/* * ARM v8.5-MemTag Operations * * Copyright (c) 2020 Linaro, Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "internals.h" #include "exec/exec-all.h" #include "exec/ram_addr.h" #include "exec/cpu_ldst.h" #include "exec/helper-proto.h" #include "hw/core/tcg-cpu-ops.h" #include "qapi/error.h" #include "qemu/guest-random.h" static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) { if (exclude == 0xffff) { return 0; } if (offset == 0) { while (exclude & (1 << tag)) { tag = (tag + 1) & 15; } } else { do { do { tag = (tag + 1) & 15; } while (exclude & (1 << tag)); } while (--offset > 0); } return tag; } /** * allocation_tag_mem: * @env: the cpu environment * @ptr_mmu_idx: the addressing regime to use for the virtual address * @ptr: the virtual address for which to look up tag memory * @ptr_access: the access to use for the virtual address * @ptr_size: the number of bytes in the normal memory access * @tag_access: the access to use for the tag memory * @tag_size: the number of bytes in the tag memory access * @ra: the return address for exception handling * * Our tag memory is formatted as a sequence of little-endian nibbles. * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two * tags, with the tag at [3:0] for the lower addr and the tag at [7:4] * for the higher addr. * * Here, resolve the physical address from the virtual address, and return * a pointer to the corresponding tag byte. Exit with exception if the * virtual address is not accessible for @ptr_access. * * The @ptr_size and @tag_size values may not have an obvious relation * due to the alignment of @ptr, and the number of tag checks required. * * If there is no tag storage corresponding to @ptr, return NULL. */ static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, uint64_t ptr, MMUAccessType ptr_access, int ptr_size, MMUAccessType tag_access, int tag_size, uintptr_t ra) { #ifdef CONFIG_USER_ONLY uint64_t clean_ptr = useronly_clean_ptr(ptr); int flags = page_get_flags(clean_ptr); uint8_t *tags; uintptr_t index; if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, !(flags & PAGE_VALID), ra); } /* Require both MAP_ANON and PROT_MTE for the page. */ if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { return NULL; } tags = page_get_target_data(clean_ptr); index = extract32(ptr, LOG2_TAG_GRANULE + 1, TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); return tags + index; #else CPUTLBEntryFull *full; MemTxAttrs attrs; int in_page, flags; hwaddr ptr_paddr, tag_paddr, xlat; MemoryRegion *mr; ARMASIdx tag_asi; AddressSpace *tag_as; void *host; /* * Probe the first byte of the virtual address. This raises an * exception for inaccessible pages, and resolves the virtual address * into the softmmu tlb. * * When RA == 0, this is for mte_probe. The page is expected to be * valid. Indicate to probe_access_flags no-fault, then assert that * we received a valid page. */ flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, ra == 0, &host, &full, ra); assert(!(flags & TLB_INVALID_MASK)); /* If the virtual page MemAttr != Tagged, access unchecked. */ if (full->pte_attrs != 0xf0) { return NULL; } /* * If not backed by host ram, there is no tag storage: access unchecked. * This is probably a guest os bug though, so log it. */ if (unlikely(flags & TLB_MMIO)) { qemu_log_mask(LOG_GUEST_ERROR, "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " "but is not backed by host ram\n", ptr); return NULL; } /* * Remember these values across the second lookup below, * which may invalidate this pointer via tlb resize. */ ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); attrs = full->attrs; full = NULL; /* * The Normal memory access can extend to the next page. E.g. a single * 8-byte access to the last byte of a page will check only the last * tag on the first page. * Any page access exception has priority over tag check exception. */ in_page = -(ptr | TARGET_PAGE_MASK); if (unlikely(ptr_size > in_page)) { flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, ptr_mmu_idx, ra == 0, &host, &full, ra); assert(!(flags & TLB_INVALID_MASK)); } /* Any debug exception has priority over a tag check exception. */ if (unlikely(flags & TLB_WATCHPOINT)) { int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; assert(ra != 0); cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); } /* Convert to the physical address in tag space. */ tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); /* Look up the address in tag space. */ tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; tag_as = cpu_get_address_space(env_cpu(env), tag_asi); mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, tag_access == MMU_DATA_STORE, attrs); /* * Note that @mr will never be NULL. If there is nothing in the address * space at @tag_paddr, the translation will return the unallocated memory * region. For our purposes, the result must be ram. */ if (unlikely(!memory_region_is_ram(mr))) { /* ??? Failure is a board configuration error. */ qemu_log_mask(LOG_UNIMP, "Tag Memory @ 0x%" HWADDR_PRIx " not found for " "Normal Memory @ 0x%" HWADDR_PRIx "\n", tag_paddr, ptr_paddr); return NULL; } /* * Ensure the tag memory is dirty on write, for migration. * Tag memory can never contain code or display memory (vga). */ if (tag_access == MMU_DATA_STORE) { ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); } return memory_region_get_ram_ptr(mr) + xlat; #endif } uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) { uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); int rrnd = extract32(env->cp15.gcr_el1, 16, 1); int start = extract32(env->cp15.rgsr_el1, 0, 4); int seed = extract32(env->cp15.rgsr_el1, 8, 16); int offset, i, rtag; /* * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the * deterministic algorithm. Except that with RRND==1 the kernel is * not required to have set RGSR_EL1.SEED != 0, which is required for * the deterministic algorithm to function. So we force a non-zero * SEED for that case. */ if (unlikely(seed == 0) && rrnd) { do { Error *err = NULL; uint16_t two; if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { /* * Failed, for unknown reasons in the crypto subsystem. * Best we can do is log the reason and use a constant seed. */ qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", error_get_pretty(err)); error_free(err); two = 1; } seed = two; } while (seed == 0); } /* RandomTag */ for (i = offset = 0; i < 4; ++i) { /* NextRandomTagBit */ int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); seed = (top << 15) | (seed >> 1); offset |= top << i; } rtag = choose_nonexcluded_tag(start, offset, exclude); env->cp15.rgsr_el1 = rtag | (seed << 8); return address_with_allocation_tag(rn, rtag); } uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, int32_t offset, uint32_t tag_offset) { int start_tag = allocation_tag_from_addr(ptr); uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); return address_with_allocation_tag(ptr + offset, rtag); } static int load_tag1(uint64_t ptr, uint8_t *mem) { int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; return extract32(*mem, ofs, 4); } uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) { int mmu_idx = cpu_mmu_index(env, false); uint8_t *mem; int rtag = 0; /* Trap if accessing an invalid page. */ mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, MMU_DATA_LOAD, 1, GETPC()); /* Load if page supports tags. */ if (mem) { rtag = load_tag1(ptr, mem); } return address_with_allocation_tag(xt, rtag); } static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) { if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, cpu_mmu_index(env, false), ra); g_assert_not_reached(); } } /* For use in a non-parallel context, store to the given nibble. */ static void store_tag1(uint64_t ptr, uint8_t *mem, int tag) { int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; *mem = deposit32(*mem, ofs, 4, tag); } /* For use in a parallel context, atomically store to the given nibble. */ static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) { int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; uint8_t old = qatomic_read(mem); while (1) { uint8_t new = deposit32(old, ofs, 4, tag); uint8_t cmp = qatomic_cmpxchg(mem, old, new); if (likely(cmp == old)) { return; } old = cmp; } } typedef void stg_store1(uint64_t, uint8_t *, int); static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, uintptr_t ra, stg_store1 store1) { int mmu_idx = cpu_mmu_index(env, false); uint8_t *mem; check_tag_aligned(env, ptr, ra); /* Trap if accessing an invalid page. */ mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, MMU_DATA_STORE, 1, ra); /* Store if page supports tags. */ if (mem) { store1(ptr, mem, allocation_tag_from_addr(xt)); } } void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) { do_stg(env, ptr, xt, GETPC(), store_tag1); } void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) { do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); } void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) { int mmu_idx = cpu_mmu_index(env, false); uintptr_t ra = GETPC(); check_tag_aligned(env, ptr, ra); probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); } static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, uintptr_t ra, stg_store1 store1) { int mmu_idx = cpu_mmu_index(env, false); int tag = allocation_tag_from_addr(xt); uint8_t *mem1, *mem2; check_tag_aligned(env, ptr, ra); /* * Trap if accessing an invalid page(s). * This takes priority over !allocation_tag_access_enabled. */ if (ptr & TAG_GRANULE) { /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, MMU_DATA_STORE, 1, ra); mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, MMU_DATA_STORE, TAG_GRANULE, MMU_DATA_STORE, 1, ra); /* Store if page(s) support tags. */ if (mem1) { store1(TAG_GRANULE, mem1, tag); } if (mem2) { store1(0, mem2, tag); } } else { /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra); if (mem1) { tag |= tag << 4; qatomic_set(mem1, tag); } } } void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) { do_st2g(env, ptr, xt, GETPC(), store_tag1); } void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) { do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); } void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) { int mmu_idx = cpu_mmu_index(env, false); uintptr_t ra = GETPC(); int in_page = -(ptr | TARGET_PAGE_MASK); check_tag_aligned(env, ptr, ra); if (likely(in_page >= 2 * TAG_GRANULE)) { probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); } else { probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); } } uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) { int mmu_idx = cpu_mmu_index(env, false); uintptr_t ra = GETPC(); int gm_bs = env_archcpu(env)->gm_blocksize; int gm_bs_bytes = 4 << gm_bs; void *tag_mem; uint64_t ret; int shift; ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); /* Trap if accessing an invalid page. */ tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, gm_bs_bytes, MMU_DATA_LOAD, gm_bs_bytes / (2 * TAG_GRANULE), ra); /* The tag is squashed to zero if the page does not support tags. */ if (!tag_mem) { return 0; } /* * The ordering of elements within the word corresponds to * a little-endian operation. Computation of shift comes from * * index = address * data = tag * * Because of the alignment of ptr above, BS=6 has shift=0. * All memory operations are aligned. Defer support for BS=2, * requiring insertion or extraction of a nibble, until we * support a cpu that requires it. */ switch (gm_bs) { case 3: /* 32 bytes -> 2 tags -> 8 result bits */ ret = *(uint8_t *)tag_mem; break; case 4: /* 64 bytes -> 4 tags -> 16 result bits */ ret = cpu_to_le16(*(uint16_t *)tag_mem); break; case 5: /* 128 bytes -> 8 tags -> 32 result bits */ ret = cpu_to_le32(*(uint32_t *)tag_mem); break; case 6: /* 256 bytes -> 16 tags -> 64 result bits */ return cpu_to_le64(*(uint64_t *)tag_mem); default: /* * CPU configured with unsupported/invalid gm blocksize. * This is detected early in arm_cpu_realizefn. */ g_assert_not_reached(); } shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; return ret << shift; } void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) { int mmu_idx = cpu_mmu_index(env, false); uintptr_t ra = GETPC(); int gm_bs = env_archcpu(env)->gm_blocksize; int gm_bs_bytes = 4 << gm_bs; void *tag_mem; int shift; ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); /* Trap if accessing an invalid page. */ tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, gm_bs_bytes, MMU_DATA_LOAD, gm_bs_bytes / (2 * TAG_GRANULE), ra); /* * Tag store only happens if the page support tags, * and if the OS has enabled access to the tags. */ if (!tag_mem) { return; } /* See LDGM for comments on BS and on shift. */ shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; val >>= shift; switch (gm_bs) { case 3: /* 32 bytes -> 2 tags -> 8 result bits */ *(uint8_t *)tag_mem = val; break; case 4: /* 64 bytes -> 4 tags -> 16 result bits */ *(uint16_t *)tag_mem = cpu_to_le16(val); break; case 5: /* 128 bytes -> 8 tags -> 32 result bits */ *(uint32_t *)tag_mem = cpu_to_le32(val); break; case 6: /* 256 bytes -> 16 tags -> 64 result bits */ *(uint64_t *)tag_mem = cpu_to_le64(val); break; default: /* cpu configured with unsupported gm blocksize. */ g_assert_not_reached(); } } void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) { uintptr_t ra = GETPC(); int mmu_idx = cpu_mmu_index(env, false); int log2_dcz_bytes, log2_tag_bytes; intptr_t dcz_bytes, tag_bytes; uint8_t *mem; /* * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, * i.e. 32 bytes, which is an unreasonably small dcz anyway, * to make sure that we can access one complete tag byte here. */ log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); dcz_bytes = (intptr_t)1 << log2_dcz_bytes; tag_bytes = (intptr_t)1 << log2_tag_bytes; ptr &= -dcz_bytes; mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, MMU_DATA_STORE, tag_bytes, ra); if (mem) { int tag_pair = (val & 0xf) * 0x11; memset(mem, tag_pair, tag_bytes); } } static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, uint64_t dirty_ptr, uintptr_t ra) { int is_write, syn; env->exception.vaddress = dirty_ptr; is_write = FIELD_EX32(desc, MTEDESC, WRITE); syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 0x11); raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); g_assert_not_reached(); } static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) { int select; if (regime_has_2_ranges(arm_mmu_idx)) { select = extract64(dirty_ptr, 55, 1); } else { select = 0; } env->cp15.tfsr_el[el] |= 1 << select; #ifdef CONFIG_USER_ONLY /* * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, * which then sends a SIGSEGV when the thread is next scheduled. * This cpu will return to the main loop at the end of the TB, * which is rather sooner than "normal". But the alternative * is waiting until the next syscall. */ qemu_cpu_kick(env_cpu(env)); #endif } /* Record a tag check failure. */ static void mte_check_fail(CPUARMState *env, uint32_t desc, uint64_t dirty_ptr, uintptr_t ra) { int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); int el, reg_el, tcf; uint64_t sctlr; reg_el = regime_el(env, arm_mmu_idx); sctlr = env->cp15.sctlr_el[reg_el]; switch (arm_mmu_idx) { case ARMMMUIdx_E10_0: case ARMMMUIdx_E20_0: el = 0; tcf = extract64(sctlr, 38, 2); break; default: el = reg_el; tcf = extract64(sctlr, 40, 2); } switch (tcf) { case 1: /* Tag check fail causes a synchronous exception. */ mte_sync_check_fail(env, desc, dirty_ptr, ra); break; case 0: /* * Tag check fail does not affect the PE. * We eliminate this case by not setting MTE_ACTIVE * in tb_flags, so that we never make this runtime call. */ g_assert_not_reached(); case 2: /* Tag check fail causes asynchronous flag set. */ mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); break; case 3: /* * Tag check fail causes asynchronous flag set for stores, or * a synchronous exception for loads. */ if (FIELD_EX32(desc, MTEDESC, WRITE)) { mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); } else { mte_sync_check_fail(env, desc, dirty_ptr, ra); } break; } } /** * checkN: * @tag: tag memory to test * @odd: true to begin testing at tags at odd nibble * @cmp: the tag to compare against * @count: number of tags to test * * Return the number of successful tests. * Thus a return value < @count indicates a failure. * * A note about sizes: count is expected to be small. * * The most common use will be LDP/STP of two integer registers, * which means 16 bytes of memory touching at most 2 tags, but * often the access is aligned and thus just 1 tag. * * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, * touching at most 5 tags. SVE LDR/STR (vector) with the default * vector length is also 64 bytes; the maximum architectural length * is 256 bytes touching at most 9 tags. * * The loop below uses 7 logical operations and 1 memory operation * per tag pair. An implementation that loads an aligned word and * uses masking to ignore adjacent tags requires 18 logical operations * and thus does not begin to pay off until 6 tags. * Which, according to the survey above, is unlikely to be common. */ static int checkN(uint8_t *mem, int odd, int cmp, int count) { int n = 0, diff; /* Replicate the test tag and compare. */ cmp *= 0x11; diff = *mem++ ^ cmp; if (odd) { goto start_odd; } while (1) { /* Test even tag. */ if (unlikely((diff) & 0x0f)) { break; } if (++n == count) { break; } start_odd: /* Test odd tag. */ if (unlikely((diff) & 0xf0)) { break; } if (++n == count) { break; } diff = *mem++ ^ cmp; } return n; } /** * mte_probe_int() - helper for mte_probe and mte_check * @env: CPU environment * @desc: MTEDESC descriptor * @ptr: virtual address of the base of the access * @fault: return virtual address of the first check failure * * Internal routine for both mte_probe and mte_check. * Return zero on failure, filling in *fault. * Return negative on trivial success for tbi disabled. * Return positive on success with tbi enabled. */ static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra, uint64_t *fault) { int mmu_idx, ptr_tag, bit55; uint64_t ptr_last, prev_page, next_page; uint64_t tag_first, tag_last; uint64_t tag_byte_first, tag_byte_last; uint32_t sizem1, tag_count, tag_size, n, c; uint8_t *mem1, *mem2; MMUAccessType type; bit55 = extract64(ptr, 55, 1); *fault = ptr; /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ if (unlikely(!tbi_check(desc, bit55))) { return -1; } ptr_tag = allocation_tag_from_addr(ptr); if (tcma_check(desc, bit55, ptr_tag)) { return 1; } mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); /* Find the addr of the end of the access */ ptr_last = ptr + sizem1; /* Round the bounds to the tag granule, and compute the number of tags. */ tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; /* Round the bounds to twice the tag granule, and compute the bytes. */ tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE); tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE); /* Locate the page boundaries. */ prev_page = ptr & TARGET_PAGE_MASK; next_page = prev_page + TARGET_PAGE_SIZE; if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { /* Memory access stays on one page. */ tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1; mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, MMU_DATA_LOAD, tag_size, ra); if (!mem1) { return 1; } /* Perform all of the comparisons. */ n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); } else { /* Memory access crosses to next page. */ tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE); mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, MMU_DATA_LOAD, tag_size, ra); tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1; mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, ptr_last - next_page + 1, MMU_DATA_LOAD, tag_size, ra); /* * Perform all of the comparisons. * Note the possible but unlikely case of the operation spanning * two pages that do not both have tagging enabled. */ n = c = (next_page - tag_first) / TAG_GRANULE; if (mem1) { n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); } if (n == c) { if (!mem2) { return 1; } n += checkN(mem2, 0, ptr_tag, tag_count - c); } } if (likely(n == tag_count)) { return 1; } /* * If we failed, we know which granule. For the first granule, the * failure address is @ptr, the first byte accessed. Otherwise the * failure address is the first byte of the nth granule. */ if (n > 0) { *fault = tag_first + n * TAG_GRANULE; } return 0; } uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) { uint64_t fault; int ret = mte_probe_int(env, desc, ptr, ra, &fault); if (unlikely(ret == 0)) { mte_check_fail(env, desc, fault, ra); } else if (ret < 0) { return ptr; } return useronly_clean_ptr(ptr); } uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) { /* * R_XCHFJ: Alignment check not caused by memory type is priority 1, * higher than any translation fault. When MTE is disabled, tcg * performs the alignment check during the code generated for the * memory access. With MTE enabled, we must check this here before * raising any translation fault in allocation_tag_mem. */ unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN); if (unlikely(align)) { align = (1u << align) - 1; if (unlikely(ptr & align)) { int idx = FIELD_EX32(desc, MTEDESC, MIDX); bool w = FIELD_EX32(desc, MTEDESC, WRITE); MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD; arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC()); } } return mte_check(env, desc, ptr, GETPC()); } /* * No-fault version of mte_check, to be used by SVE for MemSingleNF. * Returns false if the access is Checked and the check failed. This * is only intended to probe the tag -- the validity of the page must * be checked beforehand. */ bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) { uint64_t fault; int ret = mte_probe_int(env, desc, ptr, 0, &fault); return ret != 0; } /* * Perform an MTE checked access for DC_ZVA. */ uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) { uintptr_t ra = GETPC(); int log2_dcz_bytes, log2_tag_bytes; int mmu_idx, bit55; intptr_t dcz_bytes, tag_bytes, i; void *mem; uint64_t ptr_tag, mem_tag, align_ptr; bit55 = extract64(ptr, 55, 1); /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ if (unlikely(!tbi_check(desc, bit55))) { return ptr; } ptr_tag = allocation_tag_from_addr(ptr); if (tcma_check(desc, bit55, ptr_tag)) { goto done; } /* * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make * sure that we can access one complete tag byte here. */ log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); dcz_bytes = (intptr_t)1 << log2_dcz_bytes; tag_bytes = (intptr_t)1 << log2_tag_bytes; align_ptr = ptr & -dcz_bytes; /* * Trap if accessing an invalid page. DC_ZVA requires that we supply * the original pointer for an invalid page. But watchpoints require * that we probe the actual space. So do both. */ mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); (void) probe_write(env, ptr, 1, mmu_idx, ra); mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra); if (!mem) { goto done; } /* * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus * it is quite easy to perform all of the comparisons at once without * any extra masking. * * The most common zva block size is 64; some of the thunderx cpus use * a block size of 128. For user-only, aarch64_max_initfn will set the * block size to 512. Fill out the other cases for future-proofing. * * In order to be able to find the first miscompare later, we want the * tag bytes to be in little-endian order. */ switch (log2_tag_bytes) { case 0: /* zva_blocksize 32 */ mem_tag = *(uint8_t *)mem; ptr_tag *= 0x11u; break; case 1: /* zva_blocksize 64 */ mem_tag = cpu_to_le16(*(uint16_t *)mem); ptr_tag *= 0x1111u; break; case 2: /* zva_blocksize 128 */ mem_tag = cpu_to_le32(*(uint32_t *)mem); ptr_tag *= 0x11111111u; break; case 3: /* zva_blocksize 256 */ mem_tag = cpu_to_le64(*(uint64_t *)mem); ptr_tag *= 0x1111111111111111ull; break; default: /* zva_blocksize 512, 1024, 2048 */ ptr_tag *= 0x1111111111111111ull; i = 0; do { mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); if (unlikely(mem_tag != ptr_tag)) { goto fail; } i += 8; align_ptr += 16 * TAG_GRANULE; } while (i < tag_bytes); goto done; } if (likely(mem_tag == ptr_tag)) { goto done; } fail: /* Locate the first nibble that differs. */ i = ctz64(mem_tag ^ ptr_tag) >> 4; mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); done: return useronly_clean_ptr(ptr); }