/* * ARM v8.3-PAuth Operations * * Copyright (c) 2019 Linaro, Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "internals.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "exec/helper-proto.h" #include "tcg/tcg-gvec-desc.h" #include "qemu/xxhash.h" static uint64_t pac_cell_shuffle(uint64_t i) { uint64_t o = 0; o |= extract64(i, 52, 4); o |= extract64(i, 24, 4) << 4; o |= extract64(i, 44, 4) << 8; o |= extract64(i, 0, 4) << 12; o |= extract64(i, 28, 4) << 16; o |= extract64(i, 48, 4) << 20; o |= extract64(i, 4, 4) << 24; o |= extract64(i, 40, 4) << 28; o |= extract64(i, 32, 4) << 32; o |= extract64(i, 12, 4) << 36; o |= extract64(i, 56, 4) << 40; o |= extract64(i, 20, 4) << 44; o |= extract64(i, 8, 4) << 48; o |= extract64(i, 36, 4) << 52; o |= extract64(i, 16, 4) << 56; o |= extract64(i, 60, 4) << 60; return o; } static uint64_t pac_cell_inv_shuffle(uint64_t i) { uint64_t o = 0; o |= extract64(i, 12, 4); o |= extract64(i, 24, 4) << 4; o |= extract64(i, 48, 4) << 8; o |= extract64(i, 36, 4) << 12; o |= extract64(i, 56, 4) << 16; o |= extract64(i, 44, 4) << 20; o |= extract64(i, 4, 4) << 24; o |= extract64(i, 16, 4) << 28; o |= i & MAKE_64BIT_MASK(32, 4); o |= extract64(i, 52, 4) << 36; o |= extract64(i, 28, 4) << 40; o |= extract64(i, 8, 4) << 44; o |= extract64(i, 20, 4) << 48; o |= extract64(i, 0, 4) << 52; o |= extract64(i, 40, 4) << 56; o |= i & MAKE_64BIT_MASK(60, 4); return o; } static uint64_t pac_sub(uint64_t i) { static const uint8_t sub[16] = { 0xb, 0x6, 0x8, 0xf, 0xc, 0x0, 0x9, 0xe, 0x3, 0x7, 0x4, 0x5, 0xd, 0x2, 0x1, 0xa, }; uint64_t o = 0; int b; for (b = 0; b < 64; b += 4) { o |= (uint64_t)sub[(i >> b) & 0xf] << b; } return o; } static uint64_t pac_sub1(uint64_t i) { static const uint8_t sub1[16] = { 0xa, 0xd, 0xe, 0x6, 0xf, 0x7, 0x3, 0x5, 0x9, 0x8, 0x0, 0xc, 0xb, 0x1, 0x2, 0x4, }; uint64_t o = 0; int b; for (b = 0; b < 64; b += 4) { o |= (uint64_t)sub1[(i >> b) & 0xf] << b; } return o; } static uint64_t pac_inv_sub(uint64_t i) { static const uint8_t inv_sub[16] = { 0x5, 0xe, 0xd, 0x8, 0xa, 0xb, 0x1, 0x9, 0x2, 0x6, 0xf, 0x0, 0x4, 0xc, 0x7, 0x3, }; uint64_t o = 0; int b; for (b = 0; b < 64; b += 4) { o |= (uint64_t)inv_sub[(i >> b) & 0xf] << b; } return o; } static int rot_cell(int cell, int n) { /* 4-bit rotate left by n. */ cell |= cell << 4; return extract32(cell, 4 - n, 4); } static uint64_t pac_mult(uint64_t i) { uint64_t o = 0; int b; for (b = 0; b < 4 * 4; b += 4) { int i0, i4, i8, ic, t0, t1, t2, t3; i0 = extract64(i, b, 4); i4 = extract64(i, b + 4 * 4, 4); i8 = extract64(i, b + 8 * 4, 4); ic = extract64(i, b + 12 * 4, 4); t0 = rot_cell(i8, 1) ^ rot_cell(i4, 2) ^ rot_cell(i0, 1); t1 = rot_cell(ic, 1) ^ rot_cell(i4, 1) ^ rot_cell(i0, 2); t2 = rot_cell(ic, 2) ^ rot_cell(i8, 1) ^ rot_cell(i0, 1); t3 = rot_cell(ic, 1) ^ rot_cell(i8, 2) ^ rot_cell(i4, 1); o |= (uint64_t)t3 << b; o |= (uint64_t)t2 << (b + 4 * 4); o |= (uint64_t)t1 << (b + 8 * 4); o |= (uint64_t)t0 << (b + 12 * 4); } return o; } static uint64_t tweak_cell_rot(uint64_t cell) { return (cell >> 1) | (((cell ^ (cell >> 1)) & 1) << 3); } static uint64_t tweak_shuffle(uint64_t i) { uint64_t o = 0; o |= extract64(i, 16, 4) << 0; o |= extract64(i, 20, 4) << 4; o |= tweak_cell_rot(extract64(i, 24, 4)) << 8; o |= extract64(i, 28, 4) << 12; o |= tweak_cell_rot(extract64(i, 44, 4)) << 16; o |= extract64(i, 8, 4) << 20; o |= extract64(i, 12, 4) << 24; o |= tweak_cell_rot(extract64(i, 32, 4)) << 28; o |= extract64(i, 48, 4) << 32; o |= extract64(i, 52, 4) << 36; o |= extract64(i, 56, 4) << 40; o |= tweak_cell_rot(extract64(i, 60, 4)) << 44; o |= tweak_cell_rot(extract64(i, 0, 4)) << 48; o |= extract64(i, 4, 4) << 52; o |= tweak_cell_rot(extract64(i, 40, 4)) << 56; o |= tweak_cell_rot(extract64(i, 36, 4)) << 60; return o; } static uint64_t tweak_cell_inv_rot(uint64_t cell) { return ((cell << 1) & 0xf) | ((cell & 1) ^ (cell >> 3)); } static uint64_t tweak_inv_shuffle(uint64_t i) { uint64_t o = 0; o |= tweak_cell_inv_rot(extract64(i, 48, 4)); o |= extract64(i, 52, 4) << 4; o |= extract64(i, 20, 4) << 8; o |= extract64(i, 24, 4) << 12; o |= extract64(i, 0, 4) << 16; o |= extract64(i, 4, 4) << 20; o |= tweak_cell_inv_rot(extract64(i, 8, 4)) << 24; o |= extract64(i, 12, 4) << 28; o |= tweak_cell_inv_rot(extract64(i, 28, 4)) << 32; o |= tweak_cell_inv_rot(extract64(i, 60, 4)) << 36; o |= tweak_cell_inv_rot(extract64(i, 56, 4)) << 40; o |= tweak_cell_inv_rot(extract64(i, 16, 4)) << 44; o |= extract64(i, 32, 4) << 48; o |= extract64(i, 36, 4) << 52; o |= extract64(i, 40, 4) << 56; o |= tweak_cell_inv_rot(extract64(i, 44, 4)) << 60; return o; } static uint64_t pauth_computepac_architected(uint64_t data, uint64_t modifier, ARMPACKey key, bool isqarma3) { static const uint64_t RC[5] = { 0x0000000000000000ull, 0x13198A2E03707344ull, 0xA4093822299F31D0ull, 0x082EFA98EC4E6C89ull, 0x452821E638D01377ull, }; const uint64_t alpha = 0xC0AC29B7C97C50DDull; int iterations = isqarma3 ? 2 : 4; /* * Note that in the ARM pseudocode, key0 contains bits <127:64> * and key1 contains bits <63:0> of the 128-bit key. */ uint64_t key0 = key.hi, key1 = key.lo; uint64_t workingval, runningmod, roundkey, modk0; int i; modk0 = (key0 << 63) | ((key0 >> 1) ^ (key0 >> 63)); runningmod = modifier; workingval = data ^ key0; for (i = 0; i <= iterations; ++i) { roundkey = key1 ^ runningmod; workingval ^= roundkey; workingval ^= RC[i]; if (i > 0) { workingval = pac_cell_shuffle(workingval); workingval = pac_mult(workingval); } if (isqarma3) { workingval = pac_sub1(workingval); } else { workingval = pac_sub(workingval); } runningmod = tweak_shuffle(runningmod); } roundkey = modk0 ^ runningmod; workingval ^= roundkey; workingval = pac_cell_shuffle(workingval); workingval = pac_mult(workingval); if (isqarma3) { workingval = pac_sub1(workingval); } else { workingval = pac_sub(workingval); } workingval = pac_cell_shuffle(workingval); workingval = pac_mult(workingval); workingval ^= key1; workingval = pac_cell_inv_shuffle(workingval); if (isqarma3) { workingval = pac_sub1(workingval); } else { workingval = pac_inv_sub(workingval); } workingval = pac_mult(workingval); workingval = pac_cell_inv_shuffle(workingval); workingval ^= key0; workingval ^= runningmod; for (i = 0; i <= iterations; ++i) { if (isqarma3) { workingval = pac_sub1(workingval); } else { workingval = pac_inv_sub(workingval); } if (i < iterations) { workingval = pac_mult(workingval); workingval = pac_cell_inv_shuffle(workingval); } runningmod = tweak_inv_shuffle(runningmod); roundkey = key1 ^ runningmod; workingval ^= RC[iterations - i]; workingval ^= roundkey; workingval ^= alpha; } workingval ^= modk0; return workingval; } static uint64_t pauth_computepac_impdef(uint64_t data, uint64_t modifier, ARMPACKey key) { return qemu_xxhash64_4(data, modifier, key.lo, key.hi); } static uint64_t pauth_computepac(CPUARMState *env, uint64_t data, uint64_t modifier, ARMPACKey key) { if (cpu_isar_feature(aa64_pauth_qarma5, env_archcpu(env))) { return pauth_computepac_architected(data, modifier, key, false); } else if (cpu_isar_feature(aa64_pauth_qarma3, env_archcpu(env))) { return pauth_computepac_architected(data, modifier, key, true); } else { return pauth_computepac_impdef(data, modifier, key); } } static uint64_t pauth_addpac(CPUARMState *env, uint64_t ptr, uint64_t modifier, ARMPACKey *key, bool data) { ARMCPU *cpu = env_archcpu(env); ARMMMUIdx mmu_idx = arm_stage1_mmu_idx(env); ARMVAParameters param = aa64_va_parameters(env, ptr, mmu_idx, data, false); ARMPauthFeature pauth_feature = cpu_isar_feature(pauth_feature, cpu); uint64_t pac, ext_ptr, ext, test; int bot_bit, top_bit; /* If tagged pointers are in use, use ptr<55>, otherwise ptr<63>. */ if (param.tbi) { ext = sextract64(ptr, 55, 1); } else { ext = sextract64(ptr, 63, 1); } /* Build a pointer with known good extension bits. */ top_bit = 64 - 8 * param.tbi; bot_bit = 64 - param.tsz; ext_ptr = deposit64(ptr, bot_bit, top_bit - bot_bit, ext); pac = pauth_computepac(env, ext_ptr, modifier, *key); /* * Check if the ptr has good extension bits and corrupt the * pointer authentication code if not. */ test = sextract64(ptr, bot_bit, top_bit - bot_bit); if (test != 0 && test != -1) { if (pauth_feature >= PauthFeat_2) { /* No action required */ } else if (pauth_feature == PauthFeat_EPAC) { pac = 0; } else { /* * Note that our top_bit is one greater than the pseudocode's * version, hence "- 2" here. */ pac ^= MAKE_64BIT_MASK(top_bit - 2, 1); } } /* * Preserve the determination between upper and lower at bit 55, * and insert pointer authentication code. */ if (pauth_feature >= PauthFeat_2) { pac ^= ptr; } if (param.tbi) { ptr &= ~MAKE_64BIT_MASK(bot_bit, 55 - bot_bit + 1); pac &= MAKE_64BIT_MASK(bot_bit, 54 - bot_bit + 1); } else { ptr &= MAKE_64BIT_MASK(0, bot_bit); pac &= ~(MAKE_64BIT_MASK(55, 1) | MAKE_64BIT_MASK(0, bot_bit)); } ext &= MAKE_64BIT_MASK(55, 1); return pac | ext | ptr; } static uint64_t pauth_original_ptr(uint64_t ptr, ARMVAParameters param) { uint64_t mask = pauth_ptr_mask(param); /* Note that bit 55 is used whether or not the regime has 2 ranges. */ if (extract64(ptr, 55, 1)) { return ptr | mask; } else { return ptr & ~mask; } } static uint64_t pauth_auth(CPUARMState *env, uint64_t ptr, uint64_t modifier, ARMPACKey *key, bool data, int keynumber) { ARMCPU *cpu = env_archcpu(env); ARMMMUIdx mmu_idx = arm_stage1_mmu_idx(env); ARMVAParameters param = aa64_va_parameters(env, ptr, mmu_idx, data, false); ARMPauthFeature pauth_feature = cpu_isar_feature(pauth_feature, cpu); int bot_bit, top_bit; uint64_t pac, orig_ptr, cmp_mask; orig_ptr = pauth_original_ptr(ptr, param); pac = pauth_computepac(env, orig_ptr, modifier, *key); bot_bit = 64 - param.tsz; top_bit = 64 - 8 * param.tbi; cmp_mask = MAKE_64BIT_MASK(bot_bit, top_bit - bot_bit); cmp_mask &= ~MAKE_64BIT_MASK(55, 1); if (pauth_feature >= PauthFeat_2) { return ptr ^ (pac & cmp_mask); } if ((pac ^ ptr) & cmp_mask) { int error_code = (keynumber << 1) | (keynumber ^ 1); if (param.tbi) { return deposit64(orig_ptr, 53, 2, error_code); } else { return deposit64(orig_ptr, 61, 2, error_code); } } return orig_ptr; } static uint64_t pauth_strip(CPUARMState *env, uint64_t ptr, bool data) { ARMMMUIdx mmu_idx = arm_stage1_mmu_idx(env); ARMVAParameters param = aa64_va_parameters(env, ptr, mmu_idx, data, false); return pauth_original_ptr(ptr, param); } static G_NORETURN void pauth_trap(CPUARMState *env, int target_el, uintptr_t ra) { raise_exception_ra(env, EXCP_UDEF, syn_pactrap(), target_el, ra); } static void pauth_check_trap(CPUARMState *env, int el, uintptr_t ra) { if (el < 2 && arm_is_el2_enabled(env)) { uint64_t hcr = arm_hcr_el2_eff(env); bool trap = !(hcr & HCR_API); if (el == 0) { /* Trap only applies to EL1&0 regime. */ trap &= (hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE); } /* FIXME: ARMv8.3-NV: HCR_NV trap takes precedence for ERETA[AB]. */ if (trap) { pauth_trap(env, 2, ra); } } if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { if (!(env->cp15.scr_el3 & SCR_API)) { pauth_trap(env, 3, ra); } } } static bool pauth_key_enabled(CPUARMState *env, int el, uint32_t bit) { return (arm_sctlr(env, el) & bit) != 0; } uint64_t HELPER(pacia)(CPUARMState *env, uint64_t x, uint64_t y) { int el = arm_current_el(env); if (!pauth_key_enabled(env, el, SCTLR_EnIA)) { return x; } pauth_check_trap(env, el, GETPC()); return pauth_addpac(env, x, y, &env->keys.apia, false); } uint64_t HELPER(pacib)(CPUARMState *env, uint64_t x, uint64_t y) { int el = arm_current_el(env); if (!pauth_key_enabled(env, el, SCTLR_EnIB)) { return x; } pauth_check_trap(env, el, GETPC()); return pauth_addpac(env, x, y, &env->keys.apib, false); } uint64_t HELPER(pacda)(CPUARMState *env, uint64_t x, uint64_t y) { int el = arm_current_el(env); if (!pauth_key_enabled(env, el, SCTLR_EnDA)) { return x; } pauth_check_trap(env, el, GETPC()); return pauth_addpac(env, x, y, &env->keys.apda, true); } uint64_t HELPER(pacdb)(CPUARMState *env, uint64_t x, uint64_t y) { int el = arm_current_el(env); if (!pauth_key_enabled(env, el, SCTLR_EnDB)) { return x; } pauth_check_trap(env, el, GETPC()); return pauth_addpac(env, x, y, &env->keys.apdb, true); } uint64_t HELPER(pacga)(CPUARMState *env, uint64_t x, uint64_t y) { uint64_t pac; pauth_check_trap(env, arm_current_el(env), GETPC()); pac = pauth_computepac(env, x, y, env->keys.apga); return pac & 0xffffffff00000000ull; } uint64_t HELPER(autia)(CPUARMState *env, uint64_t x, uint64_t y) { int el = arm_current_el(env); if (!pauth_key_enabled(env, el, SCTLR_EnIA)) { return x; } pauth_check_trap(env, el, GETPC()); return pauth_auth(env, x, y, &env->keys.apia, false, 0); } uint64_t HELPER(autib)(CPUARMState *env, uint64_t x, uint64_t y) { int el = arm_current_el(env); if (!pauth_key_enabled(env, el, SCTLR_EnIB)) { return x; } pauth_check_trap(env, el, GETPC()); return pauth_auth(env, x, y, &env->keys.apib, false, 1); } uint64_t HELPER(autda)(CPUARMState *env, uint64_t x, uint64_t y) { int el = arm_current_el(env); if (!pauth_key_enabled(env, el, SCTLR_EnDA)) { return x; } pauth_check_trap(env, el, GETPC()); return pauth_auth(env, x, y, &env->keys.apda, true, 0); } uint64_t HELPER(autdb)(CPUARMState *env, uint64_t x, uint64_t y) { int el = arm_current_el(env); if (!pauth_key_enabled(env, el, SCTLR_EnDB)) { return x; } pauth_check_trap(env, el, GETPC()); return pauth_auth(env, x, y, &env->keys.apdb, true, 1); } uint64_t HELPER(xpaci)(CPUARMState *env, uint64_t a) { return pauth_strip(env, a, false); } uint64_t HELPER(xpacd)(CPUARMState *env, uint64_t a) { return pauth_strip(env, a, true); }