/* * ARM generic vector expansion * * Copyright (c) 2003 Fabrice Bellard * Copyright (c) 2005-2007 CodeSourcery * Copyright (c) 2007 OpenedHand, Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "translate.h" static void gen_gvec_fn3_qc(uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz, gen_helper_gvec_3_ptr *fn) { TCGv_ptr qc_ptr = tcg_temp_new_ptr(); tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc)); tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, qc_ptr, opr_sz, max_sz, 0, fn); } void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3_ptr * const fns[2] = { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqdmulh_s }; tcg_debug_assert(vece >= 1 && vece <= 2); gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); } void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3_ptr * const fns[2] = { gen_helper_neon_sqrdmulh_h, gen_helper_neon_sqrdmulh_s }; tcg_debug_assert(vece >= 1 && vece <= 2); gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); } void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3_ptr * const fns[2] = { gen_helper_gvec_qrdmlah_s16, gen_helper_gvec_qrdmlah_s32 }; tcg_debug_assert(vece >= 1 && vece <= 2); gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); } void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3_ptr * const fns[2] = { gen_helper_gvec_qrdmlsh_s16, gen_helper_gvec_qrdmlsh_s32 }; tcg_debug_assert(vece >= 1 && vece <= 2); gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); } #define GEN_CMP0(NAME, COND) \ void NAME(unsigned vece, uint32_t d, uint32_t m, \ uint32_t opr_sz, uint32_t max_sz) \ { tcg_gen_gvec_cmpi(COND, vece, d, m, 0, opr_sz, max_sz); } GEN_CMP0(gen_gvec_ceq0, TCG_COND_EQ) GEN_CMP0(gen_gvec_cle0, TCG_COND_LE) GEN_CMP0(gen_gvec_cge0, TCG_COND_GE) GEN_CMP0(gen_gvec_clt0, TCG_COND_LT) GEN_CMP0(gen_gvec_cgt0, TCG_COND_GT) #undef GEN_CMP0 void gen_gvec_sshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz) { /* Signed shift out of range results in all-sign-bits */ shift = MIN(shift, (8 << vece) - 1); tcg_gen_gvec_sari(vece, rd_ofs, rm_ofs, shift, opr_sz, max_sz); } void gen_gvec_ushr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz) { /* Unsigned shift out of range results in all-zero-bits */ if (shift >= (8 << vece)) { tcg_gen_gvec_dup_imm(vece, rd_ofs, opr_sz, max_sz, 0); } else { tcg_gen_gvec_shri(vece, rd_ofs, rm_ofs, shift, opr_sz, max_sz); } } static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_vec_sar8i_i64(a, a, shift); tcg_gen_vec_add8_i64(d, d, a); } static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_vec_sar16i_i64(a, a, shift); tcg_gen_vec_add16_i64(d, d, a); } static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) { tcg_gen_sari_i32(a, a, shift); tcg_gen_add_i32(d, d, a); } static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_sari_i64(a, a, shift); tcg_gen_add_i64(d, d, a); } static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { tcg_gen_sari_vec(vece, a, a, sh); tcg_gen_add_vec(vece, d, d, a); } void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, INDEX_op_add_vec, 0 }; static const GVecGen2i ops[4] = { { .fni8 = gen_ssra8_i64, .fniv = gen_ssra_vec, .fno = gen_helper_gvec_ssra_b, .load_dest = true, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_ssra16_i64, .fniv = gen_ssra_vec, .fno = gen_helper_gvec_ssra_h, .load_dest = true, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_ssra32_i32, .fniv = gen_ssra_vec, .fno = gen_helper_gvec_ssra_s, .load_dest = true, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_ssra64_i64, .fniv = gen_ssra_vec, .fno = gen_helper_gvec_ssra_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .opt_opc = vecop_list, .load_dest = true, .vece = MO_64 }, }; /* tszimm encoding produces immediates in the range [1..esize]. */ tcg_debug_assert(shift > 0); tcg_debug_assert(shift <= (8 << vece)); /* * Shifts larger than the element size are architecturally valid. * Signed results in all sign bits. */ shift = MIN(shift, (8 << vece) - 1); tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); } static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_vec_shr8i_i64(a, a, shift); tcg_gen_vec_add8_i64(d, d, a); } static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_vec_shr16i_i64(a, a, shift); tcg_gen_vec_add16_i64(d, d, a); } static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) { tcg_gen_shri_i32(a, a, shift); tcg_gen_add_i32(d, d, a); } static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_shri_i64(a, a, shift); tcg_gen_add_i64(d, d, a); } static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { tcg_gen_shri_vec(vece, a, a, sh); tcg_gen_add_vec(vece, d, d, a); } void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, INDEX_op_add_vec, 0 }; static const GVecGen2i ops[4] = { { .fni8 = gen_usra8_i64, .fniv = gen_usra_vec, .fno = gen_helper_gvec_usra_b, .load_dest = true, .opt_opc = vecop_list, .vece = MO_8, }, { .fni8 = gen_usra16_i64, .fniv = gen_usra_vec, .fno = gen_helper_gvec_usra_h, .load_dest = true, .opt_opc = vecop_list, .vece = MO_16, }, { .fni4 = gen_usra32_i32, .fniv = gen_usra_vec, .fno = gen_helper_gvec_usra_s, .load_dest = true, .opt_opc = vecop_list, .vece = MO_32, }, { .fni8 = gen_usra64_i64, .fniv = gen_usra_vec, .fno = gen_helper_gvec_usra_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .opt_opc = vecop_list, .vece = MO_64, }, }; /* tszimm encoding produces immediates in the range [1..esize]. */ tcg_debug_assert(shift > 0); tcg_debug_assert(shift <= (8 << vece)); /* * Shifts larger than the element size are architecturally valid. * Unsigned results in all zeros as input to accumulate: nop. */ if (shift < (8 << vece)) { tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); } else { /* Nop, but we do need to clear the tail. */ tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); } } /* * Shift one less than the requested amount, and the low bit is * the rounding bit. For the 8 and 16-bit operations, because we * mask the low bit, we can perform a normal integer shift instead * of a vector shift. */ static void gen_srshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shri_i64(t, a, sh - 1); tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); tcg_gen_vec_sar8i_i64(d, a, sh); tcg_gen_vec_add8_i64(d, d, t); } static void gen_srshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shri_i64(t, a, sh - 1); tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); tcg_gen_vec_sar16i_i64(d, a, sh); tcg_gen_vec_add16_i64(d, d, t); } void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) { TCGv_i32 t; /* Handle shift by the input size for the benefit of trans_SRSHR_ri */ if (sh == 32) { tcg_gen_movi_i32(d, 0); return; } t = tcg_temp_new_i32(); tcg_gen_extract_i32(t, a, sh - 1, 1); tcg_gen_sari_i32(d, a, sh); tcg_gen_add_i32(d, d, t); } void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_extract_i64(t, a, sh - 1, 1); tcg_gen_sari_i64(d, a, sh); tcg_gen_add_i64(d, d, t); } static void gen_srshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { TCGv_vec t = tcg_temp_new_vec_matching(d); TCGv_vec ones = tcg_constant_vec_matching(d, vece, 1); tcg_gen_shri_vec(vece, t, a, sh - 1); tcg_gen_and_vec(vece, t, t, ones); tcg_gen_sari_vec(vece, d, a, sh); tcg_gen_add_vec(vece, d, d, t); } void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0 }; static const GVecGen2i ops[4] = { { .fni8 = gen_srshr8_i64, .fniv = gen_srshr_vec, .fno = gen_helper_gvec_srshr_b, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_srshr16_i64, .fniv = gen_srshr_vec, .fno = gen_helper_gvec_srshr_h, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_srshr32_i32, .fniv = gen_srshr_vec, .fno = gen_helper_gvec_srshr_s, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_srshr64_i64, .fniv = gen_srshr_vec, .fno = gen_helper_gvec_srshr_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .opt_opc = vecop_list, .vece = MO_64 }, }; /* tszimm encoding produces immediates in the range [1..esize] */ tcg_debug_assert(shift > 0); tcg_debug_assert(shift <= (8 << vece)); if (shift == (8 << vece)) { /* * Shifts larger than the element size are architecturally valid. * Signed results in all sign bits. With rounding, this produces * (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0. * I.e. always zero. */ tcg_gen_gvec_dup_imm(vece, rd_ofs, opr_sz, max_sz, 0); } else { tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); } } static void gen_srsra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); gen_srshr8_i64(t, a, sh); tcg_gen_vec_add8_i64(d, d, t); } static void gen_srsra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); gen_srshr16_i64(t, a, sh); tcg_gen_vec_add16_i64(d, d, t); } static void gen_srsra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) { TCGv_i32 t = tcg_temp_new_i32(); gen_srshr32_i32(t, a, sh); tcg_gen_add_i32(d, d, t); } static void gen_srsra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); gen_srshr64_i64(t, a, sh); tcg_gen_add_i64(d, d, t); } static void gen_srsra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { TCGv_vec t = tcg_temp_new_vec_matching(d); gen_srshr_vec(vece, t, a, sh); tcg_gen_add_vec(vece, d, d, t); } void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0 }; static const GVecGen2i ops[4] = { { .fni8 = gen_srsra8_i64, .fniv = gen_srsra_vec, .fno = gen_helper_gvec_srsra_b, .opt_opc = vecop_list, .load_dest = true, .vece = MO_8 }, { .fni8 = gen_srsra16_i64, .fniv = gen_srsra_vec, .fno = gen_helper_gvec_srsra_h, .opt_opc = vecop_list, .load_dest = true, .vece = MO_16 }, { .fni4 = gen_srsra32_i32, .fniv = gen_srsra_vec, .fno = gen_helper_gvec_srsra_s, .opt_opc = vecop_list, .load_dest = true, .vece = MO_32 }, { .fni8 = gen_srsra64_i64, .fniv = gen_srsra_vec, .fno = gen_helper_gvec_srsra_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .opt_opc = vecop_list, .load_dest = true, .vece = MO_64 }, }; /* tszimm encoding produces immediates in the range [1..esize] */ tcg_debug_assert(shift > 0); tcg_debug_assert(shift <= (8 << vece)); /* * Shifts larger than the element size are architecturally valid. * Signed results in all sign bits. With rounding, this produces * (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0. * I.e. always zero. With accumulation, this leaves D unchanged. */ if (shift == (8 << vece)) { /* Nop, but we do need to clear the tail. */ tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); } else { tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); } } static void gen_urshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shri_i64(t, a, sh - 1); tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); tcg_gen_vec_shr8i_i64(d, a, sh); tcg_gen_vec_add8_i64(d, d, t); } static void gen_urshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shri_i64(t, a, sh - 1); tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); tcg_gen_vec_shr16i_i64(d, a, sh); tcg_gen_vec_add16_i64(d, d, t); } void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) { TCGv_i32 t; /* Handle shift by the input size for the benefit of trans_URSHR_ri */ if (sh == 32) { tcg_gen_extract_i32(d, a, sh - 1, 1); return; } t = tcg_temp_new_i32(); tcg_gen_extract_i32(t, a, sh - 1, 1); tcg_gen_shri_i32(d, a, sh); tcg_gen_add_i32(d, d, t); } void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_extract_i64(t, a, sh - 1, 1); tcg_gen_shri_i64(d, a, sh); tcg_gen_add_i64(d, d, t); } static void gen_urshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t shift) { TCGv_vec t = tcg_temp_new_vec_matching(d); TCGv_vec ones = tcg_constant_vec_matching(d, vece, 1); tcg_gen_shri_vec(vece, t, a, shift - 1); tcg_gen_and_vec(vece, t, t, ones); tcg_gen_shri_vec(vece, d, a, shift); tcg_gen_add_vec(vece, d, d, t); } void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, INDEX_op_add_vec, 0 }; static const GVecGen2i ops[4] = { { .fni8 = gen_urshr8_i64, .fniv = gen_urshr_vec, .fno = gen_helper_gvec_urshr_b, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_urshr16_i64, .fniv = gen_urshr_vec, .fno = gen_helper_gvec_urshr_h, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_urshr32_i32, .fniv = gen_urshr_vec, .fno = gen_helper_gvec_urshr_s, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_urshr64_i64, .fniv = gen_urshr_vec, .fno = gen_helper_gvec_urshr_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .opt_opc = vecop_list, .vece = MO_64 }, }; /* tszimm encoding produces immediates in the range [1..esize] */ tcg_debug_assert(shift > 0); tcg_debug_assert(shift <= (8 << vece)); if (shift == (8 << vece)) { /* * Shifts larger than the element size are architecturally valid. * Unsigned results in zero. With rounding, this produces a * copy of the most significant bit. */ tcg_gen_gvec_shri(vece, rd_ofs, rm_ofs, shift - 1, opr_sz, max_sz); } else { tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); } } static void gen_ursra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); if (sh == 8) { tcg_gen_vec_shr8i_i64(t, a, 7); } else { gen_urshr8_i64(t, a, sh); } tcg_gen_vec_add8_i64(d, d, t); } static void gen_ursra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); if (sh == 16) { tcg_gen_vec_shr16i_i64(t, a, 15); } else { gen_urshr16_i64(t, a, sh); } tcg_gen_vec_add16_i64(d, d, t); } static void gen_ursra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) { TCGv_i32 t = tcg_temp_new_i32(); if (sh == 32) { tcg_gen_shri_i32(t, a, 31); } else { gen_urshr32_i32(t, a, sh); } tcg_gen_add_i32(d, d, t); } static void gen_ursra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) { TCGv_i64 t = tcg_temp_new_i64(); if (sh == 64) { tcg_gen_shri_i64(t, a, 63); } else { gen_urshr64_i64(t, a, sh); } tcg_gen_add_i64(d, d, t); } static void gen_ursra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { TCGv_vec t = tcg_temp_new_vec_matching(d); if (sh == (8 << vece)) { tcg_gen_shri_vec(vece, t, a, sh - 1); } else { gen_urshr_vec(vece, t, a, sh); } tcg_gen_add_vec(vece, d, d, t); } void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, INDEX_op_add_vec, 0 }; static const GVecGen2i ops[4] = { { .fni8 = gen_ursra8_i64, .fniv = gen_ursra_vec, .fno = gen_helper_gvec_ursra_b, .opt_opc = vecop_list, .load_dest = true, .vece = MO_8 }, { .fni8 = gen_ursra16_i64, .fniv = gen_ursra_vec, .fno = gen_helper_gvec_ursra_h, .opt_opc = vecop_list, .load_dest = true, .vece = MO_16 }, { .fni4 = gen_ursra32_i32, .fniv = gen_ursra_vec, .fno = gen_helper_gvec_ursra_s, .opt_opc = vecop_list, .load_dest = true, .vece = MO_32 }, { .fni8 = gen_ursra64_i64, .fniv = gen_ursra_vec, .fno = gen_helper_gvec_ursra_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .opt_opc = vecop_list, .load_dest = true, .vece = MO_64 }, }; /* tszimm encoding produces immediates in the range [1..esize] */ tcg_debug_assert(shift > 0); tcg_debug_assert(shift <= (8 << vece)); tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); } static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { uint64_t mask = dup_const(MO_8, 0xff >> shift); TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shri_i64(t, a, shift); tcg_gen_andi_i64(t, t, mask); tcg_gen_andi_i64(d, d, ~mask); tcg_gen_or_i64(d, d, t); } static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { uint64_t mask = dup_const(MO_16, 0xffff >> shift); TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shri_i64(t, a, shift); tcg_gen_andi_i64(t, t, mask); tcg_gen_andi_i64(d, d, ~mask); tcg_gen_or_i64(d, d, t); } static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) { tcg_gen_shri_i32(a, a, shift); tcg_gen_deposit_i32(d, d, a, 0, 32 - shift); } static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_shri_i64(a, a, shift); tcg_gen_deposit_i64(d, d, a, 0, 64 - shift); } static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { TCGv_vec t = tcg_temp_new_vec_matching(d); int64_t mi = MAKE_64BIT_MASK((8 << vece) - sh, sh); TCGv_vec m = tcg_constant_vec_matching(d, vece, mi); tcg_gen_shri_vec(vece, t, a, sh); tcg_gen_and_vec(vece, d, d, m); tcg_gen_or_vec(vece, d, d, t); } void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 }; const GVecGen2i ops[4] = { { .fni8 = gen_shr8_ins_i64, .fniv = gen_shr_ins_vec, .fno = gen_helper_gvec_sri_b, .load_dest = true, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_shr16_ins_i64, .fniv = gen_shr_ins_vec, .fno = gen_helper_gvec_sri_h, .load_dest = true, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_shr32_ins_i32, .fniv = gen_shr_ins_vec, .fno = gen_helper_gvec_sri_s, .load_dest = true, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_shr64_ins_i64, .fniv = gen_shr_ins_vec, .fno = gen_helper_gvec_sri_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .opt_opc = vecop_list, .vece = MO_64 }, }; /* tszimm encoding produces immediates in the range [1..esize]. */ tcg_debug_assert(shift > 0); tcg_debug_assert(shift <= (8 << vece)); /* Shift of esize leaves destination unchanged. */ if (shift < (8 << vece)) { tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); } else { /* Nop, but we do need to clear the tail. */ tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); } } static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { uint64_t mask = dup_const(MO_8, 0xff << shift); TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shli_i64(t, a, shift); tcg_gen_andi_i64(t, t, mask); tcg_gen_andi_i64(d, d, ~mask); tcg_gen_or_i64(d, d, t); } static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { uint64_t mask = dup_const(MO_16, 0xffff << shift); TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shli_i64(t, a, shift); tcg_gen_andi_i64(t, t, mask); tcg_gen_andi_i64(d, d, ~mask); tcg_gen_or_i64(d, d, t); } static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) { tcg_gen_deposit_i32(d, d, a, shift, 32 - shift); } static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_deposit_i64(d, d, a, shift, 64 - shift); } static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { TCGv_vec t = tcg_temp_new_vec_matching(d); TCGv_vec m = tcg_constant_vec_matching(d, vece, MAKE_64BIT_MASK(0, sh)); tcg_gen_shli_vec(vece, t, a, sh); tcg_gen_and_vec(vece, d, d, m); tcg_gen_or_vec(vece, d, d, t); } void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 }; const GVecGen2i ops[4] = { { .fni8 = gen_shl8_ins_i64, .fniv = gen_shl_ins_vec, .fno = gen_helper_gvec_sli_b, .load_dest = true, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_shl16_ins_i64, .fniv = gen_shl_ins_vec, .fno = gen_helper_gvec_sli_h, .load_dest = true, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_shl32_ins_i32, .fniv = gen_shl_ins_vec, .fno = gen_helper_gvec_sli_s, .load_dest = true, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_shl64_ins_i64, .fniv = gen_shl_ins_vec, .fno = gen_helper_gvec_sli_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .opt_opc = vecop_list, .vece = MO_64 }, }; /* tszimm encoding produces immediates in the range [0..esize-1]. */ tcg_debug_assert(shift >= 0); tcg_debug_assert(shift < (8 << vece)); if (shift == 0) { tcg_gen_gvec_mov(vece, rd_ofs, rm_ofs, opr_sz, max_sz); } else { tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); } } static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { gen_helper_neon_mul_u8(a, a, b); gen_helper_neon_add_u8(d, d, a); } static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { gen_helper_neon_mul_u8(a, a, b); gen_helper_neon_sub_u8(d, d, a); } static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { gen_helper_neon_mul_u16(a, a, b); gen_helper_neon_add_u16(d, d, a); } static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { gen_helper_neon_mul_u16(a, a, b); gen_helper_neon_sub_u16(d, d, a); } static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { tcg_gen_mul_i32(a, a, b); tcg_gen_add_i32(d, d, a); } static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { tcg_gen_mul_i32(a, a, b); tcg_gen_sub_i32(d, d, a); } static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { tcg_gen_mul_i64(a, a, b); tcg_gen_add_i64(d, d, a); } static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { tcg_gen_mul_i64(a, a, b); tcg_gen_sub_i64(d, d, a); } static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { tcg_gen_mul_vec(vece, a, a, b); tcg_gen_add_vec(vece, d, d, a); } static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { tcg_gen_mul_vec(vece, a, a, b); tcg_gen_sub_vec(vece, d, d, a); } /* Note that while NEON does not support VMLA and VMLS as 64-bit ops, * these tables are shared with AArch64 which does support them. */ void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_mul_vec, INDEX_op_add_vec, 0 }; static const GVecGen3 ops[4] = { { .fni4 = gen_mla8_i32, .fniv = gen_mla_vec, .load_dest = true, .opt_opc = vecop_list, .vece = MO_8 }, { .fni4 = gen_mla16_i32, .fniv = gen_mla_vec, .load_dest = true, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_mla32_i32, .fniv = gen_mla_vec, .load_dest = true, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_mla64_i64, .fniv = gen_mla_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .opt_opc = vecop_list, .vece = MO_64 }, }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_mul_vec, INDEX_op_sub_vec, 0 }; static const GVecGen3 ops[4] = { { .fni4 = gen_mls8_i32, .fniv = gen_mls_vec, .load_dest = true, .opt_opc = vecop_list, .vece = MO_8 }, { .fni4 = gen_mls16_i32, .fniv = gen_mls_vec, .load_dest = true, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_mls32_i32, .fniv = gen_mls_vec, .load_dest = true, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_mls64_i64, .fniv = gen_mls_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .opt_opc = vecop_list, .vece = MO_64 }, }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } /* CMTST : test is "if (X & Y != 0)". */ static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { tcg_gen_negsetcond_i32(TCG_COND_TSTNE, d, a, b); } void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { tcg_gen_negsetcond_i64(TCG_COND_TSTNE, d, a, b); } static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { tcg_gen_cmp_vec(TCG_COND_TSTNE, vece, d, a, b); } void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_cmp_vec, 0 }; static const GVecGen3 ops[4] = { { .fni4 = gen_helper_neon_tst_u8, .fniv = gen_cmtst_vec, .opt_opc = vecop_list, .vece = MO_8 }, { .fni4 = gen_helper_neon_tst_u16, .fniv = gen_cmtst_vec, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_cmtst_i32, .fniv = gen_cmtst_vec, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_cmtst_i64, .fniv = gen_cmtst_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .opt_opc = vecop_list, .vece = MO_64 }, }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } void gen_ushl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) { TCGv_i32 lval = tcg_temp_new_i32(); TCGv_i32 rval = tcg_temp_new_i32(); TCGv_i32 lsh = tcg_temp_new_i32(); TCGv_i32 rsh = tcg_temp_new_i32(); TCGv_i32 zero = tcg_constant_i32(0); TCGv_i32 max = tcg_constant_i32(32); /* * Rely on the TCG guarantee that out of range shifts produce * unspecified results, not undefined behaviour (i.e. no trap). * Discard out-of-range results after the fact. */ tcg_gen_ext8s_i32(lsh, shift); tcg_gen_neg_i32(rsh, lsh); tcg_gen_shl_i32(lval, src, lsh); tcg_gen_shr_i32(rval, src, rsh); tcg_gen_movcond_i32(TCG_COND_LTU, dst, lsh, max, lval, zero); tcg_gen_movcond_i32(TCG_COND_LTU, dst, rsh, max, rval, dst); } void gen_ushl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) { TCGv_i64 lval = tcg_temp_new_i64(); TCGv_i64 rval = tcg_temp_new_i64(); TCGv_i64 lsh = tcg_temp_new_i64(); TCGv_i64 rsh = tcg_temp_new_i64(); TCGv_i64 zero = tcg_constant_i64(0); TCGv_i64 max = tcg_constant_i64(64); /* * Rely on the TCG guarantee that out of range shifts produce * unspecified results, not undefined behaviour (i.e. no trap). * Discard out-of-range results after the fact. */ tcg_gen_ext8s_i64(lsh, shift); tcg_gen_neg_i64(rsh, lsh); tcg_gen_shl_i64(lval, src, lsh); tcg_gen_shr_i64(rval, src, rsh); tcg_gen_movcond_i64(TCG_COND_LTU, dst, lsh, max, lval, zero); tcg_gen_movcond_i64(TCG_COND_LTU, dst, rsh, max, rval, dst); } static void gen_ushl_vec(unsigned vece, TCGv_vec dst, TCGv_vec src, TCGv_vec shift) { TCGv_vec lval = tcg_temp_new_vec_matching(dst); TCGv_vec rval = tcg_temp_new_vec_matching(dst); TCGv_vec lsh = tcg_temp_new_vec_matching(dst); TCGv_vec rsh = tcg_temp_new_vec_matching(dst); TCGv_vec max, zero; tcg_gen_neg_vec(vece, rsh, shift); if (vece == MO_8) { tcg_gen_mov_vec(lsh, shift); } else { TCGv_vec msk = tcg_constant_vec_matching(dst, vece, 0xff); tcg_gen_and_vec(vece, lsh, shift, msk); tcg_gen_and_vec(vece, rsh, rsh, msk); } /* * Rely on the TCG guarantee that out of range shifts produce * unspecified results, not undefined behaviour (i.e. no trap). * Discard out-of-range results after the fact. */ tcg_gen_shlv_vec(vece, lval, src, lsh); tcg_gen_shrv_vec(vece, rval, src, rsh); /* * The choice of GE (signed) and GEU (unsigned) are biased toward * the instructions of the x86_64 host. For MO_8, the whole byte * is significant so we must use an unsigned compare; otherwise we * have already masked to a byte and so a signed compare works. * Other tcg hosts have a full set of comparisons and do not care. */ zero = tcg_constant_vec_matching(dst, vece, 0); max = tcg_constant_vec_matching(dst, vece, 8 << vece); if (vece == MO_8) { tcg_gen_cmpsel_vec(TCG_COND_GEU, vece, lval, lsh, max, zero, lval); tcg_gen_cmpsel_vec(TCG_COND_GEU, vece, rval, rsh, max, zero, rval); } else { tcg_gen_cmpsel_vec(TCG_COND_GE, vece, lval, lsh, max, zero, lval); tcg_gen_cmpsel_vec(TCG_COND_GE, vece, rval, rsh, max, zero, rval); } tcg_gen_or_vec(vece, dst, lval, rval); } void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, INDEX_op_shlv_vec, INDEX_op_shrv_vec, INDEX_op_cmpsel_vec, 0 }; static const GVecGen3 ops[4] = { { .fniv = gen_ushl_vec, .fno = gen_helper_gvec_ushl_b, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = gen_ushl_vec, .fno = gen_helper_gvec_ushl_h, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_ushl_i32, .fniv = gen_ushl_vec, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_ushl_i64, .fniv = gen_ushl_vec, .opt_opc = vecop_list, .vece = MO_64 }, }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } void gen_sshl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) { TCGv_i32 lval = tcg_temp_new_i32(); TCGv_i32 rval = tcg_temp_new_i32(); TCGv_i32 lsh = tcg_temp_new_i32(); TCGv_i32 rsh = tcg_temp_new_i32(); TCGv_i32 zero = tcg_constant_i32(0); TCGv_i32 max = tcg_constant_i32(31); /* * Rely on the TCG guarantee that out of range shifts produce * unspecified results, not undefined behaviour (i.e. no trap). * Discard out-of-range results after the fact. */ tcg_gen_ext8s_i32(lsh, shift); tcg_gen_neg_i32(rsh, lsh); tcg_gen_shl_i32(lval, src, lsh); tcg_gen_umin_i32(rsh, rsh, max); tcg_gen_sar_i32(rval, src, rsh); tcg_gen_movcond_i32(TCG_COND_LEU, lval, lsh, max, lval, zero); tcg_gen_movcond_i32(TCG_COND_LT, dst, lsh, zero, rval, lval); } void gen_sshl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) { TCGv_i64 lval = tcg_temp_new_i64(); TCGv_i64 rval = tcg_temp_new_i64(); TCGv_i64 lsh = tcg_temp_new_i64(); TCGv_i64 rsh = tcg_temp_new_i64(); TCGv_i64 zero = tcg_constant_i64(0); TCGv_i64 max = tcg_constant_i64(63); /* * Rely on the TCG guarantee that out of range shifts produce * unspecified results, not undefined behaviour (i.e. no trap). * Discard out-of-range results after the fact. */ tcg_gen_ext8s_i64(lsh, shift); tcg_gen_neg_i64(rsh, lsh); tcg_gen_shl_i64(lval, src, lsh); tcg_gen_umin_i64(rsh, rsh, max); tcg_gen_sar_i64(rval, src, rsh); tcg_gen_movcond_i64(TCG_COND_LEU, lval, lsh, max, lval, zero); tcg_gen_movcond_i64(TCG_COND_LT, dst, lsh, zero, rval, lval); } static void gen_sshl_vec(unsigned vece, TCGv_vec dst, TCGv_vec src, TCGv_vec shift) { TCGv_vec lval = tcg_temp_new_vec_matching(dst); TCGv_vec rval = tcg_temp_new_vec_matching(dst); TCGv_vec lsh = tcg_temp_new_vec_matching(dst); TCGv_vec rsh = tcg_temp_new_vec_matching(dst); TCGv_vec max, zero; /* * Rely on the TCG guarantee that out of range shifts produce * unspecified results, not undefined behaviour (i.e. no trap). * Discard out-of-range results after the fact. */ tcg_gen_neg_vec(vece, rsh, shift); if (vece == MO_8) { tcg_gen_mov_vec(lsh, shift); } else { TCGv_vec msk = tcg_constant_vec_matching(dst, vece, 0xff); tcg_gen_and_vec(vece, lsh, shift, msk); tcg_gen_and_vec(vece, rsh, rsh, msk); } /* Bound rsh so out of bound right shift gets -1. */ max = tcg_constant_vec_matching(dst, vece, (8 << vece) - 1); tcg_gen_umin_vec(vece, rsh, rsh, max); tcg_gen_shlv_vec(vece, lval, src, lsh); tcg_gen_sarv_vec(vece, rval, src, rsh); /* Select in-bound left shift. */ zero = tcg_constant_vec_matching(dst, vece, 0); tcg_gen_cmpsel_vec(TCG_COND_GT, vece, lval, lsh, max, zero, lval); /* Select between left and right shift. */ if (vece == MO_8) { tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, zero, rval, lval); } else { TCGv_vec sgn = tcg_constant_vec_matching(dst, vece, 0x80); tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, sgn, lval, rval); } } void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, INDEX_op_umin_vec, INDEX_op_shlv_vec, INDEX_op_sarv_vec, INDEX_op_cmpsel_vec, 0 }; static const GVecGen3 ops[4] = { { .fniv = gen_sshl_vec, .fno = gen_helper_gvec_sshl_b, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = gen_sshl_vec, .fno = gen_helper_gvec_sshl_h, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_sshl_i32, .fniv = gen_sshl_vec, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_sshl_i64, .fniv = gen_sshl_vec, .opt_opc = vecop_list, .vece = MO_64 }, }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3 * const fns[] = { gen_helper_gvec_srshl_b, gen_helper_gvec_srshl_h, gen_helper_gvec_srshl_s, gen_helper_gvec_srshl_d, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]); } void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3 * const fns[] = { gen_helper_gvec_urshl_b, gen_helper_gvec_urshl_h, gen_helper_gvec_urshl_s, gen_helper_gvec_urshl_d, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]); } void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3_ptr * const fns[] = { gen_helper_neon_sqshl_b, gen_helper_neon_sqshl_h, gen_helper_neon_sqshl_s, gen_helper_neon_sqshl_d, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, tcg_env, opr_sz, max_sz, 0, fns[vece]); } void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3_ptr * const fns[] = { gen_helper_neon_uqshl_b, gen_helper_neon_uqshl_h, gen_helper_neon_uqshl_s, gen_helper_neon_uqshl_d, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, tcg_env, opr_sz, max_sz, 0, fns[vece]); } void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3_ptr * const fns[] = { gen_helper_neon_sqrshl_b, gen_helper_neon_sqrshl_h, gen_helper_neon_sqrshl_s, gen_helper_neon_sqrshl_d, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, tcg_env, opr_sz, max_sz, 0, fns[vece]); } void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3_ptr * const fns[] = { gen_helper_neon_uqrshl_b, gen_helper_neon_uqrshl_h, gen_helper_neon_uqrshl_s, gen_helper_neon_uqrshl_d, }; tcg_debug_assert(vece <= MO_64); tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, tcg_env, opr_sz, max_sz, 0, fns[vece]); } void gen_neon_sqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, int64_t c, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_2_ptr * const fns[] = { gen_helper_neon_sqshli_b, gen_helper_neon_sqshli_h, gen_helper_neon_sqshli_s, gen_helper_neon_sqshli_d, }; tcg_debug_assert(vece <= MO_64); tcg_debug_assert(c >= 0 && c <= (8 << vece)); tcg_gen_gvec_2_ptr(rd_ofs, rn_ofs, tcg_env, opr_sz, max_sz, c, fns[vece]); } void gen_neon_uqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, int64_t c, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_2_ptr * const fns[] = { gen_helper_neon_uqshli_b, gen_helper_neon_uqshli_h, gen_helper_neon_uqshli_s, gen_helper_neon_uqshli_d, }; tcg_debug_assert(vece <= MO_64); tcg_debug_assert(c >= 0 && c <= (8 << vece)); tcg_gen_gvec_2_ptr(rd_ofs, rn_ofs, tcg_env, opr_sz, max_sz, c, fns[vece]); } void gen_neon_sqshlui(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, int64_t c, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_2_ptr * const fns[] = { gen_helper_neon_sqshlui_b, gen_helper_neon_sqshlui_h, gen_helper_neon_sqshlui_s, gen_helper_neon_sqshlui_d, }; tcg_debug_assert(vece <= MO_64); tcg_debug_assert(c >= 0 && c <= (8 << vece)); tcg_gen_gvec_2_ptr(rd_ofs, rn_ofs, tcg_env, opr_sz, max_sz, c, fns[vece]); } void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b, MemOp esz) { uint64_t max = MAKE_64BIT_MASK(0, 8 << esz); TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_add_i64(tmp, a, b); tcg_gen_umin_i64(res, tmp, tcg_constant_i64(max)); tcg_gen_xor_i64(tmp, tmp, res); tcg_gen_or_i64(qc, qc, tmp); } void gen_uqadd_d(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_add_i64(t, a, b); tcg_gen_movcond_i64(TCG_COND_LTU, res, t, a, tcg_constant_i64(UINT64_MAX), t); tcg_gen_xor_i64(t, t, res); tcg_gen_or_i64(qc, qc, t); } static void gen_uqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec qc, TCGv_vec a, TCGv_vec b) { TCGv_vec x = tcg_temp_new_vec_matching(t); tcg_gen_add_vec(vece, x, a, b); tcg_gen_usadd_vec(vece, t, a, b); tcg_gen_xor_vec(vece, x, x, t); tcg_gen_or_vec(vece, qc, qc, x); } void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, INDEX_op_add_vec, 0 }; static const GVecGen4 ops[4] = { { .fniv = gen_uqadd_vec, .fno = gen_helper_gvec_uqadd_b, .write_aofs = true, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = gen_uqadd_vec, .fno = gen_helper_gvec_uqadd_h, .write_aofs = true, .opt_opc = vecop_list, .vece = MO_16 }, { .fniv = gen_uqadd_vec, .fno = gen_helper_gvec_uqadd_s, .write_aofs = true, .opt_opc = vecop_list, .vece = MO_32 }, { .fniv = gen_uqadd_vec, .fni8 = gen_uqadd_d, .fno = gen_helper_gvec_uqadd_d, .write_aofs = true, .opt_opc = vecop_list, .vece = MO_64 }, }; tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc)); tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b, MemOp esz) { int64_t max = MAKE_64BIT_MASK(0, (8 << esz) - 1); int64_t min = -1ll - max; TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_add_i64(tmp, a, b); tcg_gen_smin_i64(res, tmp, tcg_constant_i64(max)); tcg_gen_smax_i64(res, res, tcg_constant_i64(min)); tcg_gen_xor_i64(tmp, tmp, res); tcg_gen_or_i64(qc, qc, tmp); } void gen_sqadd_d(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_add_i64(t0, a, b); /* Compute signed overflow indication into T1 */ tcg_gen_xor_i64(t1, a, b); tcg_gen_xor_i64(t2, t0, a); tcg_gen_andc_i64(t1, t2, t1); /* Compute saturated value into T2 */ tcg_gen_sari_i64(t2, a, 63); tcg_gen_xori_i64(t2, t2, INT64_MAX); tcg_gen_movcond_i64(TCG_COND_LT, res, t1, tcg_constant_i64(0), t2, t0); tcg_gen_xor_i64(t0, t0, res); tcg_gen_or_i64(qc, qc, t0); } static void gen_sqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec qc, TCGv_vec a, TCGv_vec b) { TCGv_vec x = tcg_temp_new_vec_matching(t); tcg_gen_add_vec(vece, x, a, b); tcg_gen_ssadd_vec(vece, t, a, b); tcg_gen_xor_vec(vece, x, x, t); tcg_gen_or_vec(vece, qc, qc, x); } void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, INDEX_op_add_vec, 0 }; static const GVecGen4 ops[4] = { { .fniv = gen_sqadd_vec, .fno = gen_helper_gvec_sqadd_b, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_8 }, { .fniv = gen_sqadd_vec, .fno = gen_helper_gvec_sqadd_h, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_16 }, { .fniv = gen_sqadd_vec, .fno = gen_helper_gvec_sqadd_s, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_32 }, { .fniv = gen_sqadd_vec, .fni8 = gen_sqadd_d, .fno = gen_helper_gvec_sqadd_d, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_64 }, }; tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc)); tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b, MemOp esz) { TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_sub_i64(tmp, a, b); tcg_gen_smax_i64(res, tmp, tcg_constant_i64(0)); tcg_gen_xor_i64(tmp, tmp, res); tcg_gen_or_i64(qc, qc, tmp); } void gen_uqsub_d(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_sub_i64(t, a, b); tcg_gen_movcond_i64(TCG_COND_LTU, res, a, b, tcg_constant_i64(0), t); tcg_gen_xor_i64(t, t, res); tcg_gen_or_i64(qc, qc, t); } static void gen_uqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec qc, TCGv_vec a, TCGv_vec b) { TCGv_vec x = tcg_temp_new_vec_matching(t); tcg_gen_sub_vec(vece, x, a, b); tcg_gen_ussub_vec(vece, t, a, b); tcg_gen_xor_vec(vece, x, x, t); tcg_gen_or_vec(vece, qc, qc, x); } void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, INDEX_op_sub_vec, 0 }; static const GVecGen4 ops[4] = { { .fniv = gen_uqsub_vec, .fno = gen_helper_gvec_uqsub_b, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_8 }, { .fniv = gen_uqsub_vec, .fno = gen_helper_gvec_uqsub_h, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_16 }, { .fniv = gen_uqsub_vec, .fno = gen_helper_gvec_uqsub_s, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_32 }, { .fniv = gen_uqsub_vec, .fni8 = gen_uqsub_d, .fno = gen_helper_gvec_uqsub_d, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_64 }, }; tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc)); tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b, MemOp esz) { int64_t max = MAKE_64BIT_MASK(0, (8 << esz) - 1); int64_t min = -1ll - max; TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_sub_i64(tmp, a, b); tcg_gen_smin_i64(res, tmp, tcg_constant_i64(max)); tcg_gen_smax_i64(res, res, tcg_constant_i64(min)); tcg_gen_xor_i64(tmp, tmp, res); tcg_gen_or_i64(qc, qc, tmp); } void gen_sqsub_d(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_sub_i64(t0, a, b); /* Compute signed overflow indication into T1 */ tcg_gen_xor_i64(t1, a, b); tcg_gen_xor_i64(t2, t0, a); tcg_gen_and_i64(t1, t1, t2); /* Compute saturated value into T2 */ tcg_gen_sari_i64(t2, a, 63); tcg_gen_xori_i64(t2, t2, INT64_MAX); tcg_gen_movcond_i64(TCG_COND_LT, res, t1, tcg_constant_i64(0), t2, t0); tcg_gen_xor_i64(t0, t0, res); tcg_gen_or_i64(qc, qc, t0); } static void gen_sqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec qc, TCGv_vec a, TCGv_vec b) { TCGv_vec x = tcg_temp_new_vec_matching(t); tcg_gen_sub_vec(vece, x, a, b); tcg_gen_sssub_vec(vece, t, a, b); tcg_gen_xor_vec(vece, x, x, t); tcg_gen_or_vec(vece, qc, qc, x); } void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, INDEX_op_sub_vec, 0 }; static const GVecGen4 ops[4] = { { .fniv = gen_sqsub_vec, .fno = gen_helper_gvec_sqsub_b, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_8 }, { .fniv = gen_sqsub_vec, .fno = gen_helper_gvec_sqsub_h, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_16 }, { .fniv = gen_sqsub_vec, .fno = gen_helper_gvec_sqsub_s, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_32 }, { .fniv = gen_sqsub_vec, .fni8 = gen_sqsub_d, .fno = gen_helper_gvec_sqsub_d, .opt_opc = vecop_list, .write_aofs = true, .vece = MO_64 }, }; tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc)); tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } static void gen_sabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_sub_i32(t, a, b); tcg_gen_sub_i32(d, b, a); tcg_gen_movcond_i32(TCG_COND_LT, d, a, b, d, t); } static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_sub_i64(t, a, b); tcg_gen_sub_i64(d, b, a); tcg_gen_movcond_i64(TCG_COND_LT, d, a, b, d, t); } static void gen_sabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_smin_vec(vece, t, a, b); tcg_gen_smax_vec(vece, d, a, b); tcg_gen_sub_vec(vece, d, d, t); } void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, INDEX_op_smin_vec, INDEX_op_smax_vec, 0 }; static const GVecGen3 ops[4] = { { .fniv = gen_sabd_vec, .fno = gen_helper_gvec_sabd_b, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = gen_sabd_vec, .fno = gen_helper_gvec_sabd_h, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_sabd_i32, .fniv = gen_sabd_vec, .fno = gen_helper_gvec_sabd_s, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_sabd_i64, .fniv = gen_sabd_vec, .fno = gen_helper_gvec_sabd_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .opt_opc = vecop_list, .vece = MO_64 }, }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } static void gen_uabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_sub_i32(t, a, b); tcg_gen_sub_i32(d, b, a); tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, d, t); } static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_sub_i64(t, a, b); tcg_gen_sub_i64(d, b, a); tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, d, t); } static void gen_uabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_umin_vec(vece, t, a, b); tcg_gen_umax_vec(vece, d, a, b); tcg_gen_sub_vec(vece, d, d, t); } void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, INDEX_op_umin_vec, INDEX_op_umax_vec, 0 }; static const GVecGen3 ops[4] = { { .fniv = gen_uabd_vec, .fno = gen_helper_gvec_uabd_b, .opt_opc = vecop_list, .vece = MO_8 }, { .fniv = gen_uabd_vec, .fno = gen_helper_gvec_uabd_h, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_uabd_i32, .fniv = gen_uabd_vec, .fno = gen_helper_gvec_uabd_s, .opt_opc = vecop_list, .vece = MO_32 }, { .fni8 = gen_uabd_i64, .fniv = gen_uabd_vec, .fno = gen_helper_gvec_uabd_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .opt_opc = vecop_list, .vece = MO_64 }, }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } static void gen_saba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); gen_sabd_i32(t, a, b); tcg_gen_add_i32(d, d, t); } static void gen_saba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); gen_sabd_i64(t, a, b); tcg_gen_add_i64(d, d, t); } static void gen_saba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); gen_sabd_vec(vece, t, a, b); tcg_gen_add_vec(vece, d, d, t); } void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, INDEX_op_add_vec, INDEX_op_smin_vec, INDEX_op_smax_vec, 0 }; static const GVecGen3 ops[4] = { { .fniv = gen_saba_vec, .fno = gen_helper_gvec_saba_b, .opt_opc = vecop_list, .load_dest = true, .vece = MO_8 }, { .fniv = gen_saba_vec, .fno = gen_helper_gvec_saba_h, .opt_opc = vecop_list, .load_dest = true, .vece = MO_16 }, { .fni4 = gen_saba_i32, .fniv = gen_saba_vec, .fno = gen_helper_gvec_saba_s, .opt_opc = vecop_list, .load_dest = true, .vece = MO_32 }, { .fni8 = gen_saba_i64, .fniv = gen_saba_vec, .fno = gen_helper_gvec_saba_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .opt_opc = vecop_list, .load_dest = true, .vece = MO_64 }, }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } static void gen_uaba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); gen_uabd_i32(t, a, b); tcg_gen_add_i32(d, d, t); } static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); gen_uabd_i64(t, a, b); tcg_gen_add_i64(d, d, t); } static void gen_uaba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); gen_uabd_vec(vece, t, a, b); tcg_gen_add_vec(vece, d, d, t); } void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, INDEX_op_add_vec, INDEX_op_umin_vec, INDEX_op_umax_vec, 0 }; static const GVecGen3 ops[4] = { { .fniv = gen_uaba_vec, .fno = gen_helper_gvec_uaba_b, .opt_opc = vecop_list, .load_dest = true, .vece = MO_8 }, { .fniv = gen_uaba_vec, .fno = gen_helper_gvec_uaba_h, .opt_opc = vecop_list, .load_dest = true, .vece = MO_16 }, { .fni4 = gen_uaba_i32, .fniv = gen_uaba_vec, .fno = gen_helper_gvec_uaba_s, .opt_opc = vecop_list, .load_dest = true, .vece = MO_32 }, { .fni8 = gen_uaba_i64, .fniv = gen_uaba_vec, .fno = gen_helper_gvec_uaba_d, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .opt_opc = vecop_list, .load_dest = true, .vece = MO_64 }, }; tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); } void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_gvec_addp_b, gen_helper_gvec_addp_h, gen_helper_gvec_addp_s, gen_helper_gvec_addp_d, }; tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]); } void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_gvec_smaxp_b, gen_helper_gvec_smaxp_h, gen_helper_gvec_smaxp_s, }; tcg_debug_assert(vece <= MO_32); tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]); } void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_gvec_sminp_b, gen_helper_gvec_sminp_h, gen_helper_gvec_sminp_s, }; tcg_debug_assert(vece <= MO_32); tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]); } void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_gvec_umaxp_b, gen_helper_gvec_umaxp_h, gen_helper_gvec_umaxp_s, }; tcg_debug_assert(vece <= MO_32); tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]); } void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static gen_helper_gvec_3 * const fns[4] = { gen_helper_gvec_uminp_b, gen_helper_gvec_uminp_h, gen_helper_gvec_uminp_s, }; tcg_debug_assert(vece <= MO_32); tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, 0, fns[vece]); } static void gen_shadd8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_and_i64(t, a, b); tcg_gen_vec_sar8i_i64(a, a, 1); tcg_gen_vec_sar8i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); tcg_gen_vec_add8_i64(d, a, b); tcg_gen_vec_add8_i64(d, d, t); } static void gen_shadd16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_and_i64(t, a, b); tcg_gen_vec_sar16i_i64(a, a, 1); tcg_gen_vec_sar16i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); tcg_gen_vec_add16_i64(d, a, b); tcg_gen_vec_add16_i64(d, d, t); } static void gen_shadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_and_i32(t, a, b); tcg_gen_sari_i32(a, a, 1); tcg_gen_sari_i32(b, b, 1); tcg_gen_andi_i32(t, t, 1); tcg_gen_add_i32(d, a, b); tcg_gen_add_i32(d, d, t); } static void gen_shadd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_and_vec(vece, t, a, b); tcg_gen_sari_vec(vece, a, a, 1); tcg_gen_sari_vec(vece, b, b, 1); tcg_gen_and_vec(vece, t, t, tcg_constant_vec_matching(d, vece, 1)); tcg_gen_add_vec(vece, d, a, b); tcg_gen_add_vec(vece, d, d, t); } void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, INDEX_op_add_vec, 0 }; static const GVecGen3 g[] = { { .fni8 = gen_shadd8_i64, .fniv = gen_shadd_vec, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_shadd16_i64, .fniv = gen_shadd_vec, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_shadd_i32, .fniv = gen_shadd_vec, .opt_opc = vecop_list, .vece = MO_32 }, }; tcg_debug_assert(vece <= MO_32); tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &g[vece]); } static void gen_uhadd8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_and_i64(t, a, b); tcg_gen_vec_shr8i_i64(a, a, 1); tcg_gen_vec_shr8i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); tcg_gen_vec_add8_i64(d, a, b); tcg_gen_vec_add8_i64(d, d, t); } static void gen_uhadd16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_and_i64(t, a, b); tcg_gen_vec_shr16i_i64(a, a, 1); tcg_gen_vec_shr16i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); tcg_gen_vec_add16_i64(d, a, b); tcg_gen_vec_add16_i64(d, d, t); } static void gen_uhadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_and_i32(t, a, b); tcg_gen_shri_i32(a, a, 1); tcg_gen_shri_i32(b, b, 1); tcg_gen_andi_i32(t, t, 1); tcg_gen_add_i32(d, a, b); tcg_gen_add_i32(d, d, t); } static void gen_uhadd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_and_vec(vece, t, a, b); tcg_gen_shri_vec(vece, a, a, 1); tcg_gen_shri_vec(vece, b, b, 1); tcg_gen_and_vec(vece, t, t, tcg_constant_vec_matching(d, vece, 1)); tcg_gen_add_vec(vece, d, a, b); tcg_gen_add_vec(vece, d, d, t); } void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, INDEX_op_add_vec, 0 }; static const GVecGen3 g[] = { { .fni8 = gen_uhadd8_i64, .fniv = gen_uhadd_vec, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_uhadd16_i64, .fniv = gen_uhadd_vec, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_uhadd_i32, .fniv = gen_uhadd_vec, .opt_opc = vecop_list, .vece = MO_32 }, }; tcg_debug_assert(vece <= MO_32); tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &g[vece]); } static void gen_shsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andc_i64(t, b, a); tcg_gen_vec_sar8i_i64(a, a, 1); tcg_gen_vec_sar8i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); tcg_gen_vec_sub8_i64(d, a, b); tcg_gen_vec_sub8_i64(d, d, t); } static void gen_shsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andc_i64(t, b, a); tcg_gen_vec_sar16i_i64(a, a, 1); tcg_gen_vec_sar16i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); tcg_gen_vec_sub16_i64(d, a, b); tcg_gen_vec_sub16_i64(d, d, t); } static void gen_shsub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_andc_i32(t, b, a); tcg_gen_sari_i32(a, a, 1); tcg_gen_sari_i32(b, b, 1); tcg_gen_andi_i32(t, t, 1); tcg_gen_sub_i32(d, a, b); tcg_gen_sub_i32(d, d, t); } static void gen_shsub_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_andc_vec(vece, t, b, a); tcg_gen_sari_vec(vece, a, a, 1); tcg_gen_sari_vec(vece, b, b, 1); tcg_gen_and_vec(vece, t, t, tcg_constant_vec_matching(d, vece, 1)); tcg_gen_sub_vec(vece, d, a, b); tcg_gen_sub_vec(vece, d, d, t); } void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, INDEX_op_sub_vec, 0 }; static const GVecGen3 g[4] = { { .fni8 = gen_shsub8_i64, .fniv = gen_shsub_vec, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_shsub16_i64, .fniv = gen_shsub_vec, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_shsub_i32, .fniv = gen_shsub_vec, .opt_opc = vecop_list, .vece = MO_32 }, }; assert(vece <= MO_32); tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &g[vece]); } static void gen_uhsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andc_i64(t, b, a); tcg_gen_vec_shr8i_i64(a, a, 1); tcg_gen_vec_shr8i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); tcg_gen_vec_sub8_i64(d, a, b); tcg_gen_vec_sub8_i64(d, d, t); } static void gen_uhsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andc_i64(t, b, a); tcg_gen_vec_shr16i_i64(a, a, 1); tcg_gen_vec_shr16i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); tcg_gen_vec_sub16_i64(d, a, b); tcg_gen_vec_sub16_i64(d, d, t); } static void gen_uhsub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_andc_i32(t, b, a); tcg_gen_shri_i32(a, a, 1); tcg_gen_shri_i32(b, b, 1); tcg_gen_andi_i32(t, t, 1); tcg_gen_sub_i32(d, a, b); tcg_gen_sub_i32(d, d, t); } static void gen_uhsub_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_andc_vec(vece, t, b, a); tcg_gen_shri_vec(vece, a, a, 1); tcg_gen_shri_vec(vece, b, b, 1); tcg_gen_and_vec(vece, t, t, tcg_constant_vec_matching(d, vece, 1)); tcg_gen_sub_vec(vece, d, a, b); tcg_gen_sub_vec(vece, d, d, t); } void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, INDEX_op_sub_vec, 0 }; static const GVecGen3 g[4] = { { .fni8 = gen_uhsub8_i64, .fniv = gen_uhsub_vec, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_uhsub16_i64, .fniv = gen_uhsub_vec, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_uhsub_i32, .fniv = gen_uhsub_vec, .opt_opc = vecop_list, .vece = MO_32 }, }; assert(vece <= MO_32); tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &g[vece]); } static void gen_srhadd8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_or_i64(t, a, b); tcg_gen_vec_sar8i_i64(a, a, 1); tcg_gen_vec_sar8i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); tcg_gen_vec_add8_i64(d, a, b); tcg_gen_vec_add8_i64(d, d, t); } static void gen_srhadd16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_or_i64(t, a, b); tcg_gen_vec_sar16i_i64(a, a, 1); tcg_gen_vec_sar16i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); tcg_gen_vec_add16_i64(d, a, b); tcg_gen_vec_add16_i64(d, d, t); } static void gen_srhadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_or_i32(t, a, b); tcg_gen_sari_i32(a, a, 1); tcg_gen_sari_i32(b, b, 1); tcg_gen_andi_i32(t, t, 1); tcg_gen_add_i32(d, a, b); tcg_gen_add_i32(d, d, t); } static void gen_srhadd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_or_vec(vece, t, a, b); tcg_gen_sari_vec(vece, a, a, 1); tcg_gen_sari_vec(vece, b, b, 1); tcg_gen_and_vec(vece, t, t, tcg_constant_vec_matching(d, vece, 1)); tcg_gen_add_vec(vece, d, a, b); tcg_gen_add_vec(vece, d, d, t); } void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, INDEX_op_add_vec, 0 }; static const GVecGen3 g[] = { { .fni8 = gen_srhadd8_i64, .fniv = gen_srhadd_vec, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_srhadd16_i64, .fniv = gen_srhadd_vec, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_srhadd_i32, .fniv = gen_srhadd_vec, .opt_opc = vecop_list, .vece = MO_32 }, }; assert(vece <= MO_32); tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &g[vece]); } static void gen_urhadd8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_or_i64(t, a, b); tcg_gen_vec_shr8i_i64(a, a, 1); tcg_gen_vec_shr8i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); tcg_gen_vec_add8_i64(d, a, b); tcg_gen_vec_add8_i64(d, d, t); } static void gen_urhadd16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_or_i64(t, a, b); tcg_gen_vec_shr16i_i64(a, a, 1); tcg_gen_vec_shr16i_i64(b, b, 1); tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); tcg_gen_vec_add16_i64(d, a, b); tcg_gen_vec_add16_i64(d, d, t); } static void gen_urhadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { TCGv_i32 t = tcg_temp_new_i32(); tcg_gen_or_i32(t, a, b); tcg_gen_shri_i32(a, a, 1); tcg_gen_shri_i32(b, b, 1); tcg_gen_andi_i32(t, t, 1); tcg_gen_add_i32(d, a, b); tcg_gen_add_i32(d, d, t); } static void gen_urhadd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { TCGv_vec t = tcg_temp_new_vec_matching(d); tcg_gen_or_vec(vece, t, a, b); tcg_gen_shri_vec(vece, a, a, 1); tcg_gen_shri_vec(vece, b, b, 1); tcg_gen_and_vec(vece, t, t, tcg_constant_vec_matching(d, vece, 1)); tcg_gen_add_vec(vece, d, a, b); tcg_gen_add_vec(vece, d, d, t); } void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) { static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, INDEX_op_add_vec, 0 }; static const GVecGen3 g[] = { { .fni8 = gen_urhadd8_i64, .fniv = gen_urhadd_vec, .opt_opc = vecop_list, .vece = MO_8 }, { .fni8 = gen_urhadd16_i64, .fniv = gen_urhadd_vec, .opt_opc = vecop_list, .vece = MO_16 }, { .fni4 = gen_urhadd_i32, .fniv = gen_urhadd_vec, .opt_opc = vecop_list, .vece = MO_32 }, }; assert(vece <= MO_32); tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &g[vece]); }