *pm = vpm; uint64_t *zda = vzda, *zn = vzn; for (row = 0; row < oprsz; ++row) { if (pn[H1(row)] & 1) { uint64_t zn_row = zn[row]; for (col = 0; col < oprsz; ++col) { if (pm[H1(col)] & 1) { zda[tile_vslice_index(row) + col] += zn_row; } } } } } void HELPER(sme_fmopa_s)(void *vza, void *vzn, void *vzm, void *vpn, void *vpm, void *vst, uint32_t desc) { intptr_t row, col, oprsz = simd_maxsz(desc); uint32_t neg = simd_data(desc) << 31; uint16_t *pn = vpn, *pm = vpm; float_status fpst; /* * Make a copy of float_status because this operation does not * update the cumulative fp exception status. It also produces * default nans. */ fpst = *(float_status *)vst; set_default_nan_mode(true, &fpst); for (row = 0; row < oprsz; ) { uint16_t pa = pn[H2(row >> 4)]; do { if (pa & 1) { void *vza_row = vza + tile_vslice_offset(row); uint32_t n = *(uint32_t *)(vzn + H1_4(row)) ^ neg; for (col = 0; col < oprsz; ) { uint16_t pb = pm[H2(col >> 4)]; do { if (pb & 1) { uint32_t *a = vza_row + H1_4(col); uint32_t *m = vzm + H1_4(col); *a = float32_muladd(n, *m, *a, 0, &fpst); } col += 4; pb >>= 4; } while (col & 15); } } row += 4; pa >>= 4; } while (row & 15); } } void HELPER(sme_fmopa_d)(void *vza, void *vzn, void *vzm, void *vpn, void *vpm, void *vst, uint32_t desc) { intptr_t row, col, oprsz = simd_oprsz(desc) / 8; uint64_t neg = (uint64_t)simd_data(desc) << 63; uint64_t *za = vza, *zn = vzn, *zm = vzm; uint8_t *pn = vpn, *pm = vpm; float_status fpst = *(float_status *)vst; set_default_nan_mode(true, &fpst); for (row = 0; row < oprsz; ++row) { if (pn[H1(row)] & 1) { uint64_t *za_row = &za[tile_vslice_index(row)]; uint64_t n = zn[row] ^ neg; for (col = 0; col < oprsz; ++col) { if (pm[H1(col)] & 1) { uint64_t *a = &za_row[col]; *a = float64_muladd(n, zm[col], *a, 0, &fpst); } } } } } /* * Alter PAIR as needed for controlling predicates being false, * and for NEG on an enabled row element. */ static inline uint32_t f16mop_adj_pair(uint32_t pair, uint32_t pg, uint32_t neg) { /* * The pseudocode uses a conditional negate after the conditional zero. * It is simpler here to unconditionally negate before conditional zero. */ pair ^= neg; if (!(pg & 1)) { pair &= 0xffff0000u; } if (!(pg & 4)) { pair &= 0x0000ffffu; } return pair; } static float32 f16_dotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *s_std, float_status *s_odd) { float64 e1r = float16_to_float64(e1 & 0xffff, true, s_std); float64 e1c = float16_to_float64(e1 >> 16, true, s_std); float64 e2r = float16_to_float64(e2 & 0xffff, true, s_std); float64 e2c = float16_to_float64(e2 >> 16, true, s_std); float64 t64; float32 t32; /* * The ARM pseudocode function FPDot performs both multiplies * and the add with a single rounding operation. Emulate this * by performing the first multiply in round-to-odd, then doing * the second multiply as fused multiply-add, and rounding to * float32 all in one step. */ t64 = float64_mul(e1r, e2r, s_odd); t64 = float64r32_muladd(e1c, e2c, t64, 0, s_std); /* This conversion is exact, because we've already rounded. */ t32 = float64_to_float32(t64, s_std); /* The final accumulation step is not fused. */ return float32_add(sum, t32, s_std); } void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn, void *vpm, void *vst, uint32_t desc) { intptr_t row, col, oprsz = simd_maxsz(desc); uint32_t neg = simd_data(desc) * 0x80008000u; uint16_t *pn = vpn, *pm = vpm; float_status fpst_odd, fpst_std; /* * Make a copy of float_status because this operation does not * update the cumulative fp exception status. It also produces * default nans. Make a second copy with round-to-odd -- see above. */ fpst_std = *(float_status *)vst; set_default_nan_mode(true, &fpst_std); fpst_odd = fpst_std; set_float_rounding_mode(float_round_to_odd, &fpst_odd); for (row = 0; row < oprsz; ) { uint16_t prow = pn[H2(row >> 4)]; do { void *vza_row = vza + tile_vslice_offset(row); uint32_t n = *(uint32_t *)(vzn + H1_4(row)); n = f16mop_adj_pair(n, prow, neg); for (col = 0; col < oprsz; ) { uint16_t pcol = pm[H2(col >> 4)]; do { if (prow & pcol & 0b0101) { uint32_t *a = vza_row + H1_4(col); uint32_t m = *(uint32_t *)(vzm + H1_4(col)); m = f16mop_adj_pair(m, pcol, 0); *a = f16_dotadd(*a, n, m, &fpst_std, &fpst_odd); } col += 4; pcol >>= 4; } while (col & 15); } row += 4; prow >>= 4; } while (row & 15); } } void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, void *vpn, void *vpm, uint32_t desc) { intptr_t row, col, oprsz = simd_maxsz(desc); uint32_t neg = simd_data(desc) * 0x80008000u; uint16_t *pn = vpn, *pm = vpm; for (row = 0; row < oprsz; ) { uint16_t prow = pn[H2(row >> 4)]; do { void *vza_row = vza + tile_vslice_offset(row); uint32_t n = *(uint32_t *)(vzn + H1_4(row)); n = f16mop_adj_pair(n, prow, neg); for (col = 0; col < oprsz; ) { uint16_t pcol = pm[H2(col >> 4)]; do { if (prow & pcol & 0b0101) { uint32_t *a = vza_row + H1_4(col); uint32_t m = *(uint32_t *)(vzm + H1_4(col)); m = f16mop_adj_pair(m, pcol, 0); *a = bfdotadd(*a, n, m); } col += 4; pcol >>= 4; } while (col & 15); } row += 4; prow >>= 4; } while (row & 15); } } typedef uint32_t IMOPFn32(uint32_t, uint32_t, uint32_t, uint8_t, bool); static inline void do_imopa_s(uint32_t *za, uint32_t *zn, uint32_t *zm, uint8_t *pn, uint8_t *pm, uint32_t desc, IMOPFn32 *fn) { intptr_t row, col, oprsz = simd_oprsz(desc) / 4; bool neg = simd_data(desc); for (row = 0; row < oprsz; ++row) { uint8_t pa = (pn[H1(row >> 1)] >> ((row & 1) * 4)) & 0xf; uint32_t *za_row = &za[tile_vslice_index(row)]; uint32_t n = zn[H4(row)]; for (col = 0; col < oprsz; ++col) { uint8_t pb = pm[H1(col >> 1)] >> ((col & 1) * 4); uint32_t *a = &za_row[H4(col)]; *a = fn(n, zm[H4(col)], *a, pa & pb, neg); } } } typedef uint64_t IMOPFn64(uint64_t, uint64_t, uint64_t, uint8_t, bool); static inline void do_imopa_d(uint64_t *za, uint64_t *zn, uint64_t *zm, uint8_t *pn, uint8_t *pm, uint32_t desc, IMOPFn64 *fn) { intptr_t row, col, oprsz = simd_oprsz(desc) / 8; bool neg = simd_data(desc); for (row = 0; row < oprsz; ++row) { uint8_t pa = pn[H1(row)]; uint64_t *za_row = &za[tile_vslice_index(row)]; uint64_t n = zn[row]; for (col = 0; col < oprsz; ++col) { uint8_t pb = pm[H1(col)]; uint64_t *a = &za_row[col]; *a = fn(n, zm[col], *a, pa & pb, neg); } } } #define DEF_IMOP_32(NAME, NTYPE, MTYPE) \ static uint32_t NAME(uint32_t n, uint32_t m, uint32_t a, uint8_t p, bool neg) \ { \ uint32_t sum = 0; \ /* Apply P to N as a mask, making the inactive elements 0. */ \ n &= expand_pred_b(p); \ sum += (NTYPE)(n >> 0) * (MTYPE)(m >> 0); \ sum += (NTYPE)(n >> 8) * (MTYPE)(m >> 8); \ sum += (NTYPE)(n >> 16) * (MTYPE)(m >> 16); \ sum += (NTYPE)(n >> 24) * (MTYPE)(m >> 24); \ return neg ? a - sum : a + sum; \ } #define DEF_IMOP_64(NAME, NTYPE, MTYPE) \ static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \ { \ uint64_t sum = 0; \ /* Apply P to N as a mask, making the inactive elements 0. */ \ n &= expand_pred_h(p); \ sum += (NTYPE)(n >> 0) * (MTYPE)(m >> 0); \ sum += (NTYPE)(n >> 16) * (MTYPE)(m >> 16); \ sum += (NTYPE)(n >> 32) * (MTYPE)(m >> 32); \ sum += (NTYPE)(n >> 48) * (MTYPE)(m >> 48); \ return neg ? a - sum : a + sum; \ } DEF_IMOP_32(smopa_s, int8_t, int8_t) DEF_IMOP_32(umopa_s, uint8_t, uint8_t) DEF_IMOP_32(sumopa_s, int8_t, uint8_t) DEF_IMOP_32(usmopa_s, uint8_t, int8_t) DEF_IMOP_64(smopa_d, int16_t, int16_t) DEF_IMOP_64(umopa_d, uint16_t, uint16_t) DEF_IMOP_64(sumopa_d, int16_t, uint16_t) DEF_IMOP_64(usmopa_d, uint16_t, int16_t) #define DEF_IMOPH(NAME, S) \ void HELPER(sme_##NAME##_##S)(void *vza, void *vzn, void *vzm, \ void *vpn, void *vpm, uint32_t desc) \ { do_imopa_##S(vza, vzn, vzm, vpn, vpm, desc, NAME##_##S); } DEF_IMOPH(smopa, s) DEF_IMOPH(umopa, s) DEF_IMOPH(sumopa, s) DEF_IMOPH(usmopa, s) DEF_IMOPH(smopa, d) DEF_IMOPH(umopa, d) DEF_IMOPH(sumopa, d) DEF_IMOPH(usmopa, d)