/* * ARM generic helpers. * * This code is licensed under the GNU GPL v2 or later. * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "qemu/osdep.h" #include "qemu/units.h" #include "target/arm/idau.h" #include "trace.h" #include "cpu.h" #include "internals.h" #include "exec/gdbstub.h" #include "exec/helper-proto.h" #include "qemu/host-utils.h" #include "qemu/main-loop.h" #include "qemu/bitops.h" #include "qemu/crc32c.h" #include "qemu/qemu-print.h" #include "exec/exec-all.h" #include /* For crc32 */ #include "hw/irq.h" #include "hw/semihosting/semihost.h" #include "sysemu/cpus.h" #include "sysemu/kvm.h" #include "qemu/range.h" #include "qapi/qapi-commands-machine-target.h" #include "qapi/error.h" #include "qemu/guest-random.h" #ifdef CONFIG_TCG #include "arm_ldst.h" #include "exec/cpu_ldst.h" #endif #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ #ifndef CONFIG_USER_ONLY static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, target_ulong *page_size_ptr, ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); #endif static void switch_mode(CPUARMState *env, int mode); static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) { int nregs; /* VFP data registers are always little-endian. */ nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; if (reg < nregs) { stq_le_p(buf, *aa32_vfp_dreg(env, reg)); return 8; } if (arm_feature(env, ARM_FEATURE_NEON)) { /* Aliases for Q regs. */ nregs += 16; if (reg < nregs) { uint64_t *q = aa32_vfp_qreg(env, reg - 32); stq_le_p(buf, q[0]); stq_le_p(buf + 8, q[1]); return 16; } } switch (reg - nregs) { case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; } return 0; } static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) { int nregs; nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; if (reg < nregs) { *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); return 8; } if (arm_feature(env, ARM_FEATURE_NEON)) { nregs += 16; if (reg < nregs) { uint64_t *q = aa32_vfp_qreg(env, reg - 32); q[0] = ldq_le_p(buf); q[1] = ldq_le_p(buf + 8); return 16; } } switch (reg - nregs) { case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; } return 0; } static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) { switch (reg) { case 0 ... 31: /* 128 bit FP register */ { uint64_t *q = aa64_vfp_qreg(env, reg); stq_le_p(buf, q[0]); stq_le_p(buf + 8, q[1]); return 16; } case 32: /* FPSR */ stl_p(buf, vfp_get_fpsr(env)); return 4; case 33: /* FPCR */ stl_p(buf, vfp_get_fpcr(env)); return 4; default: return 0; } } static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) { switch (reg) { case 0 ... 31: /* 128 bit FP register */ { uint64_t *q = aa64_vfp_qreg(env, reg); q[0] = ldq_le_p(buf); q[1] = ldq_le_p(buf + 8); return 16; } case 32: /* FPSR */ vfp_set_fpsr(env, ldl_p(buf)); return 4; case 33: /* FPCR */ vfp_set_fpcr(env, ldl_p(buf)); return 4; default: return 0; } } static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) { assert(ri->fieldoffset); if (cpreg_field_is_64bit(ri)) { return CPREG_FIELD64(env, ri); } else { return CPREG_FIELD32(env, ri); } } static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { assert(ri->fieldoffset); if (cpreg_field_is_64bit(ri)) { CPREG_FIELD64(env, ri) = value; } else { CPREG_FIELD32(env, ri) = value; } } static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) { return (char *)env + ri->fieldoffset; } uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) { /* Raw read of a coprocessor register (as needed for migration, etc). */ if (ri->type & ARM_CP_CONST) { return ri->resetvalue; } else if (ri->raw_readfn) { return ri->raw_readfn(env, ri); } else if (ri->readfn) { return ri->readfn(env, ri); } else { return raw_read(env, ri); } } static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t v) { /* Raw write of a coprocessor register (as needed for migration, etc). * Note that constant registers are treated as write-ignored; the * caller should check for success by whether a readback gives the * value written. */ if (ri->type & ARM_CP_CONST) { return; } else if (ri->raw_writefn) { ri->raw_writefn(env, ri, v); } else if (ri->writefn) { ri->writefn(env, ri, v); } else { raw_write(env, ri, v); } } static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) { ARMCPU *cpu = env_archcpu(env); const ARMCPRegInfo *ri; uint32_t key; key = cpu->dyn_xml.cpregs_keys[reg]; ri = get_arm_cp_reginfo(cpu->cp_regs, key); if (ri) { if (cpreg_field_is_64bit(ri)) { return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); } else { return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); } } return 0; } static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) { return 0; } static bool raw_accessors_invalid(const ARMCPRegInfo *ri) { /* Return true if the regdef would cause an assertion if you called * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a * program bug for it not to have the NO_RAW flag). * NB that returning false here doesn't necessarily mean that calling * read/write_raw_cp_reg() is safe, because we can't distinguish "has * read/write access functions which are safe for raw use" from "has * read/write access functions which have side effects but has forgotten * to provide raw access functions". * The tests here line up with the conditions in read/write_raw_cp_reg() * and assertions in raw_read()/raw_write(). */ if ((ri->type & ARM_CP_CONST) || ri->fieldoffset || ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { return false; } return true; } bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) { /* Write the coprocessor state from cpu->env to the (index,value) list. */ int i; bool ok = true; for (i = 0; i < cpu->cpreg_array_len; i++) { uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); const ARMCPRegInfo *ri; uint64_t newval; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!ri) { ok = false; continue; } if (ri->type & ARM_CP_NO_RAW) { continue; } newval = read_raw_cp_reg(&cpu->env, ri); if (kvm_sync) { /* * Only sync if the previous list->cpustate sync succeeded. * Rather than tracking the success/failure state for every * item in the list, we just recheck "does the raw write we must * have made in write_list_to_cpustate() read back OK" here. */ uint64_t oldval = cpu->cpreg_values[i]; if (oldval == newval) { continue; } write_raw_cp_reg(&cpu->env, ri, oldval); if (read_raw_cp_reg(&cpu->env, ri) != oldval) { continue; } write_raw_cp_reg(&cpu->env, ri, newval); } cpu->cpreg_values[i] = newval; } return ok; } bool write_list_to_cpustate(ARMCPU *cpu) { int i; bool ok = true; for (i = 0; i < cpu->cpreg_array_len; i++) { uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); uint64_t v = cpu->cpreg_values[i]; const ARMCPRegInfo *ri; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!ri) { ok = false; continue; } if (ri->type & ARM_CP_NO_RAW) { continue; } /* Write value and confirm it reads back as written * (to catch read-only registers and partially read-only * registers where the incoming migration value doesn't match) */ write_raw_cp_reg(&cpu->env, ri, v); if (read_raw_cp_reg(&cpu->env, ri) != v) { ok = false; } } return ok; } static void add_cpreg_to_list(gpointer key, gpointer opaque) { ARMCPU *cpu = opaque; uint64_t regidx; const ARMCPRegInfo *ri; regidx = *(uint32_t *)key; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); /* The value array need not be initialized at this point */ cpu->cpreg_array_len++; } } static void count_cpreg(gpointer key, gpointer opaque) { ARMCPU *cpu = opaque; uint64_t regidx; const ARMCPRegInfo *ri; regidx = *(uint32_t *)key; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { cpu->cpreg_array_len++; } } static gint cpreg_key_compare(gconstpointer a, gconstpointer b) { uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); if (aidx > bidx) { return 1; } if (aidx < bidx) { return -1; } return 0; } void init_cpreg_list(ARMCPU *cpu) { /* Initialise the cpreg_tuples[] array based on the cp_regs hash. * Note that we require cpreg_tuples[] to be sorted by key ID. */ GList *keys; int arraylen; keys = g_hash_table_get_keys(cpu->cp_regs); keys = g_list_sort(keys, cpreg_key_compare); cpu->cpreg_array_len = 0; g_list_foreach(keys, count_cpreg, cpu); arraylen = cpu->cpreg_array_len; cpu->cpreg_indexes = g_new(uint64_t, arraylen); cpu->cpreg_values = g_new(uint64_t, arraylen); cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; cpu->cpreg_array_len = 0; g_list_foreach(keys, add_cpreg_to_list, cpu); assert(cpu->cpreg_array_len == arraylen); g_list_free(keys); } /* * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but * they are accessible when EL3 is using AArch64 regardless of EL3.NS. * * access_el3_aa32ns: Used to check AArch32 register views. * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. */ static CPAccessResult access_el3_aa32ns(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { bool secure = arm_is_secure_below_el3(env); assert(!arm_el_is_aa64(env, 3)); if (secure) { return CP_ACCESS_TRAP_UNCATEGORIZED; } return CP_ACCESS_OK; } static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (!arm_el_is_aa64(env, 3)) { return access_el3_aa32ns(env, ri, isread); } return CP_ACCESS_OK; } /* Some secure-only AArch32 registers trap to EL3 if used from * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). * Note that an access from Secure EL1 can only happen if EL3 is AArch64. * We assume that the .access field is set to PL1_RW. */ static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 3) { return CP_ACCESS_OK; } if (arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL3; } /* This will be EL1 NS and EL2 NS, which just UNDEF */ return CP_ACCESS_TRAP_UNCATEGORIZED; } /* Check for traps to "powerdown debug" registers, which are controlled * by MDCR.TDOSA */ static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { int el = arm_current_el(env); bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || (env->cp15.mdcr_el2 & MDCR_TDE) || (arm_hcr_el2_eff(env) & HCR_TGE); if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } /* Check for traps to "debug ROM" registers, which are controlled * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. */ static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { int el = arm_current_el(env); bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || (env->cp15.mdcr_el2 & MDCR_TDE) || (arm_hcr_el2_eff(env) & HCR_TGE); if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } /* Check for traps to general debug registers, which are controlled * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. */ static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { int el = arm_current_el(env); bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || (env->cp15.mdcr_el2 & MDCR_TDE) || (arm_hcr_el2_eff(env) & HCR_TGE); if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } /* Check for traps to performance monitor registers, which are controlled * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. */ static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { int el = arm_current_el(env); if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) && !arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); raw_write(env, ri, value); tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ } static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); if (raw_read(env, ri) != value) { /* Unlike real hardware the qemu TLB uses virtual addresses, * not modified virtual addresses, so this causes a TLB flush. */ tlb_flush(CPU(cpu)); raw_write(env, ri, value); } } static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) && !extended_addresses_enabled(env)) { /* For VMSA (when not using the LPAE long descriptor page table * format) this register includes the ASID, so do a TLB flush. * For PMSA it is purely a process ID and no action is needed. */ tlb_flush(CPU(cpu)); } raw_write(env, ri, value); } /* IS variants of TLB operations must affect all cores */ static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); tlb_flush_all_cpus_synced(cs); } static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); tlb_flush_all_cpus_synced(cs); } static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); } static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); } /* * Non-IS variants of TLB operations are upgraded to * IS versions if we are at NS EL1 and HCR_EL2.FB is set to * force broadcast of these operations. */ static bool tlb_force_broadcast(CPUARMState *env) { return (env->cp15.hcr_el2 & HCR_FB) && arm_current_el(env) == 1 && arm_is_secure_below_el3(env); } static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate all (TLBIALL) */ ARMCPU *cpu = env_archcpu(env); if (tlb_force_broadcast(env)) { tlbiall_is_write(env, NULL, value); return; } tlb_flush(CPU(cpu)); } static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ ARMCPU *cpu = env_archcpu(env); if (tlb_force_broadcast(env)) { tlbimva_is_write(env, NULL, value); return; } tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); } static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by ASID (TLBIASID) */ ARMCPU *cpu = env_archcpu(env); if (tlb_force_broadcast(env)) { tlbiasid_is_write(env, NULL, value); return; } tlb_flush(CPU(cpu)); } static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ ARMCPU *cpu = env_archcpu(env); if (tlb_force_broadcast(env)) { tlbimvaa_is_write(env, NULL, value); return; } tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); } static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0 | ARMMMUIdxBit_S2NS); } static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0 | ARMMMUIdxBit_S2NS); } static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by IPA. This has to invalidate any structures that * contain only stage 2 translation information, but does not need * to apply to structures that contain combined stage 1 and stage 2 * translation information. * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. */ CPUState *cs = env_cpu(env); uint64_t pageaddr; if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { return; } pageaddr = sextract64(value << 12, 0, 40); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); } static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); uint64_t pageaddr; if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { return; } pageaddr = sextract64(value << 12, 0, 40); tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S2NS); } static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); } static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); } static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); } static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S1E2); } static const ARMCPRegInfo cp_reginfo[] = { /* Define the secure and non-secure FCSE identifier CP registers * separately because there is no secure bank in V8 (no _EL3). This allows * the secure register to be properly reset and migrated. There is also no * v8 EL1 version of the register so the non-secure instance stands alone. */ { .name = "FCSEIDR", .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, { .name = "FCSEIDR_S", .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, /* Define the secure and non-secure context identifier CP registers * separately because there is no secure bank in V8 (no _EL3). This allows * the secure register to be properly reset and migrated. In the * non-secure case, the 32-bit register will have reset and migration * disabled during registration as it is handled by the 64-bit instance. */ { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v8_cp_reginfo[] = { /* NB: Some of these registers exist in v8 but with more precise * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). */ /* MMU Domain access control / MPU write buffer control */ { .name = "DACR", .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), offsetoflow32(CPUARMState, cp15.dacr_ns) } }, /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. * For v6 and v5, these mappings are overly broad. */ { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, /* Cache maintenance ops; some of this space may be overridden later. */ { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v6_cp_reginfo[] = { /* Not all pre-v6 cores implemented this WFI, so this is slightly * over-broad. */ { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, .access = PL1_W, .type = ARM_CP_WFI }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v7_cp_reginfo[] = { /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which * is UNPREDICTABLE; we choose to NOP as most implementations do). */ { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_WFI }, /* L1 cache lockdown. Not architectural in v6 and earlier but in practice * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and * OMAPCP will override this space. */ { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), .resetvalue = 0 }, { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), .resetvalue = 0 }, /* v6 doesn't have the cache ID registers but Linux reads them anyway */ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = 0 }, /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; * implementing it as RAZ means the "debug architecture version" bits * will read as a reserved value, which should cause Linux to not try * to use the debug hardware. */ { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, /* MMU TLB control. Note that the wildcarding means we cover not just * the unified TLB ops but also the dside/iside/inner-shareable variants. */ { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, .type = ARM_CP_NO_RAW }, { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, .type = ARM_CP_NO_RAW }, { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, .type = ARM_CP_NO_RAW }, { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, .type = ARM_CP_NO_RAW }, { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, REGINFO_SENTINEL }; static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint32_t mask = 0; /* In ARMv8 most bits of CPACR_EL1 are RES0. */ if (!arm_feature(env, ARM_FEATURE_V8)) { /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. */ if (arm_feature(env, ARM_FEATURE_VFP)) { /* VFP coprocessor: cp10 & cp11 [23:20] */ mask |= (1 << 31) | (1 << 30) | (0xf << 20); if (!arm_feature(env, ARM_FEATURE_NEON)) { /* ASEDIS [31] bit is RAO/WI */ value |= (1 << 31); } /* VFPv3 and upwards with NEON implement 32 double precision * registers (D0-D31). */ if (!arm_feature(env, ARM_FEATURE_NEON) || !arm_feature(env, ARM_FEATURE_VFP3)) { /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ value |= (1 << 30); } } value &= mask; } /* * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. */ if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { value &= ~(0xf << 20); value |= env->cp15.cpacr_el1 & (0xf << 20); } env->cp15.cpacr_el1 = value; } static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) { /* * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. */ uint64_t value = env->cp15.cpacr_el1; if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { value &= ~(0xf << 20); } return value; } static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) { /* Call cpacr_write() so that we reset with the correct RAO bits set * for our CPU features. */ cpacr_write(env, ri, 0); } static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_feature(env, ARM_FEATURE_V8)) { /* Check if CPACR accesses are to be trapped to EL2 */ if (arm_current_el(env) == 1 && (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { return CP_ACCESS_TRAP_EL2; /* Check if CPACR accesses are to be trapped to EL3 */ } else if (arm_current_el(env) < 3 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { return CP_ACCESS_TRAP_EL3; } } return CP_ACCESS_OK; } static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* Check if CPTR accesses are set to trap to EL3 */ if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } static const ARMCPRegInfo v6_cp_reginfo[] = { /* prefetch by MVA in v6, NOP in v7 */ { .name = "MVA_prefetch", .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, /* We need to break the TB after ISB to execute self-modifying code * correctly and also to take any pending interrupts immediately. * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. */ { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, .access = PL0_W, .type = ARM_CP_NOP }, { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, .access = PL0_W, .type = ARM_CP_NOP }, { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), offsetof(CPUARMState, cp15.ifar_ns) }, .resetvalue = 0, }, /* Watchpoint Fault Address Register : should actually only be present * for 1136, 1176, 11MPCore. */ { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, REGINFO_SENTINEL }; /* Definitions for the PMU registers */ #define PMCRN_MASK 0xf800 #define PMCRN_SHIFT 11 #define PMCRLC 0x40 #define PMCRDP 0x10 #define PMCRD 0x8 #define PMCRC 0x4 #define PMCRP 0x2 #define PMCRE 0x1 #define PMXEVTYPER_P 0x80000000 #define PMXEVTYPER_U 0x40000000 #define PMXEVTYPER_NSK 0x20000000 #define PMXEVTYPER_NSU 0x10000000 #define PMXEVTYPER_NSH 0x08000000 #define PMXEVTYPER_M 0x04000000 #define PMXEVTYPER_MT 0x02000000 #define PMXEVTYPER_EVTCOUNT 0x0000ffff #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ PMXEVTYPER_M | PMXEVTYPER_MT | \ PMXEVTYPER_EVTCOUNT) #define PMCCFILTR 0xf8000000 #define PMCCFILTR_M PMXEVTYPER_M #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) static inline uint32_t pmu_num_counters(CPUARMState *env) { return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; } /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ static inline uint64_t pmu_counter_mask(CPUARMState *env) { return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); } typedef struct pm_event { uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ /* If the event is supported on this CPU (used to generate PMCEID[01]) */ bool (*supported)(CPUARMState *); /* * Retrieve the current count of the underlying event. The programmed * counters hold a difference from the return value from this function */ uint64_t (*get_count)(CPUARMState *); /* * Return how many nanoseconds it will take (at a minimum) for count events * to occur. A negative value indicates the counter will never overflow, or * that the counter has otherwise arranged for the overflow bit to be set * and the PMU interrupt to be raised on overflow. */ int64_t (*ns_per_count)(uint64_t); } pm_event; static bool event_always_supported(CPUARMState *env) { return true; } static uint64_t swinc_get_count(CPUARMState *env) { /* * SW_INCR events are written directly to the pmevcntr's by writes to * PMSWINC, so there is no underlying count maintained by the PMU itself */ return 0; } static int64_t swinc_ns_per(uint64_t ignored) { return -1; } /* * Return the underlying cycle count for the PMU cycle counters. If we're in * usermode, simply return 0. */ static uint64_t cycles_get_count(CPUARMState *env) { #ifndef CONFIG_USER_ONLY return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); #else return cpu_get_host_ticks(); #endif } #ifndef CONFIG_USER_ONLY static int64_t cycles_ns_per(uint64_t cycles) { return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; } static bool instructions_supported(CPUARMState *env) { return use_icount == 1 /* Precise instruction counting */; } static uint64_t instructions_get_count(CPUARMState *env) { return (uint64_t)cpu_get_icount_raw(); } static int64_t instructions_ns_per(uint64_t icount) { return cpu_icount_to_ns((int64_t)icount); } #endif static const pm_event pm_events[] = { { .number = 0x000, /* SW_INCR */ .supported = event_always_supported, .get_count = swinc_get_count, .ns_per_count = swinc_ns_per, }, #ifndef CONFIG_USER_ONLY { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ .supported = instructions_supported, .get_count = instructions_get_count, .ns_per_count = instructions_ns_per, }, { .number = 0x011, /* CPU_CYCLES, Cycle */ .supported = event_always_supported, .get_count = cycles_get_count, .ns_per_count = cycles_ns_per, } #endif }; /* * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of * events (i.e. the statistical profiling extension), this implementation * should first be updated to something sparse instead of the current * supported_event_map[] array. */ #define MAX_EVENT_ID 0x11 #define UNSUPPORTED_EVENT UINT16_MAX static uint16_t supported_event_map[MAX_EVENT_ID + 1]; /* * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map * of ARM event numbers to indices in our pm_events array. * * Note: Events in the 0x40XX range are not currently supported. */ void pmu_init(ARMCPU *cpu) { unsigned int i; /* * Empty supported_event_map and cpu->pmceid[01] before adding supported * events to them */ for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { supported_event_map[i] = UNSUPPORTED_EVENT; } cpu->pmceid0 = 0; cpu->pmceid1 = 0; for (i = 0; i < ARRAY_SIZE(pm_events); i++) { const pm_event *cnt = &pm_events[i]; assert(cnt->number <= MAX_EVENT_ID); /* We do not currently support events in the 0x40xx range */ assert(cnt->number <= 0x3f); if (cnt->supported(&cpu->env)) { supported_event_map[cnt->number] = i; uint64_t event_mask = 1ULL << (cnt->number & 0x1f); if (cnt->number & 0x20) { cpu->pmceid1 |= event_mask; } else { cpu->pmceid0 |= event_mask; } } } } /* * Check at runtime whether a PMU event is supported for the current machine */ static bool event_supported(uint16_t number) { if (number > MAX_EVENT_ID) { return false; } return supported_event_map[number] != UNSUPPORTED_EVENT; } static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* Performance monitor registers user accessibility is controlled * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable * trapping to EL2 or EL3 for other accesses. */ int el = arm_current_el(env); if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { return CP_ACCESS_TRAP; } if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) && !arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* ER: event counter read trap control */ if (arm_feature(env, ARM_FEATURE_V8) && arm_current_el(env) == 0 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 && isread) { return CP_ACCESS_OK; } return pmreg_access(env, ri, isread); } static CPAccessResult pmreg_access_swinc(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* SW: software increment write trap control */ if (arm_feature(env, ARM_FEATURE_V8) && arm_current_el(env) == 0 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 && !isread) { return CP_ACCESS_OK; } return pmreg_access(env, ri, isread); } static CPAccessResult pmreg_access_selr(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* ER: event counter read trap control */ if (arm_feature(env, ARM_FEATURE_V8) && arm_current_el(env) == 0 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { return CP_ACCESS_OK; } return pmreg_access(env, ri, isread); } static CPAccessResult pmreg_access_ccntr(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* CR: cycle counter read trap control */ if (arm_feature(env, ARM_FEATURE_V8) && arm_current_el(env) == 0 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 && isread) { return CP_ACCESS_OK; } return pmreg_access(env, ri, isread); } /* Returns true if the counter (pass 31 for PMCCNTR) should count events using * the current EL, security state, and register configuration. */ static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) { uint64_t filter; bool e, p, u, nsk, nsu, nsh, m; bool enabled, prohibited, filtered; bool secure = arm_is_secure(env); int el = arm_current_el(env); uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; if (!arm_feature(env, ARM_FEATURE_PMU)) { return false; } if (!arm_feature(env, ARM_FEATURE_EL2) || (counter < hpmn || counter == 31)) { e = env->cp15.c9_pmcr & PMCRE; } else { e = env->cp15.mdcr_el2 & MDCR_HPME; } enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); if (!secure) { if (el == 2 && (counter < hpmn || counter == 31)) { prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; } else { prohibited = false; } } else { prohibited = arm_feature(env, ARM_FEATURE_EL3) && (env->cp15.mdcr_el3 & MDCR_SPME); } if (prohibited && counter == 31) { prohibited = env->cp15.c9_pmcr & PMCRDP; } if (counter == 31) { filter = env->cp15.pmccfiltr_el0; } else { filter = env->cp15.c14_pmevtyper[counter]; } p = filter & PMXEVTYPER_P; u = filter & PMXEVTYPER_U; nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); m = arm_el_is_aa64(env, 1) && arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); if (el == 0) { filtered = secure ? u : u != nsu; } else if (el == 1) { filtered = secure ? p : p != nsk; } else if (el == 2) { filtered = !nsh; } else { /* EL3 */ filtered = m != p; } if (counter != 31) { /* * If not checking PMCCNTR, ensure the counter is setup to an event we * support */ uint16_t event = filter & PMXEVTYPER_EVTCOUNT; if (!event_supported(event)) { return false; } } return enabled && !prohibited && !filtered; } static void pmu_update_irq(CPUARMState *env) { ARMCPU *cpu = env_archcpu(env); qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); } /* * Ensure c15_ccnt is the guest-visible count so that operations such as * enabling/disabling the counter or filtering, modifying the count itself, * etc. can be done logically. This is essentially a no-op if the counter is * not enabled at the time of the call. */ static void pmccntr_op_start(CPUARMState *env) { uint64_t cycles = cycles_get_count(env); if (pmu_counter_enabled(env, 31)) { uint64_t eff_cycles = cycles; if (env->cp15.c9_pmcr & PMCRD) { /* Increment once every 64 processor clock cycles */ eff_cycles /= 64; } uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1ull << 63 : 1ull << 31; if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { env->cp15.c9_pmovsr |= (1 << 31); pmu_update_irq(env); } env->cp15.c15_ccnt = new_pmccntr; } env->cp15.c15_ccnt_delta = cycles; } /* * If PMCCNTR is enabled, recalculate the delta between the clock and the * guest-visible count. A call to pmccntr_op_finish should follow every call to * pmccntr_op_start. */ static void pmccntr_op_finish(CPUARMState *env) { if (pmu_counter_enabled(env, 31)) { #ifndef CONFIG_USER_ONLY /* Calculate when the counter will next overflow */ uint64_t remaining_cycles = -env->cp15.c15_ccnt; if (!(env->cp15.c9_pmcr & PMCRLC)) { remaining_cycles = (uint32_t)remaining_cycles; } int64_t overflow_in = cycles_ns_per(remaining_cycles); if (overflow_in > 0) { int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + overflow_in; ARMCPU *cpu = env_archcpu(env); timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); } #endif uint64_t prev_cycles = env->cp15.c15_ccnt_delta; if (env->cp15.c9_pmcr & PMCRD) { /* Increment once every 64 processor clock cycles */ prev_cycles /= 64; } env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; } } static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) { uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; uint64_t count = 0; if (event_supported(event)) { uint16_t event_idx = supported_event_map[event]; count = pm_events[event_idx].get_count(env); } if (pmu_counter_enabled(env, counter)) { uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { env->cp15.c9_pmovsr |= (1 << counter); pmu_update_irq(env); } env->cp15.c14_pmevcntr[counter] = new_pmevcntr; } env->cp15.c14_pmevcntr_delta[counter] = count; } static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) { if (pmu_counter_enabled(env, counter)) { #ifndef CONFIG_USER_ONLY uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; uint16_t event_idx = supported_event_map[event]; uint64_t delta = UINT32_MAX - (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); if (overflow_in > 0) { int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + overflow_in; ARMCPU *cpu = env_archcpu(env); timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); } #endif env->cp15.c14_pmevcntr_delta[counter] -= env->cp15.c14_pmevcntr[counter]; } } void pmu_op_start(CPUARMState *env) { unsigned int i; pmccntr_op_start(env); for (i = 0; i < pmu_num_counters(env); i++) { pmevcntr_op_start(env, i); } } void pmu_op_finish(CPUARMState *env) { unsigned int i; pmccntr_op_finish(env); for (i = 0; i < pmu_num_counters(env); i++) { pmevcntr_op_finish(env, i); } } void pmu_pre_el_change(ARMCPU *cpu, void *ignored) { pmu_op_start(&cpu->env); } void pmu_post_el_change(ARMCPU *cpu, void *ignored) { pmu_op_finish(&cpu->env); } void arm_pmu_timer_cb(void *opaque) { ARMCPU *cpu = opaque; /* * Update all the counter values based on the current underlying counts, * triggering interrupts to be raised, if necessary. pmu_op_finish() also * has the effect of setting the cpu->pmu_timer to the next earliest time a * counter may expire. */ pmu_op_start(&cpu->env); pmu_op_finish(&cpu->env); } static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { pmu_op_start(env); if (value & PMCRC) { /* The counter has been reset */ env->cp15.c15_ccnt = 0; } if (value & PMCRP) { unsigned int i; for (i = 0; i < pmu_num_counters(env); i++) { env->cp15.c14_pmevcntr[i] = 0; } } /* only the DP, X, D and E bits are writable */ env->cp15.c9_pmcr &= ~0x39; env->cp15.c9_pmcr |= (value & 0x39); pmu_op_finish(env); } static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { unsigned int i; for (i = 0; i < pmu_num_counters(env); i++) { /* Increment a counter's count iff: */ if ((value & (1 << i)) && /* counter's bit is set */ /* counter is enabled and not filtered */ pmu_counter_enabled(env, i) && /* counter is SW_INCR */ (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { pmevcntr_op_start(env, i); /* * Detect if this write causes an overflow since we can't predict * PMSWINC overflows like we can for other events */ uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { env->cp15.c9_pmovsr |= (1 << i); pmu_update_irq(env); } env->cp15.c14_pmevcntr[i] = new_pmswinc; pmevcntr_op_finish(env, i); } } } static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) { uint64_t ret; pmccntr_op_start(env); ret = env->cp15.c15_ccnt; pmccntr_op_finish(env); return ret; } static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are * accessed. */ env->cp15.c9_pmselr = value & 0x1f; } static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { pmccntr_op_start(env); env->cp15.c15_ccnt = value; pmccntr_op_finish(env); } static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint64_t cur_val = pmccntr_read(env, NULL); pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); } static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { pmccntr_op_start(env); env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; pmccntr_op_finish(env); } static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { pmccntr_op_start(env); /* M is not accessible from AArch32 */ env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | (value & PMCCFILTR); pmccntr_op_finish(env); } static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) { /* M is not visible in AArch32 */ return env->cp15.pmccfiltr_el0 & PMCCFILTR; } static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= pmu_counter_mask(env); env->cp15.c9_pmcnten |= value; } static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= pmu_counter_mask(env); env->cp15.c9_pmcnten &= ~value; } static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= pmu_counter_mask(env); env->cp15.c9_pmovsr &= ~value; pmu_update_irq(env); } static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= pmu_counter_mask(env); env->cp15.c9_pmovsr |= value; pmu_update_irq(env); } static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value, const uint8_t counter) { if (counter == 31) { pmccfiltr_write(env, ri, value); } else if (counter < pmu_num_counters(env)) { pmevcntr_op_start(env, counter); /* * If this counter's event type is changing, store the current * underlying count for the new type in c14_pmevcntr_delta[counter] so * pmevcntr_op_finish has the correct baseline when it converts back to * a delta. */ uint16_t old_event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; if (old_event != new_event) { uint64_t count = 0; if (event_supported(new_event)) { uint16_t event_idx = supported_event_map[new_event]; count = pm_events[event_idx].get_count(env); } env->cp15.c14_pmevcntr_delta[counter] = count; } env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; pmevcntr_op_finish(env, counter); } /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when * PMSELR value is equal to or greater than the number of implemented * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. */ } static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, const uint8_t counter) { if (counter == 31) { return env->cp15.pmccfiltr_el0; } else if (counter < pmu_num_counters(env)) { return env->cp15.c14_pmevtyper[counter]; } else { /* * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). */ return 0; } } static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); pmevtyper_write(env, ri, value, counter); } static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); env->cp15.c14_pmevtyper[counter] = value; /* * pmevtyper_rawwrite is called between a pair of pmu_op_start and * pmu_op_finish calls when loading saved state for a migration. Because * we're potentially updating the type of event here, the value written to * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a * different counter type. Therefore, we need to set this value to the * current count for the counter type we're writing so that pmu_op_finish * has the correct count for its calculation. */ uint16_t event = value & PMXEVTYPER_EVTCOUNT; if (event_supported(event)) { uint16_t event_idx = supported_event_map[event]; env->cp15.c14_pmevcntr_delta[counter] = pm_events[event_idx].get_count(env); } } static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) { uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); return pmevtyper_read(env, ri, counter); } static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); } static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) { return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); } static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value, uint8_t counter) { if (counter < pmu_num_counters(env)) { pmevcntr_op_start(env, counter); env->cp15.c14_pmevcntr[counter] = value; pmevcntr_op_finish(env, counter); } /* * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR * are CONSTRAINED UNPREDICTABLE. */ } static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, uint8_t counter) { if (counter < pmu_num_counters(env)) { uint64_t ret; pmevcntr_op_start(env, counter); ret = env->cp15.c14_pmevcntr[counter]; pmevcntr_op_finish(env, counter); return ret; } else { /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR * are CONSTRAINED UNPREDICTABLE. */ return 0; } } static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); pmevcntr_write(env, ri, value, counter); } static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) { uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); return pmevcntr_read(env, ri, counter); } static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); assert(counter < pmu_num_counters(env)); env->cp15.c14_pmevcntr[counter] = value; pmevcntr_write(env, ri, value, counter); } static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) { uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); assert(counter < pmu_num_counters(env)); return env->cp15.c14_pmevcntr[counter]; } static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); } static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) { return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); } static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_feature(env, ARM_FEATURE_V8)) { env->cp15.c9_pmuserenr = value & 0xf; } else { env->cp15.c9_pmuserenr = value & 1; } } static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* We have no event counters so only the C bit can be changed */ value &= pmu_counter_mask(env); env->cp15.c9_pminten |= value; pmu_update_irq(env); } static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= pmu_counter_mask(env); env->cp15.c9_pminten &= ~value; pmu_update_irq(env); } static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Note that even though the AArch64 view of this register has bits * [10:0] all RES0 we can only mask the bottom 5, to comply with the * architectural requirements for bits which are RES0 only in some * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) */ raw_write(env, ri, value & ~0x1FULL); } static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Begin with base v8.0 state. */ uint32_t valid_mask = 0x3fff; ARMCPU *cpu = env_archcpu(env); if (arm_el_is_aa64(env, 3)) { value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ valid_mask &= ~SCR_NET; } else { valid_mask &= ~(SCR_RW | SCR_ST); } if (!arm_feature(env, ARM_FEATURE_EL2)) { valid_mask &= ~SCR_HCE; /* On ARMv7, SMD (or SCD as it is called in v7) is only * supported if EL2 exists. The bit is UNK/SBZP when * EL2 is unavailable. In QEMU ARMv7, we force it to always zero * when EL2 is unavailable. * On ARMv8, this bit is always available. */ if (arm_feature(env, ARM_FEATURE_V7) && !arm_feature(env, ARM_FEATURE_V8)) { valid_mask &= ~SCR_SMD; } } if (cpu_isar_feature(aa64_lor, cpu)) { valid_mask |= SCR_TLOR; } if (cpu_isar_feature(aa64_pauth, cpu)) { valid_mask |= SCR_API | SCR_APK; } /* Clear all-context RES0 bits. */ value &= valid_mask; raw_write(env, ri, value); } static CPAccessResult access_aa64_tid2(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { return CP_ACCESS_TRAP_EL2; } return CP_ACCESS_OK; } static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = env_archcpu(env); /* Acquire the CSSELR index from the bank corresponding to the CCSIDR * bank */ uint32_t index = A32_BANKED_REG_GET(env, csselr, ri->secure & ARM_CP_SECSTATE_S); return cpu->ccsidr[index]; } static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { raw_write(env, ri, value & 0xf); } static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) { CPUState *cs = env_cpu(env); uint64_t hcr_el2 = arm_hcr_el2_eff(env); uint64_t ret = 0; bool allow_virt = (arm_current_el(env) == 1 && (!arm_is_secure_below_el3(env) || (env->cp15.scr_el3 & SCR_EEL2))); if (allow_virt && (hcr_el2 & HCR_IMO)) { if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { ret |= CPSR_I; } } else { if (cs->interrupt_request & CPU_INTERRUPT_HARD) { ret |= CPSR_I; } } if (allow_virt && (hcr_el2 & HCR_FMO)) { if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { ret |= CPSR_F; } } else { if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { ret |= CPSR_F; } } /* External aborts are not possible in QEMU so A bit is always clear */ return ret; } static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { return CP_ACCESS_TRAP_EL2; } return CP_ACCESS_OK; } static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_feature(env, ARM_FEATURE_V8)) { return access_aa64_tid1(env, ri, isread); } return CP_ACCESS_OK; } static const ARMCPRegInfo v7_cp_reginfo[] = { /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_NOP }, /* Performance monitors are implementation defined in v7, * but with an ARM recommended set of registers, which we * follow. * * Performance registers fall into three categories: * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) * For the cases controlled by PMUSERENR we must set .access to PL0_RW * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. */ { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, .access = PL0_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), .writefn = pmcntenset_write, .accessfn = pmreg_access, .raw_writefn = raw_write }, { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, .access = PL0_RW, .accessfn = pmreg_access, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, .writefn = pmcntenset_write, .raw_writefn = raw_write }, { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), .accessfn = pmreg_access, .writefn = pmcntenclr_write, .type = ARM_CP_ALIAS }, { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .writefn = pmcntenclr_write }, { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, .access = PL0_RW, .type = ARM_CP_IO, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), .accessfn = pmreg_access, .writefn = pmovsr_write, .raw_writefn = raw_write }, { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_ALIAS | ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), .writefn = pmovsr_write, .raw_writefn = raw_write }, { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NO_RAW | ARM_CP_IO, .writefn = pmswinc_write }, { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NO_RAW | ARM_CP_IO, .writefn = pmswinc_write }, { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, .access = PL0_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), .accessfn = pmreg_access_selr, .writefn = pmselr_write, .raw_writefn = raw_write}, { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, .access = PL0_RW, .accessfn = pmreg_access_selr, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), .writefn = pmselr_write, .raw_writefn = raw_write, }, { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, .readfn = pmccntr_read, .writefn = pmccntr_write32, .accessfn = pmreg_access_ccntr }, { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, .access = PL0_RW, .accessfn = pmreg_access_ccntr, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), .readfn = pmccntr_read, .writefn = pmccntr_write, .raw_readfn = raw_read, .raw_writefn = raw_write, }, { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_ALIAS | ARM_CP_IO, .resetvalue = 0, }, { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, .writefn = pmccfiltr_write, .raw_writefn = raw_write, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), .resetvalue = 0, }, { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = pmreg_access, .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = pmreg_access, .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = pmreg_access_xevcntr, .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = pmreg_access_xevcntr, .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, .access = PL0_R | PL1_RW, .accessfn = access_tpm, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), .resetvalue = 0, .writefn = pmuserenr_write, .raw_writefn = raw_write }, { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), .resetvalue = 0, .writefn = pmuserenr_write, .raw_writefn = raw_write }, { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS | ARM_CP_IO, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), .resetvalue = 0, .writefn = pmintenset_write, .raw_writefn = raw_write }, { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), .writefn = pmintenset_write, .raw_writefn = raw_write, .resetvalue = 0x0 }, { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS | ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), .writefn = pmintenclr_write, }, { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS | ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), .writefn = pmintenclr_write }, { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, .access = PL1_R, .accessfn = access_aa64_tid2, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, .access = PL1_RW, .accessfn = access_aa64_tid2, .writefn = csselr_write, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), offsetof(CPUARMState, cp15.csselr_ns) } }, /* Auxiliary ID register: this actually has an IMPDEF value but for now * just RAZ for all cores: */ { .name = "AIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid1, .resetvalue = 0 }, /* Auxiliary fault status registers: these also are IMPDEF, and we * choose to RAZ/WI for all cores. */ { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, /* MAIR can just read-as-written because we don't implement caches * and so don't need to care about memory attributes. */ { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), .resetvalue = 0 }, { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), .resetvalue = 0 }, /* For non-long-descriptor page tables these are PRRR and NMRR; * regardless they still act as reads-as-written for QEMU. */ /* MAIR0/1 are defined separately from their 64-bit counterpart which * allows them to assign the correct fieldoffset based on the endianness * handled in the field definitions. */ { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), offsetof(CPUARMState, cp15.mair0_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), offsetof(CPUARMState, cp15.mair1_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, /* 32 bit ITLB invalidates */ { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, /* 32 bit DTLB invalidates */ { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, /* 32 bit TLB invalidates */ { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, REGINFO_SENTINEL }; static const ARMCPRegInfo v7mp_cp_reginfo[] = { /* 32 bit TLB invalidates, Inner Shareable */ { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_is_write }, { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_is_write }, REGINFO_SENTINEL }; static const ARMCPRegInfo pmovsset_cp_reginfo[] = { /* PMOVSSET is not implemented in v7 before v7ve */ { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_ALIAS | ARM_CP_IO, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), .writefn = pmovsset_write, .raw_writefn = raw_write }, { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_ALIAS | ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), .writefn = pmovsset_write, .raw_writefn = raw_write }, REGINFO_SENTINEL }; static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= 1; env->teecr = value; } static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 0 && (env->teecr & 1)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static const ARMCPRegInfo t2ee_cp_reginfo[] = { { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), .resetvalue = 0, .writefn = teecr_write }, { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), .accessfn = teehbr_access, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo v6k_cp_reginfo[] = { { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, .access = PL0_R|PL1_W, .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), .resetvalue = 0}, { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL0_R|PL1_W, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, .access = PL1_RW, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, .resetvalue = 0 }, REGINFO_SENTINEL }; #ifndef CONFIG_USER_ONLY static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. * Writable only at the highest implemented exception level. */ int el = arm_current_el(env); switch (el) { case 0: if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { return CP_ACCESS_TRAP; } break; case 1: if (!isread && ri->state == ARM_CP_STATE_AA32 && arm_is_secure_below_el3(env)) { /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ return CP_ACCESS_TRAP_UNCATEGORIZED; } break; case 2: case 3: break; } if (!isread && el < arm_highest_el(env)) { return CP_ACCESS_TRAP_UNCATEGORIZED; } return CP_ACCESS_OK; } static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, bool isread) { unsigned int cur_el = arm_current_el(env); bool secure = arm_is_secure(env); /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ if (cur_el == 0 && !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { return CP_ACCESS_TRAP; } if (arm_feature(env, ARM_FEATURE_EL2) && timeridx == GTIMER_PHYS && !secure && cur_el < 2 && !extract32(env->cp15.cnthctl_el2, 0, 1)) { return CP_ACCESS_TRAP_EL2; } return CP_ACCESS_OK; } static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, bool isread) { unsigned int cur_el = arm_current_el(env); bool secure = arm_is_secure(env); /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if * EL0[PV]TEN is zero. */ if (cur_el == 0 && !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { return CP_ACCESS_TRAP; } if (arm_feature(env, ARM_FEATURE_EL2) && timeridx == GTIMER_PHYS && !secure && cur_el < 2 && !extract32(env->cp15.cnthctl_el2, 1, 1)) { return CP_ACCESS_TRAP_EL2; } return CP_ACCESS_OK; } static CPAccessResult gt_pct_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { return gt_counter_access(env, GTIMER_PHYS, isread); } static CPAccessResult gt_vct_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { return gt_counter_access(env, GTIMER_VIRT, isread); } static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { return gt_timer_access(env, GTIMER_PHYS, isread); } static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { return gt_timer_access(env, GTIMER_VIRT, isread); } static CPAccessResult gt_stimer_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* The AArch64 register view of the secure physical timer is * always accessible from EL3, and configurably accessible from * Secure EL1. */ switch (arm_current_el(env)) { case 1: if (!arm_is_secure(env)) { return CP_ACCESS_TRAP; } if (!(env->cp15.scr_el3 & SCR_ST)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; case 0: case 2: return CP_ACCESS_TRAP; case 3: return CP_ACCESS_OK; default: g_assert_not_reached(); } } static uint64_t gt_get_countervalue(CPUARMState *env) { ARMCPU *cpu = env_archcpu(env); return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); } static void gt_recalc_timer(ARMCPU *cpu, int timeridx) { ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; if (gt->ctl & 1) { /* Timer enabled: calculate and set current ISTATUS, irq, and * reset timer to when ISTATUS next has to change */ uint64_t offset = timeridx == GTIMER_VIRT ? cpu->env.cp15.cntvoff_el2 : 0; uint64_t count = gt_get_countervalue(&cpu->env); /* Note that this must be unsigned 64 bit arithmetic: */ int istatus = count - offset >= gt->cval; uint64_t nexttick; int irqstate; gt->ctl = deposit32(gt->ctl, 2, 1, istatus); irqstate = (istatus && !(gt->ctl & 2)); qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); if (istatus) { /* Next transition is when count rolls back over to zero */ nexttick = UINT64_MAX; } else { /* Next transition is when we hit cval */ nexttick = gt->cval + offset; } /* Note that the desired next expiry time might be beyond the * signed-64-bit range of a QEMUTimer -- in this case we just * set the timer for as far in the future as possible. When the * timer expires we will reset the timer for any remaining period. */ if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); } else { timer_mod(cpu->gt_timer[timeridx], nexttick); } trace_arm_gt_recalc(timeridx, irqstate, nexttick); } else { /* Timer disabled: ISTATUS and timer output always clear */ gt->ctl &= ~4; qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); timer_del(cpu->gt_timer[timeridx]); trace_arm_gt_recalc_disabled(timeridx); } } static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, int timeridx) { ARMCPU *cpu = env_archcpu(env); timer_del(cpu->gt_timer[timeridx]); } static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_get_countervalue(env); } static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_get_countervalue(env) - env->cp15.cntvoff_el2; } static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, int timeridx, uint64_t value) { trace_arm_gt_cval_write(timeridx, value); env->cp15.c14_timer[timeridx].cval = value; gt_recalc_timer(env_archcpu(env), timeridx); } static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, int timeridx) { uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; return (uint32_t)(env->cp15.c14_timer[timeridx].cval - (gt_get_countervalue(env) - offset)); } static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, int timeridx, uint64_t value) { uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; trace_arm_gt_tval_write(timeridx, value); env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + sextract64(value, 0, 32); gt_recalc_timer(env_archcpu(env), timeridx); } static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, int timeridx, uint64_t value) { ARMCPU *cpu = env_archcpu(env); uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; trace_arm_gt_ctl_write(timeridx, value); env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); if ((oldval ^ value) & 1) { /* Enable toggled */ gt_recalc_timer(cpu, timeridx); } else if ((oldval ^ value) & 2) { /* IMASK toggled: don't need to recalculate, * just set the interrupt line based on ISTATUS */ int irqstate = (oldval & 4) && !(value & 2); trace_arm_gt_imask_toggle(timeridx, irqstate); qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); } } static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) { gt_timer_reset(env, ri, GTIMER_PHYS); } static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_cval_write(env, ri, GTIMER_PHYS, value); } static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_tval_read(env, ri, GTIMER_PHYS); } static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_tval_write(env, ri, GTIMER_PHYS, value); } static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_ctl_write(env, ri, GTIMER_PHYS, value); } static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) { gt_timer_reset(env, ri, GTIMER_VIRT); } static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_cval_write(env, ri, GTIMER_VIRT, value); } static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_tval_read(env, ri, GTIMER_VIRT); } static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_tval_write(env, ri, GTIMER_VIRT, value); } static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_ctl_write(env, ri, GTIMER_VIRT, value); } static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); trace_arm_gt_cntvoff_write(value); raw_write(env, ri, value); gt_recalc_timer(cpu, GTIMER_VIRT); } static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) { gt_timer_reset(env, ri, GTIMER_HYP); } static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_cval_write(env, ri, GTIMER_HYP, value); } static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_tval_read(env, ri, GTIMER_HYP); } static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_tval_write(env, ri, GTIMER_HYP, value); } static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_ctl_write(env, ri, GTIMER_HYP, value); } static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) { gt_timer_reset(env, ri, GTIMER_SEC); } static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_cval_write(env, ri, GTIMER_SEC, value); } static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_tval_read(env, ri, GTIMER_SEC); } static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_tval_write(env, ri, GTIMER_SEC, value); } static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_ctl_write(env, ri, GTIMER_SEC, value); } void arm_gt_ptimer_cb(void *opaque) { ARMCPU *cpu = opaque; gt_recalc_timer(cpu, GTIMER_PHYS); } void arm_gt_vtimer_cb(void *opaque) { ARMCPU *cpu = opaque; gt_recalc_timer(cpu, GTIMER_VIRT); } void arm_gt_htimer_cb(void *opaque) { ARMCPU *cpu = opaque; gt_recalc_timer(cpu, GTIMER_HYP); } void arm_gt_stimer_cb(void *opaque) { ARMCPU *cpu = opaque; gt_recalc_timer(cpu, GTIMER_SEC); } static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) { ARMCPU *cpu = env_archcpu(env); cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; } static const ARMCPRegInfo generic_timer_cp_reginfo[] = { /* Note that CNTFRQ is purely reads-as-written for the benefit * of software; writing it doesn't actually change the timer frequency. * Our reset value matches the fixed frequency we implement the timer at. */ { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, .type = ARM_CP_ALIAS, .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), }, { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), .resetfn = arm_gt_cntfrq_reset, }, /* overall control: mostly access permissions */ { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), .resetvalue = 0, }, /* per-timer control */ { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, .secure = ARM_CP_SECSTATE_NS, .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, .accessfn = gt_ptimer_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTP_CTL_S", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, .secure = ARM_CP_SECSTATE_S, .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, .accessfn = gt_ptimer_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, .type = ARM_CP_IO, .access = PL0_RW, .accessfn = gt_ptimer_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), .resetvalue = 0, .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, .accessfn = gt_vtimer_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, .type = ARM_CP_IO, .access = PL0_RW, .accessfn = gt_vtimer_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), .resetvalue = 0, .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, }, /* TimerValue views: a 32 bit downcounting view of the underlying state */ { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, .secure = ARM_CP_SECSTATE_NS, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, .accessfn = gt_ptimer_access, .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, }, { .name = "CNTP_TVAL_S", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, .secure = ARM_CP_SECSTATE_S, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, .accessfn = gt_ptimer_access, .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, }, { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, }, { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, .accessfn = gt_vtimer_access, .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, }, { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, }, /* The counter itself */ { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_pct_access, .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, }, { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_pct_access, .readfn = gt_cnt_read, }, { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, }, { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, }, /* Comparison value, indicating when the timer goes off */ { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, .secure = ARM_CP_SECSTATE_NS, .access = PL0_RW, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), .accessfn = gt_ptimer_access, .writefn = gt_phys_cval_write, .raw_writefn = raw_write, }, { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, .secure = ARM_CP_SECSTATE_S, .access = PL0_RW, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), .accessfn = gt_ptimer_access, .writefn = gt_sec_cval_write, .raw_writefn = raw_write, }, { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, .access = PL0_RW, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), .resetvalue = 0, .accessfn = gt_ptimer_access, .writefn = gt_phys_cval_write, .raw_writefn = raw_write, }, { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, .access = PL0_RW, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), .accessfn = gt_vtimer_access, .writefn = gt_virt_cval_write, .raw_writefn = raw_write, }, { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, .access = PL0_RW, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), .resetvalue = 0, .accessfn = gt_vtimer_access, .writefn = gt_virt_cval_write, .raw_writefn = raw_write, }, /* Secure timer -- this is actually restricted to only EL3 * and configurably Secure-EL1 via the accessfn. */ { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, .accessfn = gt_stimer_access, .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, .resetfn = gt_sec_timer_reset, }, { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, .type = ARM_CP_IO, .access = PL1_RW, .accessfn = gt_stimer_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), .resetvalue = 0, .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, .type = ARM_CP_IO, .access = PL1_RW, .accessfn = gt_stimer_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), .writefn = gt_sec_cval_write, .raw_writefn = raw_write, }, REGINFO_SENTINEL }; #else /* In user-mode most of the generic timer registers are inaccessible * however modern kernels (4.12+) allow access to cntvct_el0 */ static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = env_archcpu(env); /* Currently we have no support for QEMUTimer in linux-user so we * can't call gt_get_countervalue(env), instead we directly * call the lower level functions. */ return cpu_get_clock() / gt_cntfrq_period_ns(cpu); } static const ARMCPRegInfo generic_timer_cp_reginfo[] = { { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, }, { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, .readfn = gt_virt_cnt_read, }, REGINFO_SENTINEL }; #endif static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_feature(env, ARM_FEATURE_LPAE)) { raw_write(env, ri, value); } else if (arm_feature(env, ARM_FEATURE_V7)) { raw_write(env, ri, value & 0xfffff6ff); } else { raw_write(env, ri, value & 0xfffff1ff); } } #ifndef CONFIG_USER_ONLY /* get_phys_addr() isn't present for user-mode-only targets */ static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (ri->opc2 & 4) { /* The ATS12NSO* operations must trap to EL3 if executed in * Secure EL1 (which can only happen if EL3 is AArch64). * They are simply UNDEF if executed from NS EL1. * They function normally from EL2 or EL3. */ if (arm_current_el(env) == 1) { if (arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; } return CP_ACCESS_TRAP_UNCATEGORIZED; } } return CP_ACCESS_OK; } static uint64_t do_ats_write(CPUARMState *env, uint64_t value, MMUAccessType access_type, ARMMMUIdx mmu_idx) { hwaddr phys_addr; target_ulong page_size; int prot; bool ret; uint64_t par64; bool format64 = false; MemTxAttrs attrs = {}; ARMMMUFaultInfo fi = {}; ARMCacheAttrs cacheattrs = {}; ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, &prot, &page_size, &fi, &cacheattrs); if (ret) { /* * Some kinds of translation fault must cause exceptions rather * than being reported in the PAR. */ int current_el = arm_current_el(env); int target_el; uint32_t syn, fsr, fsc; bool take_exc = false; if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) { /* * Synchronous stage 2 fault on an access made as part of the * translation table walk for AT S1E0* or AT S1E1* insn * executed from NS EL1. If this is a synchronous external abort * and SCR_EL3.EA == 1, then we take a synchronous external abort * to EL3. Otherwise the fault is taken as an exception to EL2, * and HPFAR_EL2 holds the faulting IPA. */ if (fi.type == ARMFault_SyncExternalOnWalk && (env->cp15.scr_el3 & SCR_EA)) { target_el = 3; } else { env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; target_el = 2; } take_exc = true; } else if (fi.type == ARMFault_SyncExternalOnWalk) { /* * Synchronous external aborts during a translation table walk * are taken as Data Abort exceptions. */ if (fi.stage2) { if (current_el == 3) { target_el = 3; } else { target_el = 2; } } else { target_el = exception_target_el(env); } take_exc = true; } if (take_exc) { /* Construct FSR and FSC using same logic as arm_deliver_fault() */ if (target_el == 2 || arm_el_is_aa64(env, target_el) || arm_s1_regime_using_lpae_format(env, mmu_idx)) { fsr = arm_fi_to_lfsc(&fi); fsc = extract32(fsr, 0, 6); } else { fsr = arm_fi_to_sfsc(&fi); fsc = 0x3f; } /* * Report exception with ESR indicating a fault due to a * translation table walk for a cache maintenance instruction. */ syn = syn_data_abort_no_iss(current_el == target_el, fi.ea, 1, fi.s1ptw, 1, fsc); env->exception.vaddress = value; env->exception.fsr = fsr; raise_exception(env, EXCP_DATA_ABORT, syn, target_el); } } if (is_a64(env)) { format64 = true; } else if (arm_feature(env, ARM_FEATURE_LPAE)) { /* * ATS1Cxx: * * TTBCR.EAE determines whether the result is returned using the * 32-bit or the 64-bit PAR format * * Instructions executed in Hyp mode always use the 64bit format * * ATS1S2NSOxx uses the 64bit format if any of the following is true: * * The Non-secure TTBCR.EAE bit is set to 1 * * The implementation includes EL2, and the value of HCR.VM is 1 * * (Note that HCR.DC makes HCR.VM behave as if it is 1.) * * ATS1Hx always uses the 64bit format. */ format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); if (arm_feature(env, ARM_FEATURE_EL2)) { if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); } else { format64 |= arm_current_el(env) == 2; } } } if (format64) { /* Create a 64-bit PAR */ par64 = (1 << 11); /* LPAE bit always set */ if (!ret) { par64 |= phys_addr & ~0xfffULL; if (!attrs.secure) { par64 |= (1 << 9); /* NS */ } par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ par64 |= cacheattrs.shareability << 7; /* SH */ } else { uint32_t fsr = arm_fi_to_lfsc(&fi); par64 |= 1; /* F */ par64 |= (fsr & 0x3f) << 1; /* FS */ if (fi.stage2) { par64 |= (1 << 9); /* S */ } if (fi.s1ptw) { par64 |= (1 << 8); /* PTW */ } } } else { /* fsr is a DFSR/IFSR value for the short descriptor * translation table format (with WnR always clear). * Convert it to a 32-bit PAR. */ if (!ret) { /* We do not set any attribute bits in the PAR */ if (page_size == (1 << 24) && arm_feature(env, ARM_FEATURE_V7)) { par64 = (phys_addr & 0xff000000) | (1 << 1); } else { par64 = phys_addr & 0xfffff000; } if (!attrs.secure) { par64 |= (1 << 9); /* NS */ } } else { uint32_t fsr = arm_fi_to_sfsc(&fi); par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | ((fsr & 0xf) << 1) | 1; } } return par64; } static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; uint64_t par64; ARMMMUIdx mmu_idx; int el = arm_current_el(env); bool secure = arm_is_secure_below_el3(env); switch (ri->opc2 & 6) { case 0: /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ switch (el) { case 3: mmu_idx = ARMMMUIdx_S1E3; break; case 2: mmu_idx = ARMMMUIdx_S1NSE1; break; case 1: mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; break; default: g_assert_not_reached(); } break; case 2: /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ switch (el) { case 3: mmu_idx = ARMMMUIdx_S1SE0; break; case 2: mmu_idx = ARMMMUIdx_S1NSE0; break; case 1: mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; break; default: g_assert_not_reached(); } break; case 4: /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ mmu_idx = ARMMMUIdx_S12NSE1; break; case 6: /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ mmu_idx = ARMMMUIdx_S12NSE0; break; default: g_assert_not_reached(); } par64 = do_ats_write(env, value, access_type, mmu_idx); A32_BANKED_CURRENT_REG_SET(env, par, par64); } static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; uint64_t par64; par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); A32_BANKED_CURRENT_REG_SET(env, par, par64); } static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; ARMMMUIdx mmu_idx; int secure = arm_is_secure_below_el3(env); switch (ri->opc2 & 6) { case 0: switch (ri->opc1) { case 0: /* AT S1E1R, AT S1E1W */ mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; break; case 4: /* AT S1E2R, AT S1E2W */ mmu_idx = ARMMMUIdx_S1E2; break; case 6: /* AT S1E3R, AT S1E3W */ mmu_idx = ARMMMUIdx_S1E3; break; default: g_assert_not_reached(); } break; case 2: /* AT S1E0R, AT S1E0W */ mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; break; case 4: /* AT S12E1R, AT S12E1W */ mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; break; case 6: /* AT S12E0R, AT S12E0W */ mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; break; default: g_assert_not_reached(); } env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); } #endif static const ARMCPRegInfo vapa_cp_reginfo[] = { { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), offsetoflow32(CPUARMState, cp15.par_ns) }, .writefn = par_write }, #ifndef CONFIG_USER_ONLY /* This underdecoding is safe because the reginfo is NO_RAW. */ { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .accessfn = ats_access, .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, #endif REGINFO_SENTINEL }; /* Return basic MPU access permission bits. */ static uint32_t simple_mpu_ap_bits(uint32_t val) { uint32_t ret; uint32_t mask; int i; ret = 0; mask = 3; for (i = 0; i < 16; i += 2) { ret |= (val >> i) & mask; mask <<= 2; } return ret; } /* Pad basic MPU access permission bits to extended format. */ static uint32_t extended_mpu_ap_bits(uint32_t val) { uint32_t ret; uint32_t mask; int i; ret = 0; mask = 3; for (i = 0; i < 16; i += 2) { ret |= (val & mask) << i; mask <<= 2; } return ret; } static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); } static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) { return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); } static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); } static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) { return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); } static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) { uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); if (!u32p) { return 0; } u32p += env->pmsav7.rnr[M_REG_NS]; return *u32p; } static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); if (!u32p) { return; } u32p += env->pmsav7.rnr[M_REG_NS]; tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ *u32p = value; } static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); uint32_t nrgs = cpu->pmsav7_dregion; if (value >= nrgs) { qemu_log_mask(LOG_GUEST_ERROR, "PMSAv7 RGNR write >= # supported regions, %" PRIu32 " > %" PRIu32 "\n", (uint32_t)value, nrgs); return; } raw_write(env, ri, value); } static const ARMCPRegInfo pmsav7_cp_reginfo[] = { /* Reset for all these registers is handled in arm_cpu_reset(), * because the PMSAv7 is also used by M-profile CPUs, which do * not register cpregs but still need the state to be reset. */ { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NO_RAW, .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = arm_cp_reset_ignore }, { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_NO_RAW, .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = arm_cp_reset_ignore }, { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, .access = PL1_RW, .type = ARM_CP_NO_RAW, .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = arm_cp_reset_ignore }, { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), .writefn = pmsav7_rgnr_write, .resetfn = arm_cp_reset_ignore }, REGINFO_SENTINEL }; static const ARMCPRegInfo pmsav5_cp_reginfo[] = { { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), .resetvalue = 0, }, { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), .resetvalue = 0, }, { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, /* Protection region base and size registers */ { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, REGINFO_SENTINEL }; static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { TCR *tcr = raw_ptr(env, ri); int maskshift = extract32(value, 0, 3); if (!arm_feature(env, ARM_FEATURE_V8)) { if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when * using Long-desciptor translation table format */ value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); } else if (arm_feature(env, ARM_FEATURE_EL3)) { /* In an implementation that includes the Security Extensions * TTBCR has additional fields PD0 [4] and PD1 [5] for * Short-descriptor translation table format. */ value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; } else { value &= TTBCR_N; } } /* Update the masks corresponding to the TCR bank being written * Note that we always calculate mask and base_mask, but * they are only used for short-descriptor tables (ie if EAE is 0); * for long-descriptor tables the TCR fields are used differently * and the mask and base_mask values are meaningless. */ tcr->raw_tcr = value; tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); } static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); TCR *tcr = raw_ptr(env, ri); if (arm_feature(env, ARM_FEATURE_LPAE)) { /* With LPAE the TTBCR could result in a change of ASID * via the TTBCR.A1 bit, so do a TLB flush. */ tlb_flush(CPU(cpu)); } /* Preserve the high half of TCR_EL1, set via TTBCR2. */ value = deposit64(tcr->raw_tcr, 0, 32, value); vmsa_ttbcr_raw_write(env, ri, value); } static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) { TCR *tcr = raw_ptr(env, ri); /* Reset both the TCR as well as the masks corresponding to the bank of * the TCR being reset. */ tcr->raw_tcr = 0; tcr->mask = 0; tcr->base_mask = 0xffffc000u; } static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); TCR *tcr = raw_ptr(env, ri); /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ tlb_flush(CPU(cpu)); tcr->raw_tcr = value; } static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ if (cpreg_field_is_64bit(ri) && extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { ARMCPU *cpu = env_archcpu(env); tlb_flush(CPU(cpu)); } raw_write(env, ri, value); } static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); CPUState *cs = CPU(cpu); /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ if (raw_read(env, ri) != value) { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0 | ARMMMUIdxBit_S2NS); raw_write(env, ri, value); } } static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_ALIAS, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .resetvalue = 0, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), offsetof(CPUARMState, cp15.dfar_ns) } }, { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), .resetvalue = 0, }, REGINFO_SENTINEL }; static const ARMCPRegInfo vmsa_cp_reginfo[] = { { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), offsetof(CPUARMState, cp15.ttbr0_ns) } }, { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), offsetof(CPUARMState, cp15.ttbr1_ns) } }, { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .writefn = vmsa_tcr_el1_write, .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, .raw_writefn = vmsa_ttbcr_raw_write, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, REGINFO_SENTINEL }; /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing * qemu tlbs nor adjusting cached masks. */ static const ARMCPRegInfo ttbcr2_reginfo = { .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_ALIAS, .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, }; static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_ticonfig = value & 0xe7; /* The OS_TYPE bit in this register changes the reported CPUID! */ env->cp15.c0_cpuid = (value & (1 << 5)) ? ARM_CPUID_TI915T : ARM_CPUID_TI925T; } static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_threadid = value & 0xffff; } static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Wait-for-interrupt (deprecated) */ cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); } static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* On OMAP there are registers indicating the max/min index of dcache lines * containing a dirty line; cache flush operations have to reset these. */ env->cp15.c15_i_max = 0x000; env->cp15.c15_i_min = 0xff0; } static const ARMCPRegInfo omap_cp_reginfo[] = { { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, .writefn = omap_ticonfig_write }, { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0xff0, .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, .writefn = omap_threadid_write }, { .name = "TI925T_STATUS", .cp = 15, .crn = 15, .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NO_RAW, .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, /* TODO: Peripheral port remap register: * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), * when MMU is off. */ { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, .writefn = omap_cachemaint_write }, { .name = "C9", .cp = 15, .crn = 9, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, REGINFO_SENTINEL }; static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_cpar = value & 0x3fff; } static const ARMCPRegInfo xscale_cp_reginfo[] = { { .name = "XSCALE_CPAR", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, .writefn = xscale_cpar_write, }, { .name = "XSCALE_AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), .resetvalue = 0, }, /* XScale specific cache-lockdown: since we have no cache we NOP these * and hope the guest does not really rely on cache behaviour. */ { .name = "XSCALE_LOCK_ICACHE_LINE", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "XSCALE_UNLOCK_ICACHE", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "XSCALE_DCACHE_LOCK", .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "XSCALE_UNLOCK_DCACHE", .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, REGINFO_SENTINEL }; static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { /* RAZ/WI the whole crn=15 space, when we don't have a more specific * implementation of this implementation-defined space. * Ideally this should eventually disappear in favour of actually * implementing the correct behaviour for all cores. */ { .name = "C15_IMPDEF", .cp = 15, .crn = 15, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { /* Cache status: RAZ because we have no cache so it's always clean */ { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { /* We never have a a block transfer operation in progress */ { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = 0 }, /* The cache ops themselves: these all NOP for QEMU */ { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { /* The cache test-and-clean instructions always return (1 << 30) * to indicate that there are no dirty cache lines. */ { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = (1 << 30) }, { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = (1 << 30) }, REGINFO_SENTINEL }; static const ARMCPRegInfo strongarm_cp_reginfo[] = { /* Ignore ReadBuffer accesses */ { .name = "C9_READBUFFER", .cp = 15, .crn = 9, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, REGINFO_SENTINEL }; static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = env_archcpu(env); unsigned int cur_el = arm_current_el(env); bool secure = arm_is_secure(env); if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { return env->cp15.vpidr_el2; } return raw_read(env, ri); } static uint64_t mpidr_read_val(CPUARMState *env) { ARMCPU *cpu = env_archcpu(env); uint64_t mpidr = cpu->mp_affinity; if (arm_feature(env, ARM_FEATURE_V7MP)) { mpidr |= (1U << 31); /* Cores which are uniprocessor (non-coherent) * but still implement the MP extensions set * bit 30. (For instance, Cortex-R5). */ if (cpu->mp_is_up) { mpidr |= (1u << 30); } } return mpidr; } static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) { unsigned int cur_el = arm_current_el(env); bool secure = arm_is_secure(env); if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { return env->cp15.vmpidr_el2; } return mpidr_read_val(env); } static const ARMCPRegInfo lpae_cp_reginfo[] = { /* NOP AMAIR0/1 */ { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), offsetof(CPUARMState, cp15.par_ns)} }, { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), offsetof(CPUARMState, cp15.ttbr0_ns) }, .writefn = vmsa_ttbr_write, }, { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), offsetof(CPUARMState, cp15.ttbr1_ns) }, .writefn = vmsa_ttbr_write, }, REGINFO_SENTINEL }; static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) { return vfp_get_fpcr(env); } static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { vfp_set_fpcr(env, value); } static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) { return vfp_get_fpsr(env); } static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { vfp_set_fpsr(env, value); } static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->daif = value & PSTATE_DAIF; } static CPAccessResult aa64_cacheop_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless * SCTLR_EL1.UCI is set. */ if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions * Page D4-1736 (DDI0487A.b) */ static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); bool sec = arm_is_secure_below_el3(env); if (sec) { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); if (tlb_force_broadcast(env)) { tlbi_aa64_vmalle1is_write(env, NULL, value); return; } if (arm_is_secure_below_el3(env)) { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Note that the 'ALL' scope must invalidate both stage 1 and * stage 2 translations, whereas most other scopes only invalidate * stage 1 translations. */ ARMCPU *cpu = env_archcpu(env); CPUState *cs = CPU(cpu); if (arm_is_secure_below_el3(env)) { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else { if (arm_feature(env, ARM_FEATURE_EL2)) { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0 | ARMMMUIdxBit_S2NS); } else { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } } static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); CPUState *cs = CPU(cpu); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); } static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); CPUState *cs = CPU(cpu); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); } static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Note that the 'ALL' scope must invalidate both stage 1 and * stage 2 translations, whereas most other scopes only invalidate * stage 1 translations. */ CPUState *cs = env_cpu(env); bool sec = arm_is_secure_below_el3(env); bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); if (sec) { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else if (has_el2) { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0 | ARMMMUIdxBit_S2NS); } else { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); } static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); } static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by VA, EL2 * Currently handles both VAE2 and VALE2, since we don't support * flush-last-level-only. */ ARMCPU *cpu = env_archcpu(env); CPUState *cs = CPU(cpu); uint64_t pageaddr = sextract64(value << 12, 0, 56); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); } static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by VA, EL3 * Currently handles both VAE3 and VALE3, since we don't support * flush-last-level-only. */ ARMCPU *cpu = env_archcpu(env); CPUState *cs = CPU(cpu); uint64_t pageaddr = sextract64(value << 12, 0, 56); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); } static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); CPUState *cs = CPU(cpu); bool sec = arm_is_secure_below_el3(env); uint64_t pageaddr = sextract64(value << 12, 0, 56); if (sec) { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by VA, EL1&0 (AArch64 version). * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, * since we don't support flush-for-specific-ASID-only or * flush-last-level-only. */ ARMCPU *cpu = env_archcpu(env); CPUState *cs = CPU(cpu); uint64_t pageaddr = sextract64(value << 12, 0, 56); if (tlb_force_broadcast(env)) { tlbi_aa64_vae1is_write(env, NULL, value); return; } if (arm_is_secure_below_el3(env)) { tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else { tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); uint64_t pageaddr = sextract64(value << 12, 0, 56); tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S1E2); } static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); uint64_t pageaddr = sextract64(value << 12, 0, 56); tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S1E3); } static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by IPA. This has to invalidate any structures that * contain only stage 2 translation information, but does not need * to apply to structures that contain combined stage 1 and stage 2 * translation information. * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. */ ARMCPU *cpu = env_archcpu(env); CPUState *cs = CPU(cpu); uint64_t pageaddr; if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { return; } pageaddr = sextract64(value << 12, 0, 48); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); } static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = env_cpu(env); uint64_t pageaddr; if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { return; } pageaddr = sextract64(value << 12, 0, 48); tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S2NS); } static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* We don't implement EL2, so the only control on DC ZVA is the * bit in the SCTLR which can prohibit access for EL0. */ if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = env_archcpu(env); int dzp_bit = 1 << 4; /* DZP indicates whether DC ZVA access is allowed */ if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { dzp_bit = 0; } return cpu->dcz_blocksize | dzp_bit; } static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (!(env->pstate & PSTATE_SP)) { /* Access to SP_EL0 is undefined if it's being used as * the stack pointer. */ return CP_ACCESS_TRAP_UNCATEGORIZED; } return CP_ACCESS_OK; } static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) { return env->pstate & PSTATE_SP; } static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) { update_spsel(env, val); } static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); if (raw_read(env, ri) == value) { /* Skip the TLB flush if nothing actually changed; Linux likes * to do a lot of pointless SCTLR writes. */ return; } if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { /* M bit is RAZ/WI for PMSA with no MPU implemented */ value &= ~SCTLR_M; } raw_write(env, ri, value); /* ??? Lots of these bits are not implemented. */ /* This may enable/disable the MMU, so do a TLB flush. */ tlb_flush(CPU(cpu)); if (ri->type & ARM_CP_SUPPRESS_TB_END) { /* * Normally we would always end the TB on an SCTLR write; see the * comment in ARMCPRegInfo sctlr initialization below for why Xscale * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild * of hflags from the translator, so do it here. */ arm_rebuild_hflags(env); } } static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { return CP_ACCESS_TRAP_FP_EL2; } if (env->cp15.cptr_el[3] & CPTR_TFP) { return CP_ACCESS_TRAP_FP_EL3; } return CP_ACCESS_OK; } static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; } static const ARMCPRegInfo v8_cp_reginfo[] = { /* Minimal set of EL0-visible registers. This will need to be expanded * significantly for system emulation of AArch64 CPUs. */ { .name = "NZCV", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, .access = PL0_RW, .type = ARM_CP_NZCV }, { .name = "DAIF", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, .type = ARM_CP_NO_RAW, .access = PL0_RW, .accessfn = aa64_daif_access, .fieldoffset = offsetof(CPUARMState, daif), .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, { .name = "FPCR", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, { .name = "FPSR", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, .access = PL0_R, .type = ARM_CP_NO_RAW, .readfn = aa64_dczid_read }, { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, .access = PL0_W, .type = ARM_CP_DC_ZVA, #ifndef CONFIG_USER_ONLY /* Avoid overhead of an access check that always passes in user-mode */ .accessfn = aa64_zva_access, #endif }, { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, .access = PL1_R, .type = ARM_CP_CURRENTEL }, /* Cache ops: all NOPs since we don't emulate caches */ { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NOP }, /* TLBI operations */ { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vmalle1is_write }, { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1is_write }, { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vmalle1is_write }, { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1is_write }, { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1is_write }, { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1is_write }, { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vmalle1_write }, { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1_write }, { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vmalle1_write }, { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1_write }, { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1_write }, { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1_write }, { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_ipas2e1is_write }, { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_ipas2e1is_write }, { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle1is_write }, { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle1is_write }, { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_ipas2e1_write }, { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_ipas2e1_write }, { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle1_write }, { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle1is_write }, #ifndef CONFIG_USER_ONLY /* 64 bit address translation operations */ { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), .writefn = par_write }, #endif /* TLB invalidate last level of translation table walk */ { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_is_write }, { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbimva_hyp_write }, { .name = "TLBIMVALHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbimva_hyp_is_write }, { .name = "TLBIIPAS2", .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiipas2_write }, { .name = "TLBIIPAS2IS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiipas2_is_write }, { .name = "TLBIIPAS2L", .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiipas2_write }, { .name = "TLBIIPAS2LIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiipas2_is_write }, /* 32 bit cache operations */ { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, .type = ARM_CP_NOP, .access = PL1_W }, /* MMU Domain access control / MPU write buffer control */ { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), offsetoflow32(CPUARMState, cp15.dacr_ns) } }, { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, /* We rely on the access checks not allowing the guest to write to the * state field when SPSel indicates that it's being used as the stack * pointer. */ { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, .access = PL1_RW, .accessfn = sp_el0_access, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, { .name = "SPSel", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), .access = PL2_RW, .accessfn = fpexc32_access }, { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, .access = PL2_RW, .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, .resetvalue = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, { .name = "SDCR", .type = ARM_CP_ALIAS, .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, .access = PL1_RW, .accessfn = access_trap_aa32s_el1, .writefn = sdcr_write, .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, REGINFO_SENTINEL }; /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, .access = PL2_RW, .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_NO_RAW, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "VTTBR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 6, .crm = 2, .access = PL2_RW, .accessfn = access_el3_aa32ns, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, .access = PL2_RW, .accessfn = access_tda, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HIFAR", .state = ARM_CP_STATE_AA32, .type = ARM_CP_CONST, .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, .access = PL2_RW, .resetvalue = 0 }, REGINFO_SENTINEL }; /* Ditto, but for registers which exist in ARMv8 but not v7 */ static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { { .name = "HCR2", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); uint64_t valid_mask = HCR_MASK; if (arm_feature(env, ARM_FEATURE_EL3)) { valid_mask &= ~HCR_HCD; } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. * However, if we're using the SMC PSCI conduit then QEMU is * effectively acting like EL3 firmware and so the guest at * EL2 should retain the ability to prevent EL1 from being * able to make SMC calls into the ersatz firmware, so in * that case HCR.TSC should be read/write. */ valid_mask &= ~HCR_TSC; } if (cpu_isar_feature(aa64_lor, cpu)) { valid_mask |= HCR_TLOR; } if (cpu_isar_feature(aa64_pauth, cpu)) { valid_mask |= HCR_API | HCR_APK; } /* Clear RES0 bits. */ value &= valid_mask; /* These bits change the MMU setup: * HCR_VM enables stage 2 translation * HCR_PTW forbids certain page-table setups * HCR_DC Disables stage1 and enables stage2 translation */ if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { tlb_flush(CPU(cpu)); } env->cp15.hcr_el2 = value; /* * Updates to VI and VF require us to update the status of * virtual interrupts, which are the logical OR of these bits * and the state of the input lines from the GIC. (This requires * that we have the iothread lock, which is done by marking the * reginfo structs as ARM_CP_IO.) * Note that if a write to HCR pends a VIRQ or VFIQ it is never * possible for it to be taken immediately, because VIRQ and * VFIQ are masked unless running at EL0 or EL1, and HCR * can only be written at EL2. */ g_assert(qemu_mutex_iothread_locked()); arm_cpu_update_virq(cpu); arm_cpu_update_vfiq(cpu); } static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ value = deposit64(env->cp15.hcr_el2, 32, 32, value); hcr_write(env, NULL, value); } static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Handle HCR write, i.e. write to low half of HCR_EL2 */ value = deposit64(env->cp15.hcr_el2, 0, 32, value); hcr_write(env, NULL, value); } /* * Return the effective value of HCR_EL2. * Bits that are not included here: * RW (read from SCR_EL3.RW as needed) */ uint64_t arm_hcr_el2_eff(CPUARMState *env) { uint64_t ret = env->cp15.hcr_el2; if (arm_is_secure_below_el3(env)) { /* * "This register has no effect if EL2 is not enabled in the * current Security state". This is ARMv8.4-SecEL2 speak for * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). * * Prior to that, the language was "In an implementation that * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves * as if this field is 0 for all purposes other than a direct * read or write access of HCR_EL2". With lots of enumeration * on a per-field basis. In current QEMU, this is condition * is arm_is_secure_below_el3. * * Since the v8.4 language applies to the entire register, and * appears to be backward compatible, use that. */ ret = 0; } else if (ret & HCR_TGE) { /* These bits are up-to-date as of ARMv8.4. */ if (ret & HCR_E2H) { ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); } else { ret |= HCR_FMO | HCR_IMO | HCR_AMO; } ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | HCR_TLOR); } return ret; } static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* * For A-profile AArch32 EL3, if NSACR.CP10 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. */ if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { value &= ~(0x3 << 10); value |= env->cp15.cptr_el[2] & (0x3 << 10); } env->cp15.cptr_el[2] = value; } static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) { /* * For A-profile AArch32 EL3, if NSACR.CP10 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. */ uint64_t value = env->cp15.cptr_el[2]; if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { value |= 0x3 << 10; } return value; } static const ARMCPRegInfo el2_cp_reginfo[] = { { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), .writefn = hcr_write }, { .name = "HCR", .state = ARM_CP_STATE_AA32, .type = ARM_CP_ALIAS | ARM_CP_IO, .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), .writefn = hcr_writelow }, { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, { .name = "HIFAR", .state = ARM_CP_STATE_AA32, .type = ARM_CP_ALIAS, .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, .access = PL2_RW, .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, .access = PL2_RW, .writefn = vbar_write, .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), .resetvalue = 0 }, { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), .readfn = cptr_el2_read, .writefn = cptr_el2_write }, { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), .resetvalue = 0 }, { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, .access = PL2_RW, /* no .writefn needed as this can't cause an ASID change; * no .raw_writefn or .resetfn needed as we never use mask/base_mask */ .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, { .name = "VTCR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, .type = ARM_CP_ALIAS, .access = PL2_RW, .accessfn = access_el3_aa32ns, .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, .access = PL2_RW, /* no .writefn needed as this can't cause an ASID change; * no .raw_writefn or .resetfn needed as we never use mask/base_mask */ .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, { .name = "VTTBR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 6, .crm = 2, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .access = PL2_RW, .accessfn = access_el3_aa32ns, .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), .writefn = vttbr_write }, { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, .access = PL2_RW, .writefn = vttbr_write, .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, { .name = "TLBIALLNSNH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiall_nsnh_write }, { .name = "TLBIALLNSNHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiall_nsnh_is_write }, { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiall_hyp_write }, { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiall_hyp_is_write }, { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbimva_hyp_write }, { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbimva_hyp_is_write }, { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbi_aa64_alle2_write }, { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbi_aa64_vae2_write }, { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae2_write }, { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle2is_write }, { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbi_aa64_vae2is_write }, { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae2is_write }, #ifndef CONFIG_USER_ONLY /* Unlike the other EL2-related AT operations, these must * UNDEF from EL3 if EL2 is not implemented, which is why we * define them here rather than with the rest of the AT ops. */ { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, .access = PL2_W, .accessfn = at_s1e2_access, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, .access = PL2_W, .accessfn = at_s1e2_access, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose * to behave as if SCR.NS was 1. */ { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, .access = PL2_W, .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, .access = PL2_W, .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the * reset values as IMPDEF. We choose to reset to 3 to comply with * both ARMv7 and ARMv8. */ .access = PL2_RW, .resetvalue = 3, .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, .writefn = gt_cntvoff_write, .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, .writefn = gt_cntvoff_write, .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), .type = ARM_CP_IO, .access = PL2_RW, .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, .resetfn = gt_hyp_timer_reset, .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), .resetvalue = 0, .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, #endif /* The only field of MDCR_EL2 that has a defined architectural reset value * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we * don't implement any PMU event counters, so using zero as a reset * value for MDCR_EL2 is okay */ { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, { .name = "HPFAR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, .access = PL2_RW, .accessfn = access_el3_aa32ns, .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, REGINFO_SENTINEL }; static const ARMCPRegInfo el2_v8_cp_reginfo[] = { { .name = "HCR2", .state = ARM_CP_STATE_AA32, .type = ARM_CP_ALIAS | ARM_CP_IO, .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, .access = PL2_RW, .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), .writefn = hcr_writehigh }, REGINFO_SENTINEL }; static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. * At Secure EL1 it traps to EL3. */ if (arm_current_el(env) == 3) { return CP_ACCESS_OK; } if (arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL3; } /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ if (isread) { return CP_ACCESS_OK; } return CP_ACCESS_TRAP_UNCATEGORIZED; } static const ARMCPRegInfo el3_cp_reginfo[] = { { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), .resetvalue = 0, .writefn = scr_write }, { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, .access = PL1_RW, .accessfn = access_trap_aa32s_el1, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), .writefn = scr_write }, { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, .access = PL3_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.sder) }, { .name = "SDER", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, .access = PL3_RW, .resetvalue = 0, .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, .access = PL1_RW, .accessfn = access_trap_aa32s_el1, .writefn = vbar_write, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, .access = PL3_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, .access = PL3_RW, /* no .writefn needed as this can't cause an ASID change; * we must provide a .raw_writefn and .resetfn because we handle * reset and migration for the AArch32 TTBCR(S), which might be * using mask and base_mask. */ .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, .access = PL3_RW, .writefn = vbar_write, .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), .resetvalue = 0 }, { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, .access = PL3_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle3is_write }, { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae3is_write }, { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae3is_write }, { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle3_write }, { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae3_write }, { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae3_write }, REGINFO_SENTINEL }; static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, * but the AArch32 CTR has its own reginfo struct) */ if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { return CP_ACCESS_TRAP; } if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { return CP_ACCESS_TRAP_EL2; } return CP_ACCESS_OK; } static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Writes to OSLAR_EL1 may update the OS lock status, which can be * read via a bit in OSLSR_EL1. */ int oslock; if (ri->state == ARM_CP_STATE_AA32) { oslock = (value == 0xC5ACCE55); } else { oslock = value & 1; } env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); } static const ARMCPRegInfo debug_cp_reginfo[] = { /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; * unlike DBGDRAR it is never accessible from EL0. * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 * accessor. */ { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .accessfn = access_tdra, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, .access = PL1_R, .accessfn = access_tdra, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .accessfn = access_tdra, .type = ARM_CP_CONST, .resetvalue = 0 }, /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, .access = PL1_RW, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), .resetvalue = 0 }, /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. * We don't implement the configurable EL0 access. */ { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, .type = ARM_CP_ALIAS, .access = PL1_R, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_NO_RAW, .accessfn = access_tdosa, .writefn = oslar_write }, { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, .access = PL1_R, .resetvalue = 10, .accessfn = access_tdosa, .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, /* Dummy OSDLR_EL1: 32-bit Linux will read this */ { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, .access = PL1_RW, .accessfn = access_tdosa, .type = ARM_CP_NOP }, /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't * implement vector catch debug events yet. */ { .name = "DBGVCR", .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, .access = PL1_RW, .accessfn = access_tda, .type = ARM_CP_NOP }, /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor * to save and restore a 32-bit guest's DBGVCR) */ { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, .access = PL2_RW, .accessfn = access_tda, .type = ARM_CP_NOP }, /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications * Channel but Linux may try to access this register. The 32-bit * alias is DBGDCCINT. */ { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, .access = PL1_RW, .accessfn = access_tda, .type = ARM_CP_NOP }, REGINFO_SENTINEL }; static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { /* 64 bit access versions of the (dummy) debug registers */ { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, REGINFO_SENTINEL }; /* Return the exception level to which exceptions should be taken * via SVEAccessTrap. If an exception should be routed through * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should * take care of raising that exception. * C.f. the ARM pseudocode function CheckSVEEnabled. */ int sve_exception_el(CPUARMState *env, int el) { #ifndef CONFIG_USER_ONLY if (el <= 1) { bool disabled = false; /* The CPACR.ZEN controls traps to EL1: * 0, 2 : trap EL0 and EL1 accesses * 1 : trap only EL0 accesses * 3 : trap no accesses */ if (!extract32(env->cp15.cpacr_el1, 16, 1)) { disabled = true; } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { disabled = el == 0; } if (disabled) { /* route_to_el2 */ return (arm_feature(env, ARM_FEATURE_EL2) && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); } /* Check CPACR.FPEN. */ if (!extract32(env->cp15.cpacr_el1, 20, 1)) { disabled = true; } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { disabled = el == 0; } if (disabled) { return 0; } } /* CPTR_EL2. Since TZ and TFP are positive, * they will be zero when EL2 is not present. */ if (el <= 2 && !arm_is_secure_below_el3(env)) { if (env->cp15.cptr_el[2] & CPTR_TZ) { return 2; } if (env->cp15.cptr_el[2] & CPTR_TFP) { return 0; } } /* CPTR_EL3. Since EZ is negative we must check for EL3. */ if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.cptr_el[3] & CPTR_EZ)) { return 3; } #endif return 0; } static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) { uint32_t end_len; end_len = start_len &= 0xf; if (!test_bit(start_len, cpu->sve_vq_map)) { end_len = find_last_bit(cpu->sve_vq_map, start_len); assert(end_len < start_len); } return end_len; } /* * Given that SVE is enabled, return the vector length for EL. */ uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) { ARMCPU *cpu = env_archcpu(env); uint32_t zcr_len = cpu->sve_max_vq - 1; if (el <= 1) { zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); } if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); } if (arm_feature(env, ARM_FEATURE_EL3)) { zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); } return sve_zcr_get_valid_len(cpu, zcr_len); } static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { int cur_el = arm_current_el(env); int old_len = sve_zcr_len_for_el(env, cur_el); int new_len; /* Bits other than [3:0] are RAZ/WI. */ QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); raw_write(env, ri, value & 0xf); /* * Because we arrived here, we know both FP and SVE are enabled; * otherwise we would have trapped access to the ZCR_ELn register. */ new_len = sve_zcr_len_for_el(env, cur_el); if (new_len < old_len) { aarch64_sve_narrow_vq(env, new_len + 1); } } static const ARMCPRegInfo zcr_el1_reginfo = { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_SVE, .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), .writefn = zcr_write, .raw_writefn = raw_write }; static const ARMCPRegInfo zcr_el2_reginfo = { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_SVE, .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), .writefn = zcr_write, .raw_writefn = raw_write }; static const ARMCPRegInfo zcr_no_el2_reginfo = { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_SVE, .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }; static const ARMCPRegInfo zcr_el3_reginfo = { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_SVE, .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), .writefn = zcr_write, .raw_writefn = raw_write }; void hw_watchpoint_update(ARMCPU *cpu, int n) { CPUARMState *env = &cpu->env; vaddr len = 0; vaddr wvr = env->cp15.dbgwvr[n]; uint64_t wcr = env->cp15.dbgwcr[n]; int mask; int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; if (env->cpu_watchpoint[n]) { cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); env->cpu_watchpoint[n] = NULL; } if (!extract64(wcr, 0, 1)) { /* E bit clear : watchpoint disabled */ return; } switch (extract64(wcr, 3, 2)) { case 0: /* LSC 00 is reserved and must behave as if the wp is disabled */ return; case 1: flags |= BP_MEM_READ; break; case 2: flags |= BP_MEM_WRITE; break; case 3: flags |= BP_MEM_ACCESS; break; } /* Attempts to use both MASK and BAS fields simultaneously are * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, * thus generating a watchpoint for every byte in the masked region. */ mask = extract64(wcr, 24, 4); if (mask == 1 || mask == 2) { /* Reserved values of MASK; we must act as if the mask value was * some non-reserved value, or as if the watchpoint were disabled. * We choose the latter. */ return; } else if (mask) { /* Watchpoint covers an aligned area up to 2GB in size */ len = 1ULL << mask; /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE * whether the watchpoint fires when the unmasked bits match; we opt * to generate the exceptions. */ wvr &= ~(len - 1); } else { /* Watchpoint covers bytes defined by the byte address select bits */ int bas = extract64(wcr, 5, 8); int basstart; if (bas == 0) { /* This must act as if the watchpoint is disabled */ return; } if (extract64(wvr, 2, 1)) { /* Deprecated case of an only 4-aligned address. BAS[7:4] are * ignored, and BAS[3:0] define which bytes to watch. */ bas &= 0xf; } /* The BAS bits are supposed to be programmed to indicate a contiguous * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether * we fire for each byte in the word/doubleword addressed by the WVR. * We choose to ignore any non-zero bits after the first range of 1s. */ basstart = ctz32(bas); len = cto32(bas >> basstart); wvr += basstart; } cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, &env->cpu_watchpoint[n]); } void hw_watchpoint_update_all(ARMCPU *cpu) { int i; CPUARMState *env = &cpu->env; /* Completely clear out existing QEMU watchpoints and our array, to * avoid possible stale entries following migration load. */ cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { hw_watchpoint_update(cpu, i); } } static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); int i = ri->crm; /* Bits [63:49] are hardwired to the value of bit [48]; that is, the * register reads and behaves as if values written are sign extended. * Bits [1:0] are RES0. */ value = sextract64(value, 0, 49) & ~3ULL; raw_write(env, ri, value); hw_watchpoint_update(cpu, i); } static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); int i = ri->crm; raw_write(env, ri, value); hw_watchpoint_update(cpu, i); } void hw_breakpoint_update(ARMCPU *cpu, int n) { CPUARMState *env = &cpu->env; uint64_t bvr = env->cp15.dbgbvr[n]; uint64_t bcr = env->cp15.dbgbcr[n]; vaddr addr; int bt; int flags = BP_CPU; if (env->cpu_breakpoint[n]) { cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); env->cpu_breakpoint[n] = NULL; } if (!extract64(bcr, 0, 1)) { /* E bit clear : watchpoint disabled */ return; } bt = extract64(bcr, 20, 4); switch (bt) { case 4: /* unlinked address mismatch (reserved if AArch64) */ case 5: /* linked address mismatch (reserved if AArch64) */ qemu_log_mask(LOG_UNIMP, "arm: address mismatch breakpoint types not implemented\n"); return; case 0: /* unlinked address match */ case 1: /* linked address match */ { /* Bits [63:49] are hardwired to the value of bit [48]; that is, * we behave as if the register was sign extended. Bits [1:0] are * RES0. The BAS field is used to allow setting breakpoints on 16 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether * a bp will fire if the addresses covered by the bp and the addresses * covered by the insn overlap but the insn doesn't start at the * start of the bp address range. We choose to require the insn and * the bp to have the same address. The constraints on writing to * BAS enforced in dbgbcr_write mean we have only four cases: * 0b0000 => no breakpoint * 0b0011 => breakpoint on addr * 0b1100 => breakpoint on addr + 2 * 0b1111 => breakpoint on addr * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). */ int bas = extract64(bcr, 5, 4); addr = sextract64(bvr, 0, 49) & ~3ULL; if (bas == 0) { return; } if (bas == 0xc) { addr += 2; } break; } case 2: /* unlinked context ID match */ case 8: /* unlinked VMID match (reserved if no EL2) */ case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ qemu_log_mask(LOG_UNIMP, "arm: unlinked context breakpoint types not implemented\n"); return; case 9: /* linked VMID match (reserved if no EL2) */ case 11: /* linked context ID and VMID match (reserved if no EL2) */ case 3: /* linked context ID match */ default: /* We must generate no events for Linked context matches (unless * they are linked to by some other bp/wp, which is handled in * updates for the linking bp/wp). We choose to also generate no events * for reserved values. */ return; } cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); } void hw_breakpoint_update_all(ARMCPU *cpu) { int i; CPUARMState *env = &cpu->env; /* Completely clear out existing QEMU breakpoints and our array, to * avoid possible stale entries following migration load. */ cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { hw_breakpoint_update(cpu, i); } } static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); int i = ri->crm; raw_write(env, ri, value); hw_breakpoint_update(cpu, i); } static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = env_archcpu(env); int i = ri->crm; /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only * copy of BAS[0]. */ value = deposit64(value, 6, 1, extract64(value, 5, 1)); value = deposit64(value, 8, 1, extract64(value, 7, 1)); raw_write(env, ri, value); hw_breakpoint_update(cpu, i); } static void define_debug_regs(ARMCPU *cpu) { /* Define v7 and v8 architectural debug registers. * These are just dummy implementations for now. */ int i; int wrps, brps, ctx_cmps; ARMCPRegInfo dbgdidr = { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .accessfn = access_tda, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, }; /* Note that all these register fields hold "number of Xs minus 1". */ brps = extract32(cpu->dbgdidr, 24, 4); wrps = extract32(cpu->dbgdidr, 28, 4); ctx_cmps = extract32(cpu->dbgdidr, 20, 4); assert(ctx_cmps <= brps); /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties * of the debug registers such as number of breakpoints; * check that if they both exist then they agree. */ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); } define_one_arm_cp_reg(cpu, &dbgdidr); define_arm_cp_regs(cpu, debug_cp_reginfo); if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); } for (i = 0; i < brps + 1; i++) { ARMCPRegInfo dbgregs[] = { { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, .access = PL1_RW, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), .writefn = dbgbvr_write, .raw_writefn = raw_write }, { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, .access = PL1_RW, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), .writefn = dbgbcr_write, .raw_writefn = raw_write }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, dbgregs); } for (i = 0; i < wrps + 1; i++) { ARMCPRegInfo dbgregs[] = { { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, .access = PL1_RW, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), .writefn = dbgwvr_write, .raw_writefn = raw_write }, { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, .access = PL1_RW, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), .writefn = dbgwcr_write, .raw_writefn = raw_write }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, dbgregs); } } /* We don't know until after realize whether there's a GICv3 * attached, and that is what registers the gicv3 sysregs. * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 * at runtime. */ static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = env_archcpu(env); uint64_t pfr1 = cpu->id_pfr1; if (env->gicv3state) { pfr1 |= 1 << 28; } return pfr1; } static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = env_archcpu(env); uint64_t pfr0 = cpu->isar.id_aa64pfr0; if (env->gicv3state) { pfr0 |= 1 << 24; } return pfr0; } /* Shared logic between LORID and the rest of the LOR* registers. * Secure state has already been delt with. */ static CPAccessResult access_lor_ns(CPUARMState *env) { int el = arm_current_el(env); if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_is_secure_below_el3(env)) { /* Access ok in secure mode. */ return CP_ACCESS_OK; } return access_lor_ns(env); } static CPAccessResult access_lor_other(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_is_secure_below_el3(env)) { /* Access denied in secure mode. */ return CP_ACCESS_TRAP; } return access_lor_ns(env); } #ifdef TARGET_AARCH64 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { int el = arm_current_el(env); if (el < 2 && arm_feature(env, ARM_FEATURE_EL2) && !(arm_hcr_el2_eff(env) & HCR_APK)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_APK)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } static const ARMCPRegInfo pauth_reginfo[] = { { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, .access = PL1_RW, .accessfn = access_pauth, .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, .access = PL1_RW, .accessfn = access_pauth, .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, .access = PL1_RW, .accessfn = access_pauth, .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, .access = PL1_RW, .accessfn = access_pauth, .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, .access = PL1_RW, .accessfn = access_pauth, .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, .access = PL1_RW, .accessfn = access_pauth, .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, .access = PL1_RW, .accessfn = access_pauth, .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, .access = PL1_RW, .accessfn = access_pauth, .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, .access = PL1_RW, .accessfn = access_pauth, .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, .access = PL1_RW, .accessfn = access_pauth, .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, REGINFO_SENTINEL }; static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) { Error *err = NULL; uint64_t ret; /* Success sets NZCV = 0000. */ env->NF = env->CF = env->VF = 0, env->ZF = 1; if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { /* * ??? Failed, for unknown reasons in the crypto subsystem. * The best we can do is log the reason and return the * timed-out indication to the guest. There is no reason * we know to expect this failure to be transitory, so the * guest may well hang retrying the operation. */ qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", ri->name, error_get_pretty(err)); error_free(err); env->ZF = 0; /* NZCF = 0100 */ return 0; } return ret; } /* We do not support re-seeding, so the two registers operate the same. */ static const ARMCPRegInfo rndr_reginfo[] = { { .name = "RNDR", .state = ARM_CP_STATE_AA64, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, .access = PL0_R, .readfn = rndr_readfn }, { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, .access = PL0_R, .readfn = rndr_readfn }, REGINFO_SENTINEL }; #ifndef CONFIG_USER_ONLY static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, uint64_t value) { ARMCPU *cpu = env_archcpu(env); /* CTR_EL0 System register -> DminLine, bits [19:16] */ uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); uint64_t vaddr_in = (uint64_t) value; uint64_t vaddr = vaddr_in & ~(dline_size - 1); void *haddr; int mem_idx = cpu_mmu_index(env, false); /* This won't be crossing page boundaries */ haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); if (haddr) { ram_addr_t offset; MemoryRegion *mr; /* RCU lock is already being held */ mr = memory_region_from_host(haddr, &offset); if (mr) { memory_region_do_writeback(mr, offset, dline_size); } } } static const ARMCPRegInfo dcpop_reg[] = { { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn }, REGINFO_SENTINEL }; static const ARMCPRegInfo dcpodp_reg[] = { { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn }, REGINFO_SENTINEL }; #endif /*CONFIG_USER_ONLY*/ #endif static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { int el = arm_current_el(env); if (el == 0) { uint64_t sctlr = arm_sctlr(env, el); if (!(sctlr & SCTLR_EnRCTX)) { return CP_ACCESS_TRAP; } } else if (el == 1) { uint64_t hcr = arm_hcr_el2_eff(env); if (hcr & HCR_NV) { return CP_ACCESS_TRAP_EL2; } } return CP_ACCESS_OK; } static const ARMCPRegInfo predinv_reginfo[] = { { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, /* * Note the AArch32 opcodes have a different OPC1. */ { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, REGINFO_SENTINEL }; static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { return CP_ACCESS_TRAP_EL2; } return CP_ACCESS_OK; } static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_feature(env, ARM_FEATURE_V8)) { return access_aa64_tid3(env, ri, isread); } return CP_ACCESS_OK; } static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { return CP_ACCESS_TRAP_EL2; } return CP_ACCESS_OK; } static const ARMCPRegInfo jazelle_regs[] = { { .name = "JIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, .access = PL1_R, .accessfn = access_jazelle, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "JOSCR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "JMCR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; void register_cp_regs_for_features(ARMCPU *cpu) { /* Register all the coprocessor registers based on feature bits */ CPUARMState *env = &cpu->env; if (arm_feature(env, ARM_FEATURE_M)) { /* M profile has no coprocessor registers */ return; } define_arm_cp_regs(cpu, cp_reginfo); if (!arm_feature(env, ARM_FEATURE_V8)) { /* Must go early as it is full of wildcards that may be * overridden by later definitions. */ define_arm_cp_regs(cpu, not_v8_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V6)) { /* The ID registers all have impdef reset values */ ARMCPRegInfo v6_idregs[] = { { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->id_pfr0 }, /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know * the value of the GIC field until after we define these regs. */ { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, .access = PL1_R, .type = ARM_CP_NO_RAW, .accessfn = access_aa32_tid3, .readfn = id_pfr1_read, .writefn = arm_cp_write_ignore }, { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->id_dfr0 }, { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->id_afr0 }, { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->id_mmfr0 }, { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->id_mmfr1 }, { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->id_mmfr2 }, { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->id_mmfr3 }, { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->isar.id_isar0 }, { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->isar.id_isar1 }, { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->isar.id_isar2 }, { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->isar.id_isar3 }, { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->isar.id_isar4 }, { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->isar.id_isar5 }, { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->id_mmfr4 }, { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa32_tid3, .resetvalue = cpu->isar.id_isar6 }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, v6_idregs); define_arm_cp_regs(cpu, v6_cp_reginfo); } else { define_arm_cp_regs(cpu, not_v6_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V6K)) { define_arm_cp_regs(cpu, v6k_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V7MP) && !arm_feature(env, ARM_FEATURE_PMSA)) { define_arm_cp_regs(cpu, v7mp_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V7VE)) { define_arm_cp_regs(cpu, pmovsset_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V7)) { /* v7 performance monitor control register: same implementor * field as main ID register, and we implement four counters in * addition to the cycle count register. */ unsigned int i, pmcrn = 4; ARMCPRegInfo pmcr = { .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), .accessfn = pmreg_access, .writefn = pmcr_write, .raw_writefn = raw_write, }; ARMCPRegInfo pmcr64 = { .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), .writefn = pmcr_write, .raw_writefn = raw_write, }; define_one_arm_cp_reg(cpu, &pmcr); define_one_arm_cp_reg(cpu, &pmcr64); for (i = 0; i < pmcrn; i++) { char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); ARMCPRegInfo pmev_regs[] = { { .name = pmevcntr_name, .cp = 15, .crn = 14, .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, .accessfn = pmreg_access }, { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_IO, .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, .raw_readfn = pmevcntr_rawread, .raw_writefn = pmevcntr_rawwrite }, { .name = pmevtyper_name, .cp = 15, .crn = 14, .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, .accessfn = pmreg_access }, { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_IO, .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, .raw_writefn = pmevtyper_rawwrite }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, pmev_regs); g_free(pmevcntr_name); g_free(pmevcntr_el0_name); g_free(pmevtyper_name); g_free(pmevtyper_el0_name); } ARMCPRegInfo clidr = { .name = "CLIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid2, .resetvalue = cpu->clidr }; define_one_arm_cp_reg(cpu, &clidr); define_arm_cp_regs(cpu, v7_cp_reginfo); define_debug_regs(cpu); } else { define_arm_cp_regs(cpu, not_v7_cp_reginfo); } if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { ARMCPRegInfo v81_pmu_regs[] = { { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, .resetvalue = extract64(cpu->pmceid0, 32, 32) }, { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, .resetvalue = extract64(cpu->pmceid1, 32, 32) }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, v81_pmu_regs); } if (arm_feature(env, ARM_FEATURE_V8)) { /* AArch64 ID registers, which all have impdef reset values. * Note that within the ID register ranges the unused slots * must all RAZ, not UNDEF; future architecture versions may * define new registers here. */ ARMCPRegInfo v8_idregs[] = { /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't * know the right value for the GIC field until after we * define these regs. */ { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, .access = PL1_R, .type = ARM_CP_NO_RAW, .accessfn = access_aa64_tid3, .readfn = id_aa64pfr0_read, .writefn = arm_cp_write_ignore }, { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->isar.id_aa64pfr1}, { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, /* At present, only SVEver == 0 is defined anyway. */ .resetvalue = 0 }, { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->id_aa64dfr0 }, { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->id_aa64dfr1 }, { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->id_aa64afr0 }, { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->id_aa64afr1 }, { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->isar.id_aa64isar0 }, { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->isar.id_aa64isar1 }, { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->isar.id_aa64mmfr0 }, { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->isar.id_aa64mmfr1 }, { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->isar.mvfr0 }, { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->isar.mvfr1 }, { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = cpu->isar.mvfr2 }, { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .accessfn = access_aa64_tid3, .resetvalue = 0 }, { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, .resetvalue = extract64(cpu->pmceid0, 0, 32) }, { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, .resetvalue = cpu->pmceid0 }, { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, .resetvalue = extract64(cpu->pmceid1, 0, 32) }, { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, .resetvalue = cpu->pmceid1 }, REGINFO_SENTINEL }; #ifdef CONFIG_USER_ONLY ARMCPRegUserSpaceInfo v8_user_idregs[] = { { .name = "ID_AA64PFR0_EL1", .exported_bits = 0x000f000f00ff0000, .fixed_bits = 0x0000000000000011 }, { .name = "ID_AA64PFR1_EL1", .exported_bits = 0x00000000000000f0 }, { .name = "ID_AA64PFR*_EL1_RESERVED", .is_glob = true }, { .name = "ID_AA64ZFR0_EL1" }, { .name = "ID_AA64MMFR0_EL1", .fixed_bits = 0x00000000ff000000 }, { .name = "ID_AA64MMFR1_EL1" }, { .name = "ID_AA64MMFR*_EL1_RESERVED", .is_glob = true }, { .name = "ID_AA64DFR0_EL1", .fixed_bits = 0x0000000000000006 }, { .name = "ID_AA64DFR1_EL1" }, { .name = "ID_AA64DFR*_EL1_RESERVED", .is_glob = true }, { .name = "ID_AA64AFR*", .is_glob = true }, { .name = "ID_AA64ISAR0_EL1", .exported_bits = 0x00fffffff0fffff0 }, { .name = "ID_AA64ISAR1_EL1", .exported_bits = 0x000000f0ffffffff }, { .name = "ID_AA64ISAR*_EL1_RESERVED", .is_glob = true }, REGUSERINFO_SENTINEL }; modify_arm_cp_regs(v8_idregs, v8_user_idregs); #endif /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ if (!arm_feature(env, ARM_FEATURE_EL3) && !arm_feature(env, ARM_FEATURE_EL2)) { ARMCPRegInfo rvbar = { .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar }; define_one_arm_cp_reg(cpu, &rvbar); } define_arm_cp_regs(cpu, v8_idregs); define_arm_cp_regs(cpu, v8_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_EL2)) { uint64_t vmpidr_def = mpidr_read_val(env); ARMCPRegInfo vpidr_regs[] = { { .name = "VPIDR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, .access = PL2_RW, .accessfn = access_el3_aa32ns, .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, .access = PL2_RW, .resetvalue = cpu->midr, .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, .access = PL2_RW, .accessfn = access_el3_aa32ns, .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, .access = PL2_RW, .resetvalue = vmpidr_def, .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, vpidr_regs); define_arm_cp_regs(cpu, el2_cp_reginfo); if (arm_feature(env, ARM_FEATURE_V8)) { define_arm_cp_regs(cpu, el2_v8_cp_reginfo); } /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ if (!arm_feature(env, ARM_FEATURE_EL3)) { ARMCPRegInfo rvbar = { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar }; define_one_arm_cp_reg(cpu, &rvbar); } } else { /* If EL2 is missing but higher ELs are enabled, we need to * register the no_el2 reginfos. */ if (arm_feature(env, ARM_FEATURE_EL3)) { /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value * of MIDR_EL1 and MPIDR_EL1. */ ARMCPRegInfo vpidr_regs[] = { { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, .type = ARM_CP_CONST, .resetvalue = cpu->midr, .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, vpidr_regs); define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); if (arm_feature(env, ARM_FEATURE_V8)) { define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); } } } if (arm_feature(env, ARM_FEATURE_EL3)) { define_arm_cp_regs(cpu, el3_cp_reginfo); ARMCPRegInfo el3_regs[] = { { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), .resetvalue = cpu->reset_sctlr }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, el3_regs); } /* The behaviour of NSACR is sufficiently various that we don't * try to describe it in a single reginfo: * if EL3 is 64 bit, then trap to EL3 from S EL1, * reads as constant 0xc00 from NS EL1 and NS EL2 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 * if v7 without EL3, register doesn't exist * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 */ if (arm_feature(env, ARM_FEATURE_EL3)) { if (arm_feature(env, ARM_FEATURE_AARCH64)) { ARMCPRegInfo nsacr = { .name = "NSACR", .type = ARM_CP_CONST, .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, .access = PL1_RW, .accessfn = nsacr_access, .resetvalue = 0xc00 }; define_one_arm_cp_reg(cpu, &nsacr); } else { ARMCPRegInfo nsacr = { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, .access = PL3_RW | PL1_R, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }; define_one_arm_cp_reg(cpu, &nsacr); } } else { if (arm_feature(env, ARM_FEATURE_V8)) { ARMCPRegInfo nsacr = { .name = "NSACR", .type = ARM_CP_CONST, .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, .access = PL1_R, .resetvalue = 0xc00 }; define_one_arm_cp_reg(cpu, &nsacr); } } if (arm_feature(env, ARM_FEATURE_PMSA)) { if (arm_feature(env, ARM_FEATURE_V6)) { /* PMSAv6 not implemented */ assert(arm_feature(env, ARM_FEATURE_V7)); define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); define_arm_cp_regs(cpu, pmsav7_cp_reginfo); } else { define_arm_cp_regs(cpu, pmsav5_cp_reginfo); } } else { define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); define_arm_cp_regs(cpu, vmsa_cp_reginfo); /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); } } if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { define_arm_cp_regs(cpu, t2ee_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { define_arm_cp_regs(cpu, generic_timer_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_VAPA)) { define_arm_cp_regs(cpu, vapa_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_OMAPCP)) { define_arm_cp_regs(cpu, omap_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_STRONGARM)) { define_arm_cp_regs(cpu, strongarm_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_XSCALE)) { define_arm_cp_regs(cpu, xscale_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_LPAE)) { define_arm_cp_regs(cpu, lpae_cp_reginfo); } if (cpu_isar_feature(jazelle, cpu)) { define_arm_cp_regs(cpu, jazelle_regs); } /* Slightly awkwardly, the OMAP and StrongARM cores need all of * cp15 crn=0 to be writes-ignored, whereas for other cores they should * be read-only (ie write causes UNDEF exception). */ { ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { /* Pre-v8 MIDR space. * Note that the MIDR isn't a simple constant register because * of the TI925 behaviour where writes to another register can * cause the MIDR value to change. * * Unimplemented registers in the c15 0 0 0 space default to * MIDR. Define MIDR first as this entire space, then CTR, TCMTR * and friends override accordingly. */ { .name = "MIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .resetvalue = cpu->midr, .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, .readfn = midr_read, .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), .type = ARM_CP_OVERRIDE }, /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; ARMCPRegInfo id_v8_midr_cp_reginfo[] = { { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), .readfn = midr_read }, /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_R, .resetvalue = cpu->midr }, { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, .access = PL1_R, .resetvalue = cpu->midr }, { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, .access = PL1_R, .accessfn = access_aa64_tid1, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, REGINFO_SENTINEL }; ARMCPRegInfo id_cp_reginfo[] = { /* These are common to v8 and pre-v8 */ { .name = "CTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_R, .accessfn = ctr_el0_access, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, .access = PL0_R, .accessfn = ctr_el0_access, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ { .name = "TCMTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_R, .accessfn = access_aa32_tid1, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; /* TLBTR is specific to VMSA */ ARMCPRegInfo id_tlbtr_reginfo = { .name = "TLBTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL1_R, .accessfn = access_aa32_tid1, .type = ARM_CP_CONST, .resetvalue = 0, }; /* MPUIR is specific to PMSA V6+ */ ARMCPRegInfo id_mpuir_reginfo = { .name = "MPUIR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->pmsav7_dregion << 8 }; ARMCPRegInfo crn0_wi_reginfo = { .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_OVERRIDE }; #ifdef CONFIG_USER_ONLY ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { { .name = "MIDR_EL1", .exported_bits = 0x00000000ffffffff }, { .name = "REVIDR_EL1" }, REGUSERINFO_SENTINEL }; modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); #endif if (arm_feature(env, ARM_FEATURE_OMAPCP) || arm_feature(env, ARM_FEATURE_STRONGARM)) { ARMCPRegInfo *r; /* Register the blanket "writes ignored" value first to cover the * whole space. Then update the specific ID registers to allow write * access, so that they ignore writes rather than causing them to * UNDEF. */ define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); for (r = id_pre_v8_midr_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { r->access = PL1_RW; } for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { r->access = PL1_RW; } id_mpuir_reginfo.access = PL1_RW; id_tlbtr_reginfo.access = PL1_RW; } if (arm_feature(env, ARM_FEATURE_V8)) { define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); } else { define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); } define_arm_cp_regs(cpu, id_cp_reginfo); if (!arm_feature(env, ARM_FEATURE_PMSA)) { define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); } else if (arm_feature(env, ARM_FEATURE_V7)) { define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); } } if (arm_feature(env, ARM_FEATURE_MPIDR)) { ARMCPRegInfo mpidr_cp_reginfo[] = { { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, REGINFO_SENTINEL }; #ifdef CONFIG_USER_ONLY ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { { .name = "MPIDR_EL1", .fixed_bits = 0x0000000080000000 }, REGUSERINFO_SENTINEL }; modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); #endif define_arm_cp_regs(cpu, mpidr_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_AUXCR)) { ARMCPRegInfo auxcr_reginfo[] = { { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, auxcr_reginfo); if (arm_feature(env, ARM_FEATURE_V8)) { /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ ARMCPRegInfo hactlr2_reginfo = { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }; define_one_arm_cp_reg(cpu, &hactlr2_reginfo); } } if (arm_feature(env, ARM_FEATURE_CBAR)) { /* * CBAR is IMPDEF, but common on Arm Cortex-A implementations. * There are two flavours: * (1) older 32-bit only cores have a simple 32-bit CBAR * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a * 32-bit register visible to AArch32 at a different encoding * to the "flavour 1" register and with the bits rearranged to * be able to squash a 64-bit address into the 32-bit view. * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but * in future if we support AArch32-only configs of some of the * AArch64 cores we might need to add a specific feature flag * to indicate cores with "flavour 2" CBAR. */ if (arm_feature(env, ARM_FEATURE_AARCH64)) { /* 32 bit view is [31:18] 0...0 [43:32]. */ uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | extract64(cpu->reset_cbar, 32, 12); ARMCPRegInfo cbar_reginfo[] = { { .name = "CBAR", .type = ARM_CP_CONST, .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, .access = PL1_R, .resetvalue = cbar32 }, { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_CONST, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, .access = PL1_R, .resetvalue = cpu->reset_cbar }, REGINFO_SENTINEL }; /* We don't implement a r/w 64 bit CBAR currently */ assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); define_arm_cp_regs(cpu, cbar_reginfo); } else { ARMCPRegInfo cbar = { .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address) }; if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { cbar.access = PL1_R; cbar.fieldoffset = 0; cbar.type = ARM_CP_CONST; } define_one_arm_cp_reg(cpu, &cbar); } } if (arm_feature(env, ARM_FEATURE_VBAR)) { ARMCPRegInfo vbar_cp_reginfo[] = { { .name = "VBAR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .writefn = vbar_write, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), offsetof(CPUARMState, cp15.vbar_ns) }, .resetvalue = 0 }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, vbar_cp_reginfo); } /* Generic registers whose values depend on the implementation */ { ARMCPRegInfo sctlr = { .name = "SCTLR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), offsetof(CPUARMState, cp15.sctlr_ns) }, .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, .raw_writefn = raw_write, }; if (arm_feature(env, ARM_FEATURE_XSCALE)) { /* Normally we would always end the TB on an SCTLR write, but Linux * arch/arm/mach-pxa/sleep.S expects two instructions following * an MMU enable to execute from cache. Imitate this behaviour. */ sctlr.type |= ARM_CP_SUPPRESS_TB_END; } define_one_arm_cp_reg(cpu, &sctlr); } if (cpu_isar_feature(aa64_lor, cpu)) { /* * A trivial implementation of ARMv8.1-LOR leaves all of these * registers fixed at 0, which indicates that there are zero * supported Limited Ordering regions. */ static const ARMCPRegInfo lor_reginfo[] = { { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, .access = PL1_RW, .accessfn = access_lor_other, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, .access = PL1_RW, .accessfn = access_lor_other, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, .access = PL1_RW, .accessfn = access_lor_other, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, .access = PL1_RW, .accessfn = access_lor_other, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, .access = PL1_R, .accessfn = access_lorid, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, lor_reginfo); } if (cpu_isar_feature(aa64_sve, cpu)) { define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); if (arm_feature(env, ARM_FEATURE_EL2)) { define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); } else { define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); } if (arm_feature(env, ARM_FEATURE_EL3)) { define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); } } #ifdef TARGET_AARCH64 if (cpu_isar_feature(aa64_pauth, cpu)) { define_arm_cp_regs(cpu, pauth_reginfo); } if (cpu_isar_feature(aa64_rndr, cpu)) { define_arm_cp_regs(cpu, rndr_reginfo); } #ifndef CONFIG_USER_ONLY /* Data Cache clean instructions up to PoP */ if (cpu_isar_feature(aa64_dcpop, cpu)) { define_one_arm_cp_reg(cpu, dcpop_reg); if (cpu_isar_feature(aa64_dcpodp, cpu)) { define_one_arm_cp_reg(cpu, dcpodp_reg); } } #endif /*CONFIG_USER_ONLY*/ #endif /* * While all v8.0 cpus support aarch64, QEMU does have configurations * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, * which will set ID_ISAR6. */ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ? cpu_isar_feature(aa64_predinv, cpu) : cpu_isar_feature(aa32_predinv, cpu)) { define_arm_cp_regs(cpu, predinv_reginfo); } } void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) { CPUState *cs = CPU(cpu); CPUARMState *env = &cpu->env; if (arm_feature(env, ARM_FEATURE_AARCH64)) { gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, aarch64_fpu_gdb_set_reg, 34, "aarch64-fpu.xml", 0); } else if (arm_feature(env, ARM_FEATURE_NEON)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 51, "arm-neon.xml", 0); } else if (arm_feature(env, ARM_FEATURE_VFP3)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 35, "arm-vfp3.xml", 0); } else if (arm_feature(env, ARM_FEATURE_VFP)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 19, "arm-vfp.xml", 0); } gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, arm_gen_dynamic_xml(cs), "system-registers.xml", 0); } /* Sort alphabetically by type name, except for "any". */ static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) { ObjectClass *class_a = (ObjectClass *)a; ObjectClass *class_b = (ObjectClass *)b; const char *name_a, *name_b; name_a = object_class_get_name(class_a); name_b = object_class_get_name(class_b); if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { return 1; } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { return -1; } else { return strcmp(name_a, name_b); } } static void arm_cpu_list_entry(gpointer data, gpointer user_data) { ObjectClass *oc = data; const char *typename; char *name; typename = object_class_get_name(oc); name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); qemu_printf(" %s\n", name); g_free(name); } void arm_cpu_list(void) { GSList *list; list = object_class_get_list(TYPE_ARM_CPU, false); list = g_slist_sort(list, arm_cpu_list_compare); qemu_printf("Available CPUs:\n"); g_slist_foreach(list, arm_cpu_list_entry, NULL); g_slist_free(list); } static void arm_cpu_add_definition(gpointer data, gpointer user_data) { ObjectClass *oc = data; CpuDefinitionInfoList **cpu_list = user_data; CpuDefinitionInfoList *entry; CpuDefinitionInfo *info; const char *typename; typename = object_class_get_name(oc); info = g_malloc0(sizeof(*info)); info->name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); info->q_typename = g_strdup(typename); entry = g_malloc0(sizeof(*entry)); entry->value = info; entry->next = *cpu_list; *cpu_list = entry; } CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) { CpuDefinitionInfoList *cpu_list = NULL; GSList *list; list = object_class_get_list(TYPE_ARM_CPU, false); g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); g_slist_free(list); return cpu_list; } static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, void *opaque, int state, int secstate, int crm, int opc1, int opc2, const char *name) { /* Private utility function for define_one_arm_cp_reg_with_opaque(): * add a single reginfo struct to the hash table. */ uint32_t *key = g_new(uint32_t, 1); ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; r2->name = g_strdup(name); /* Reset the secure state to the specific incoming state. This is * necessary as the register may have been defined with both states. */ r2->secure = secstate; if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { /* Register is banked (using both entries in array). * Overwriting fieldoffset as the array is only used to define * banked registers but later only fieldoffset is used. */ r2->fieldoffset = r->bank_fieldoffsets[ns]; } if (state == ARM_CP_STATE_AA32) { if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { /* If the register is banked then we don't need to migrate or * reset the 32-bit instance in certain cases: * * 1) If the register has both 32-bit and 64-bit instances then we * can count on the 64-bit instance taking care of the * non-secure bank. * 2) If ARMv8 is enabled then we can count on a 64-bit version * taking care of the secure bank. This requires that separate * 32 and 64-bit definitions are provided. */ if ((r->state == ARM_CP_STATE_BOTH && ns) || (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { r2->type |= ARM_CP_ALIAS; } } else if ((secstate != r->secure) && !ns) { /* The register is not banked so we only want to allow migration of * the non-secure instance. */ r2->type |= ARM_CP_ALIAS; } if (r->state == ARM_CP_STATE_BOTH) { /* We assume it is a cp15 register if the .cp field is left unset. */ if (r2->cp == 0) { r2->cp = 15; } #ifdef HOST_WORDS_BIGENDIAN if (r2->fieldoffset) { r2->fieldoffset += sizeof(uint32_t); } #endif } } if (state == ARM_CP_STATE_AA64) { /* To allow abbreviation of ARMCPRegInfo * definitions, we treat cp == 0 as equivalent to * the value for "standard guest-visible sysreg". * STATE_BOTH definitions are also always "standard * sysreg" in their AArch64 view (the .cp value may * be non-zero for the benefit of the AArch32 view). */ if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { r2->cp = CP_REG_ARM64_SYSREG_CP; } *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, r2->opc0, opc1, opc2); } else { *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); } if (opaque) { r2->opaque = opaque; } /* reginfo passed to helpers is correct for the actual access, * and is never ARM_CP_STATE_BOTH: */ r2->state = state; /* Make sure reginfo passed to helpers for wildcarded regs * has the correct crm/opc1/opc2 for this reg, not CP_ANY: */ r2->crm = crm; r2->opc1 = opc1; r2->opc2 = opc2; /* By convention, for wildcarded registers only the first * entry is used for migration; the others are marked as * ALIAS so we don't try to transfer the register * multiple times. Special registers (ie NOP/WFI) are * never migratable and not even raw-accessible. */ if ((r->type & ARM_CP_SPECIAL)) { r2->type |= ARM_CP_NO_RAW; } if (((r->crm == CP_ANY) && crm != 0) || ((r->opc1 == CP_ANY) && opc1 != 0) || ((r->opc2 == CP_ANY) && opc2 != 0)) { r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; } /* Check that raw accesses are either forbidden or handled. Note that * we can't assert this earlier because the setup of fieldoffset for * banked registers has to be done first. */ if (!(r2->type & ARM_CP_NO_RAW)) { assert(!raw_accessors_invalid(r2)); } /* Overriding of an existing definition must be explicitly * requested. */ if (!(r->type & ARM_CP_OVERRIDE)) { ARMCPRegInfo *oldreg; oldreg = g_hash_table_lookup(cpu->cp_regs, key); if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { fprintf(stderr, "Register redefined: cp=%d %d bit " "crn=%d crm=%d opc1=%d opc2=%d, " "was %s, now %s\n", r2->cp, 32 + 32 * is64, r2->crn, r2->crm, r2->opc1, r2->opc2, oldreg->name, r2->name); g_assert_not_reached(); } } g_hash_table_insert(cpu->cp_regs, key, r2); } void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *r, void *opaque) { /* Define implementations of coprocessor registers. * We store these in a hashtable because typically * there are less than 150 registers in a space which * is 16*16*16*8*8 = 262144 in size. * Wildcarding is supported for the crm, opc1 and opc2 fields. * If a register is defined twice then the second definition is * used, so this can be used to define some generic registers and * then override them with implementation specific variations. * At least one of the original and the second definition should * include ARM_CP_OVERRIDE in its type bits -- this is just a guard * against accidental use. * * The state field defines whether the register is to be * visible in the AArch32 or AArch64 execution state. If the * state is set to ARM_CP_STATE_BOTH then we synthesise a * reginfo structure for the AArch32 view, which sees the lower * 32 bits of the 64 bit register. * * Only registers visible in AArch64 may set r->opc0; opc0 cannot * be wildcarded. AArch64 registers are always considered to be 64 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of * the register, if any. */ int crm, opc1, opc2, state; int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; /* 64 bit registers have only CRm and Opc1 fields */ assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); /* op0 only exists in the AArch64 encodings */ assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 * encodes a minimum access level for the register. We roll this * runtime check into our general permission check code, so check * here that the reginfo's specified permissions are strict enough * to encompass the generic architectural permission check. */ if (r->state != ARM_CP_STATE_AA32) { int mask = 0; switch (r->opc1) { case 0: /* min_EL EL1, but some accessible to EL0 via kernel ABI */ mask = PL0U_R | PL1_RW; break; case 1: case 2: /* min_EL EL1 */ mask = PL1_RW; break; case 3: /* min_EL EL0 */ mask = PL0_RW; break; case 4: /* min_EL EL2 */ mask = PL2_RW; break; case 5: /* unallocated encoding, so not possible */ assert(false); break; case 6: /* min_EL EL3 */ mask = PL3_RW; break; case 7: /* min_EL EL1, secure mode only (we don't check the latter) */ mask = PL1_RW; break; default: /* broken reginfo with out-of-range opc1 */ assert(false); break; } /* assert our permissions are not too lax (stricter is fine) */ assert((r->access & ~mask) == 0); } /* Check that the register definition has enough info to handle * reads and writes if they are permitted. */ if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { if (r->access & PL3_R) { assert((r->fieldoffset || (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || r->readfn); } if (r->access & PL3_W) { assert((r->fieldoffset || (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || r->writefn); } } /* Bad type field probably means missing sentinel at end of reg list */ assert(cptype_valid(r->type)); for (crm = crmmin; crm <= crmmax; crm++) { for (opc1 = opc1min; opc1 <= opc1max; opc1++) { for (opc2 = opc2min; opc2 <= opc2max; opc2++) { for (state = ARM_CP_STATE_AA32; state <= ARM_CP_STATE_AA64; state++) { if (r->state != state && r->state != ARM_CP_STATE_BOTH) { continue; } if (state == ARM_CP_STATE_AA32) { /* Under AArch32 CP registers can be common * (same for secure and non-secure world) or banked. */ char *name; switch (r->secure) { case ARM_CP_SECSTATE_S: case ARM_CP_SECSTATE_NS: add_cpreg_to_hashtable(cpu, r, opaque, state, r->secure, crm, opc1, opc2, r->name); break; default: name = g_strdup_printf("%s_S", r->name); add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_S, crm, opc1, opc2, name); g_free(name); add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_NS, crm, opc1, opc2, r->name); break; } } else { /* AArch64 registers get mapped to non-secure instance * of AArch32 */ add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_NS, crm, opc1, opc2, r->name); } } } } } } void define_arm_cp_regs_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *regs, void *opaque) { /* Define a whole list of registers */ const ARMCPRegInfo *r; for (r = regs; r->type != ARM_CP_SENTINEL; r++) { define_one_arm_cp_reg_with_opaque(cpu, r, opaque); } } /* * Modify ARMCPRegInfo for access from userspace. * * This is a data driven modification directed by * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as * user-space cannot alter any values and dynamic values pertaining to * execution state are hidden from user space view anyway. */ void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) { const ARMCPRegUserSpaceInfo *m; ARMCPRegInfo *r; for (m = mods; m->name; m++) { GPatternSpec *pat = NULL; if (m->is_glob) { pat = g_pattern_spec_new(m->name); } for (r = regs; r->type != ARM_CP_SENTINEL; r++) { if (pat && g_pattern_match_string(pat, r->name)) { r->type = ARM_CP_CONST; r->access = PL0U_R; r->resetvalue = 0; /* continue */ } else if (strcmp(r->name, m->name) == 0) { r->type = ARM_CP_CONST; r->access = PL0U_R; r->resetvalue &= m->exported_bits; r->resetvalue |= m->fixed_bits; break; } } if (pat) { g_pattern_spec_free(pat); } } } const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) { return g_hash_table_lookup(cpregs, &encoded_cp); } void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Helper coprocessor write function for write-ignore registers */ } uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) { /* Helper coprocessor write function for read-as-zero registers */ return 0; } void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) { /* Helper coprocessor reset function for do-nothing-on-reset registers */ } static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) { /* Return true if it is not valid for us to switch to * this CPU mode (ie all the UNPREDICTABLE cases in * the ARM ARM CPSRWriteByInstr pseudocode). */ /* Changes to or from Hyp via MSR and CPS are illegal. */ if (write_type == CPSRWriteByInstr && ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || mode == ARM_CPU_MODE_HYP)) { return 1; } switch (mode) { case ARM_CPU_MODE_USR: return 0; case ARM_CPU_MODE_SYS: case ARM_CPU_MODE_SVC: case ARM_CPU_MODE_ABT: case ARM_CPU_MODE_UND: case ARM_CPU_MODE_IRQ: case ARM_CPU_MODE_FIQ: /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) */ /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR * and CPS are treated as illegal mode changes. */ if (write_type == CPSRWriteByInstr && (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && (arm_hcr_el2_eff(env) & HCR_TGE)) { return 1; } return 0; case ARM_CPU_MODE_HYP: return !arm_feature(env, ARM_FEATURE_EL2) || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); case ARM_CPU_MODE_MON: return arm_current_el(env) < 3; default: return 1; } } uint32_t cpsr_read(CPUARMState *env) { int ZF; ZF = (env->ZF == 0); return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | ((env->condexec_bits & 0xfc) << 8) | (env->GE << 16) | (env->daif & CPSR_AIF); } void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, CPSRWriteType write_type) { uint32_t changed_daif; if (mask & CPSR_NZCV) { env->ZF = (~val) & CPSR_Z; env->NF = val; env->CF = (val >> 29) & 1; env->VF = (val << 3) & 0x80000000; } if (mask & CPSR_Q) env->QF = ((val & CPSR_Q) != 0); if (mask & CPSR_T) env->thumb = ((val & CPSR_T) != 0); if (mask & CPSR_IT_0_1) { env->condexec_bits &= ~3; env->condexec_bits |= (val >> 25) & 3; } if (mask & CPSR_IT_2_7) { env->condexec_bits &= 3; env->condexec_bits |= (val >> 8) & 0xfc; } if (mask & CPSR_GE) { env->GE = (val >> 16) & 0xf; } /* In a V7 implementation that includes the security extensions but does * not include Virtualization Extensions the SCR.FW and SCR.AW bits control * whether non-secure software is allowed to change the CPSR_F and CPSR_A * bits respectively. * * In a V8 implementation, it is permitted for privileged software to * change the CPSR A/F bits regardless of the SCR.AW/FW bits. */ if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && arm_feature(env, ARM_FEATURE_EL3) && !arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure(env)) { changed_daif = (env->daif ^ val) & mask; if (changed_daif & CPSR_A) { /* Check to see if we are allowed to change the masking of async * abort exceptions from a non-secure state. */ if (!(env->cp15.scr_el3 & SCR_AW)) { qemu_log_mask(LOG_GUEST_ERROR, "Ignoring attempt to switch CPSR_A flag from " "non-secure world with SCR.AW bit clear\n"); mask &= ~CPSR_A; } } if (changed_daif & CPSR_F) { /* Check to see if we are allowed to change the masking of FIQ * exceptions from a non-secure state. */ if (!(env->cp15.scr_el3 & SCR_FW)) { qemu_log_mask(LOG_GUEST_ERROR, "Ignoring attempt to switch CPSR_F flag from " "non-secure world with SCR.FW bit clear\n"); mask &= ~CPSR_F; } /* Check whether non-maskable FIQ (NMFI) support is enabled. * If this bit is set software is not allowed to mask * FIQs, but is allowed to set CPSR_F to 0. */ if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && (val & CPSR_F)) { qemu_log_mask(LOG_GUEST_ERROR, "Ignoring attempt to enable CPSR_F flag " "(non-maskable FIQ [NMFI] support enabled)\n"); mask &= ~CPSR_F; } } } env->daif &= ~(CPSR_AIF & mask); env->daif |= val & CPSR_AIF & mask; if (write_type != CPSRWriteRaw && ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { /* Note that we can only get here in USR mode if this is a * gdb stub write; for this case we follow the architectural * behaviour for guest writes in USR mode of ignoring an attempt * to switch mode. (Those are caught by translate.c for writes * triggered by guest instructions.) */ mask &= ~CPSR_M; } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in * v7, and has defined behaviour in v8: * + leave CPSR.M untouched * + allow changes to the other CPSR fields * + set PSTATE.IL * For user changes via the GDB stub, we don't set PSTATE.IL, * as this would be unnecessarily harsh for a user error. */ mask &= ~CPSR_M; if (write_type != CPSRWriteByGDBStub && arm_feature(env, ARM_FEATURE_V8)) { mask |= CPSR_IL; val |= CPSR_IL; } qemu_log_mask(LOG_GUEST_ERROR, "Illegal AArch32 mode switch attempt from %s to %s\n", aarch32_mode_name(env->uncached_cpsr), aarch32_mode_name(val)); } else { qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", write_type == CPSRWriteExceptionReturn ? "Exception return from AArch32" : "AArch32 mode switch from", aarch32_mode_name(env->uncached_cpsr), aarch32_mode_name(val), env->regs[15]); switch_mode(env, val & CPSR_M); } } mask &= ~CACHED_CPSR_BITS; env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); } /* Sign/zero extend */ uint32_t HELPER(sxtb16)(uint32_t x) { uint32_t res; res = (uint16_t)(int8_t)x; res |= (uint32_t)(int8_t)(x >> 16) << 16; return res; } uint32_t HELPER(uxtb16)(uint32_t x) { uint32_t res; res = (uint16_t)(uint8_t)x; res |= (uint32_t)(uint8_t)(x >> 16) << 16; return res; } int32_t HELPER(sdiv)(int32_t num, int32_t den) { if (den == 0) return 0; if (num == INT_MIN && den == -1) return INT_MIN; return num / den; } uint32_t HELPER(udiv)(uint32_t num, uint32_t den) { if (den == 0) return 0; return num / den; } uint32_t HELPER(rbit)(uint32_t x) { return revbit32(x); } #ifdef CONFIG_USER_ONLY static void switch_mode(CPUARMState *env, int mode) { ARMCPU *cpu = env_archcpu(env); if (mode != ARM_CPU_MODE_USR) { cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); } } uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, uint32_t cur_el, bool secure) { return 1; } void aarch64_sync_64_to_32(CPUARMState *env) { g_assert_not_reached(); } #else static void switch_mode(CPUARMState *env, int mode) { int old_mode; int i; old_mode = env->uncached_cpsr & CPSR_M; if (mode == old_mode) return; if (old_mode == ARM_CPU_MODE_FIQ) { memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); } else if (mode == ARM_CPU_MODE_FIQ) { memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); } i = bank_number(old_mode); env->banked_r13[i] = env->regs[13]; env->banked_spsr[i] = env->spsr; i = bank_number(mode); env->regs[13] = env->banked_r13[i]; env->spsr = env->banked_spsr[i]; env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; env->regs[14] = env->banked_r14[r14_bank_number(mode)]; } /* Physical Interrupt Target EL Lookup Table * * [ From ARM ARM section G1.13.4 (Table G1-15) ] * * The below multi-dimensional table is used for looking up the target * exception level given numerous condition criteria. Specifically, the * target EL is based on SCR and HCR routing controls as well as the * currently executing EL and secure state. * * Dimensions: * target_el_table[2][2][2][2][2][4] * | | | | | +--- Current EL * | | | | +------ Non-secure(0)/Secure(1) * | | | +--------- HCR mask override * | | +------------ SCR exec state control * | +--------------- SCR mask override * +------------------ 32-bit(0)/64-bit(1) EL3 * * The table values are as such: * 0-3 = EL0-EL3 * -1 = Cannot occur * * The ARM ARM target EL table includes entries indicating that an "exception * is not taken". The two cases where this is applicable are: * 1) An exception is taken from EL3 but the SCR does not have the exception * routed to EL3. * 2) An exception is taken from EL2 but the HCR does not have the exception * routed to EL2. * In these two cases, the below table contain a target of EL1. This value is * returned as it is expected that the consumer of the table data will check * for "target EL >= current EL" to ensure the exception is not taken. * * SCR HCR * 64 EA AMO From * BIT IRQ IMO Non-secure Secure * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 */ static const int8_t target_el_table[2][2][2][2][2][4] = { {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, }; /* * Determine the target EL for physical exceptions */ uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, uint32_t cur_el, bool secure) { CPUARMState *env = cs->env_ptr; bool rw; bool scr; bool hcr; int target_el; /* Is the highest EL AArch64? */ bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); uint64_t hcr_el2; if (arm_feature(env, ARM_FEATURE_EL3)) { rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); } else { /* Either EL2 is the highest EL (and so the EL2 register width * is given by is64); or there is no EL2 or EL3, in which case * the value of 'rw' does not affect the table lookup anyway. */ rw = is64; } hcr_el2 = arm_hcr_el2_eff(env); switch (excp_idx) { case EXCP_IRQ: scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); hcr = hcr_el2 & HCR_IMO; break; case EXCP_FIQ: scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); hcr = hcr_el2 & HCR_FMO; break; default: scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); hcr = hcr_el2 & HCR_AMO; break; }; /* Perform a table-lookup for the target EL given the current state */ target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; assert(target_el > 0); return target_el; } void arm_log_exception(int idx) { if (qemu_loglevel_mask(CPU_LOG_INT)) { const char *exc = NULL; static const char * const excnames[] = { [EXCP_UDEF] = "Undefined Instruction", [EXCP_SWI] = "SVC", [EXCP_PREFETCH_ABORT] = "Prefetch Abort", [EXCP_DATA_ABORT] = "Data Abort", [EXCP_IRQ] = "IRQ", [EXCP_FIQ] = "FIQ", [EXCP_BKPT] = "Breakpoint", [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", [EXCP_HVC] = "Hypervisor Call", [EXCP_HYP_TRAP] = "Hypervisor Trap", [EXCP_SMC] = "Secure Monitor Call", [EXCP_VIRQ] = "Virtual IRQ", [EXCP_VFIQ] = "Virtual FIQ", [EXCP_SEMIHOST] = "Semihosting call", [EXCP_NOCP] = "v7M NOCP UsageFault", [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", [EXCP_STKOF] = "v8M STKOF UsageFault", [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", [EXCP_LSERR] = "v8M LSERR UsageFault", [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", }; if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { exc = excnames[idx]; } if (!exc) { exc = "unknown"; } qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); } } /* * Function used to synchronize QEMU's AArch64 register set with AArch32 * register set. This is necessary when switching between AArch32 and AArch64 * execution state. */ void aarch64_sync_32_to_64(CPUARMState *env) { int i; uint32_t mode = env->uncached_cpsr & CPSR_M; /* We can blanket copy R[0:7] to X[0:7] */ for (i = 0; i < 8; i++) { env->xregs[i] = env->regs[i]; } /* * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. * Otherwise, they come from the banked user regs. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 8; i < 13; i++) { env->xregs[i] = env->usr_regs[i - 8]; } } else { for (i = 8; i < 13; i++) { env->xregs[i] = env->regs[i]; } } /* * Registers x13-x23 are the various mode SP and FP registers. Registers * r13 and r14 are only copied if we are in that mode, otherwise we copy * from the mode banked register. */ if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { env->xregs[13] = env->regs[13]; env->xregs[14] = env->regs[14]; } else { env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; /* HYP is an exception in that it is copied from r14 */ if (mode == ARM_CPU_MODE_HYP) { env->xregs[14] = env->regs[14]; } else { env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; } } if (mode == ARM_CPU_MODE_HYP) { env->xregs[15] = env->regs[13]; } else { env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; } if (mode == ARM_CPU_MODE_IRQ) { env->xregs[16] = env->regs[14]; env->xregs[17] = env->regs[13]; } else { env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; } if (mode == ARM_CPU_MODE_SVC) { env->xregs[18] = env->regs[14]; env->xregs[19] = env->regs[13]; } else { env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; } if (mode == ARM_CPU_MODE_ABT) { env->xregs[20] = env->regs[14]; env->xregs[21] = env->regs[13]; } else { env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; } if (mode == ARM_CPU_MODE_UND) { env->xregs[22] = env->regs[14]; env->xregs[23] = env->regs[13]; } else { env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; } /* * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ * mode, then we can copy from r8-r14. Otherwise, we copy from the * FIQ bank for r8-r14. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 24; i < 31; i++) { env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ } } else { for (i = 24; i < 29; i++) { env->xregs[i] = env->fiq_regs[i - 24]; } env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; } env->pc = env->regs[15]; } /* * Function used to synchronize QEMU's AArch32 register set with AArch64 * register set. This is necessary when switching between AArch32 and AArch64 * execution state. */ void aarch64_sync_64_to_32(CPUARMState *env) { int i; uint32_t mode = env->uncached_cpsr & CPSR_M; /* We can blanket copy X[0:7] to R[0:7] */ for (i = 0; i < 8; i++) { env->regs[i] = env->xregs[i]; } /* * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. * Otherwise, we copy x8-x12 into the banked user regs. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 8; i < 13; i++) { env->usr_regs[i - 8] = env->xregs[i]; } } else { for (i = 8; i < 13; i++) { env->regs[i] = env->xregs[i]; } } /* * Registers r13 & r14 depend on the current mode. * If we are in a given mode, we copy the corresponding x registers to r13 * and r14. Otherwise, we copy the x register to the banked r13 and r14 * for the mode. */ if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { env->regs[13] = env->xregs[13]; env->regs[14] = env->xregs[14]; } else { env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; /* * HYP is an exception in that it does not have its own banked r14 but * shares the USR r14 */ if (mode == ARM_CPU_MODE_HYP) { env->regs[14] = env->xregs[14]; } else { env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; } } if (mode == ARM_CPU_MODE_HYP) { env->regs[13] = env->xregs[15]; } else { env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; } if (mode == ARM_CPU_MODE_IRQ) { env->regs[14] = env->xregs[16]; env->regs[13] = env->xregs[17]; } else { env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; } if (mode == ARM_CPU_MODE_SVC) { env->regs[14] = env->xregs[18]; env->regs[13] = env->xregs[19]; } else { env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; } if (mode == ARM_CPU_MODE_ABT) { env->regs[14] = env->xregs[20]; env->regs[13] = env->xregs[21]; } else { env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; } if (mode == ARM_CPU_MODE_UND) { env->regs[14] = env->xregs[22]; env->regs[13] = env->xregs[23]; } else { env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; } /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ * mode, then we can copy to r8-r14. Otherwise, we copy to the * FIQ bank for r8-r14. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 24; i < 31; i++) { env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ } } else { for (i = 24; i < 29; i++) { env->fiq_regs[i - 24] = env->xregs[i]; } env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; } env->regs[15] = env->pc; } static void take_aarch32_exception(CPUARMState *env, int new_mode, uint32_t mask, uint32_t offset, uint32_t newpc) { /* Change the CPU state so as to actually take the exception. */ switch_mode(env, new_mode); /* * For exceptions taken to AArch32 we must clear the SS bit in both * PSTATE and in the old-state value we save to SPSR_, so zero it now. */ env->uncached_cpsr &= ~PSTATE_SS; env->spsr = cpsr_read(env); /* Clear IT bits. */ env->condexec_bits = 0; /* Switch to the new mode, and to the correct instruction set. */ env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; /* Set new mode endianness */ env->uncached_cpsr &= ~CPSR_E; if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { env->uncached_cpsr |= CPSR_E; } /* J and IL must always be cleared for exception entry */ env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); env->daif |= mask; if (new_mode == ARM_CPU_MODE_HYP) { env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; env->elr_el[2] = env->regs[15]; } else { /* * this is a lie, as there was no c1_sys on V4T/V5, but who cares * and we should just guard the thumb mode on V4 */ if (arm_feature(env, ARM_FEATURE_V4T)) { env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; } env->regs[14] = env->regs[15] + offset; } env->regs[15] = newpc; arm_rebuild_hflags(env); } static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) { /* * Handle exception entry to Hyp mode; this is sufficiently * different to entry to other AArch32 modes that we handle it * separately here. * * The vector table entry used is always the 0x14 Hyp mode entry point, * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. * The offset applied to the preferred return address is always zero * (see DDI0487C.a section G1.12.3). * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. */ uint32_t addr, mask; ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; switch (cs->exception_index) { case EXCP_UDEF: addr = 0x04; break; case EXCP_SWI: addr = 0x14; break; case EXCP_BKPT: /* Fall through to prefetch abort. */ case EXCP_PREFETCH_ABORT: env->cp15.ifar_s = env->exception.vaddress; qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", (uint32_t)env->exception.vaddress); addr = 0x0c; break; case EXCP_DATA_ABORT: env->cp15.dfar_s = env->exception.vaddress; qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", (uint32_t)env->exception.vaddress); addr = 0x10; break; case EXCP_IRQ: addr = 0x18; break; case EXCP_FIQ: addr = 0x1c; break; case EXCP_HVC: addr = 0x08; break; case EXCP_HYP_TRAP: addr = 0x14; break; default: cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); } if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { if (!arm_feature(env, ARM_FEATURE_V8)) { /* * QEMU syndrome values are v8-style. v7 has the IL bit * UNK/SBZP for "field not valid" cases, where v8 uses RES1. * If this is a v7 CPU, squash the IL bit in those cases. */ if (cs->exception_index == EXCP_PREFETCH_ABORT || (cs->exception_index == EXCP_DATA_ABORT && !(env->exception.syndrome & ARM_EL_ISV)) || syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { env->exception.syndrome &= ~ARM_EL_IL; } } env->cp15.esr_el[2] = env->exception.syndrome; } if (arm_current_el(env) != 2 && addr < 0x14) { addr = 0x14; } mask = 0; if (!(env->cp15.scr_el3 & SCR_EA)) { mask |= CPSR_A; } if (!(env->cp15.scr_el3 & SCR_IRQ)) { mask |= CPSR_I; } if (!(env->cp15.scr_el3 & SCR_FIQ)) { mask |= CPSR_F; } addr += env->cp15.hvbar; take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); } static void arm_cpu_do_interrupt_aarch32(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint32_t addr; uint32_t mask; int new_mode; uint32_t offset; uint32_t moe; /* If this is a debug exception we must update the DBGDSCR.MOE bits */ switch (syn_get_ec(env->exception.syndrome)) { case EC_BREAKPOINT: case EC_BREAKPOINT_SAME_EL: moe = 1; break; case EC_WATCHPOINT: case EC_WATCHPOINT_SAME_EL: moe = 10; break; case EC_AA32_BKPT: moe = 3; break; case EC_VECTORCATCH: moe = 5; break; default: moe = 0; break; } if (moe) { env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); } if (env->exception.target_el == 2) { arm_cpu_do_interrupt_aarch32_hyp(cs); return; } switch (cs->exception_index) { case EXCP_UDEF: new_mode = ARM_CPU_MODE_UND; addr = 0x04; mask = CPSR_I; if (env->thumb) offset = 2; else offset = 4; break; case EXCP_SWI: new_mode = ARM_CPU_MODE_SVC; addr = 0x08; mask = CPSR_I; /* The PC already points to the next instruction. */ offset = 0; break; case EXCP_BKPT: /* Fall through to prefetch abort. */ case EXCP_PREFETCH_ABORT: A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", env->exception.fsr, (uint32_t)env->exception.vaddress); new_mode = ARM_CPU_MODE_ABT; addr = 0x0c; mask = CPSR_A | CPSR_I; offset = 4; break; case EXCP_DATA_ABORT: A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", env->exception.fsr, (uint32_t)env->exception.vaddress); new_mode = ARM_CPU_MODE_ABT; addr = 0x10; mask = CPSR_A | CPSR_I; offset = 8; break; case EXCP_IRQ: new_mode = ARM_CPU_MODE_IRQ; addr = 0x18; /* Disable IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I; offset = 4; if (env->cp15.scr_el3 & SCR_IRQ) { /* IRQ routed to monitor mode */ new_mode = ARM_CPU_MODE_MON; mask |= CPSR_F; } break; case EXCP_FIQ: new_mode = ARM_CPU_MODE_FIQ; addr = 0x1c; /* Disable FIQ, IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I | CPSR_F; if (env->cp15.scr_el3 & SCR_FIQ) { /* FIQ routed to monitor mode */ new_mode = ARM_CPU_MODE_MON; } offset = 4; break; case EXCP_VIRQ: new_mode = ARM_CPU_MODE_IRQ; addr = 0x18; /* Disable IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I; offset = 4; break; case EXCP_VFIQ: new_mode = ARM_CPU_MODE_FIQ; addr = 0x1c; /* Disable FIQ, IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I | CPSR_F; offset = 4; break; case EXCP_SMC: new_mode = ARM_CPU_MODE_MON; addr = 0x08; mask = CPSR_A | CPSR_I | CPSR_F; offset = 0; break; default: cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); return; /* Never happens. Keep compiler happy. */ } if (new_mode == ARM_CPU_MODE_MON) { addr += env->cp15.mvbar; } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { /* High vectors. When enabled, base address cannot be remapped. */ addr += 0xffff0000; } else { /* ARM v7 architectures provide a vector base address register to remap * the interrupt vector table. * This register is only followed in non-monitor mode, and is banked. * Note: only bits 31:5 are valid. */ addr += A32_BANKED_CURRENT_REG_GET(env, vbar); } if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { env->cp15.scr_el3 &= ~SCR_NS; } take_aarch32_exception(env, new_mode, mask, offset, addr); } /* Handle exception entry to a target EL which is using AArch64 */ static void arm_cpu_do_interrupt_aarch64(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; unsigned int new_el = env->exception.target_el; target_ulong addr = env->cp15.vbar_el[new_el]; unsigned int new_mode = aarch64_pstate_mode(new_el, true); unsigned int cur_el = arm_current_el(env); /* * Note that new_el can never be 0. If cur_el is 0, then * el0_a64 is is_a64(), else el0_a64 is ignored. */ aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); if (cur_el < new_el) { /* Entry vector offset depends on whether the implemented EL * immediately lower than the target level is using AArch32 or AArch64 */ bool is_aa64; switch (new_el) { case 3: is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; break; case 2: is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; break; case 1: is_aa64 = is_a64(env); break; default: g_assert_not_reached(); } if (is_aa64) { addr += 0x400; } else { addr += 0x600; } } else if (pstate_read(env) & PSTATE_SP) { addr += 0x200; } switch (cs->exception_index) { case EXCP_PREFETCH_ABORT: case EXCP_DATA_ABORT: env->cp15.far_el[new_el] = env->exception.vaddress; qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", env->cp15.far_el[new_el]); /* fall through */ case EXCP_BKPT: case EXCP_UDEF: case EXCP_SWI: case EXCP_HVC: case EXCP_HYP_TRAP: case EXCP_SMC: if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { /* * QEMU internal FP/SIMD syndromes from AArch32 include the * TA and coproc fields which are only exposed if the exception * is taken to AArch32 Hyp mode. Mask them out to get a valid * AArch64 format syndrome. */ env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); } env->cp15.esr_el[new_el] = env->exception.syndrome; break; case EXCP_IRQ: case EXCP_VIRQ: addr += 0x80; break; case EXCP_FIQ: case EXCP_VFIQ: addr += 0x100; break; case EXCP_SEMIHOST: qemu_log_mask(CPU_LOG_INT, "...handling as semihosting call 0x%" PRIx64 "\n", env->xregs[0]); env->xregs[0] = do_arm_semihosting(env); return; default: cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); } if (is_a64(env)) { env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); aarch64_save_sp(env, arm_current_el(env)); env->elr_el[new_el] = env->pc; } else { env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); env->elr_el[new_el] = env->regs[15]; aarch64_sync_32_to_64(env); env->condexec_bits = 0; } qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", env->elr_el[new_el]); pstate_write(env, PSTATE_DAIF | new_mode); env->aarch64 = 1; aarch64_restore_sp(env, new_el); helper_rebuild_hflags_a64(env, new_el); env->pc = addr; qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", new_el, env->pc, pstate_read(env)); } /* * Do semihosting call and set the appropriate return value. All the * permission and validity checks have been done at translate time. * * We only see semihosting exceptions in TCG only as they are not * trapped to the hypervisor in KVM. */ #ifdef CONFIG_TCG static void handle_semihosting(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (is_a64(env)) { qemu_log_mask(CPU_LOG_INT, "...handling as semihosting call 0x%" PRIx64 "\n", env->xregs[0]); env->xregs[0] = do_arm_semihosting(env); } else { qemu_log_mask(CPU_LOG_INT, "...handling as semihosting call 0x%x\n", env->regs[0]); env->regs[0] = do_arm_semihosting(env); } } #endif /* Handle a CPU exception for A and R profile CPUs. * Do any appropriate logging, handle PSCI calls, and then hand off * to the AArch64-entry or AArch32-entry function depending on the * target exception level's register width. */ void arm_cpu_do_interrupt(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; unsigned int new_el = env->exception.target_el; assert(!arm_feature(env, ARM_FEATURE_M)); arm_log_exception(cs->exception_index); qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), new_el); if (qemu_loglevel_mask(CPU_LOG_INT) && !excp_is_internal(cs->exception_index)) { qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", syn_get_ec(env->exception.syndrome), env->exception.syndrome); } if (arm_is_psci_call(cpu, cs->exception_index)) { arm_handle_psci_call(cpu); qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); return; } /* * Semihosting semantics depend on the register width of the code * that caused the exception, not the target exception level, so * must be handled here. */ #ifdef CONFIG_TCG if (cs->exception_index == EXCP_SEMIHOST) { handle_semihosting(cs); return; } #endif /* Hooks may change global state so BQL should be held, also the * BQL needs to be held for any modification of * cs->interrupt_request. */ g_assert(qemu_mutex_iothread_locked()); arm_call_pre_el_change_hook(cpu); assert(!excp_is_internal(cs->exception_index)); if (arm_el_is_aa64(env, new_el)) { arm_cpu_do_interrupt_aarch64(cs); } else { arm_cpu_do_interrupt_aarch32(cs); } arm_call_el_change_hook(cpu); if (!kvm_enabled()) { cs->interrupt_request |= CPU_INTERRUPT_EXITTB; } } #endif /* !CONFIG_USER_ONLY */ /* Return the exception level which controls this address translation regime */ static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_S2NS: case ARMMMUIdx_S1E2: return 2; case ARMMMUIdx_S1E3: return 3; case ARMMMUIdx_S1SE0: return arm_el_is_aa64(env, 3) ? 1 : 3; case ARMMMUIdx_S1SE1: case ARMMMUIdx_S1NSE0: case ARMMMUIdx_S1NSE1: case ARMMMUIdx_MPrivNegPri: case ARMMMUIdx_MUserNegPri: case ARMMMUIdx_MPriv: case ARMMMUIdx_MUser: case ARMMMUIdx_MSPrivNegPri: case ARMMMUIdx_MSUserNegPri: case ARMMMUIdx_MSPriv: case ARMMMUIdx_MSUser: return 1; default: g_assert_not_reached(); } } #ifndef CONFIG_USER_ONLY /* Return the SCTLR value which controls this address translation regime */ static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) { return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; } /* Return true if the specified stage of address translation is disabled */ static inline bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx) { if (arm_feature(env, ARM_FEATURE_M)) { switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { case R_V7M_MPU_CTRL_ENABLE_MASK: /* Enabled, but not for HardFault and NMI */ return mmu_idx & ARM_MMU_IDX_M_NEGPRI; case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: /* Enabled for all cases */ return false; case 0: default: /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but * we warned about that in armv7m_nvic.c when the guest set it. */ return true; } } if (mmu_idx == ARMMMUIdx_S2NS) { /* HCR.DC means HCR.VM behaves as 1 */ return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; } if (env->cp15.hcr_el2 & HCR_TGE) { /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { return true; } } if ((env->cp15.hcr_el2 & HCR_DC) && (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { /* HCR.DC means SCTLR_EL1.M behaves as 0 */ return true; } return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; } static inline bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) { return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; } /* Return the TTBR associated with this translation regime */ static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) { if (mmu_idx == ARMMMUIdx_S2NS) { return env->cp15.vttbr_el2; } if (ttbrn == 0) { return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; } else { return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; } } #endif /* !CONFIG_USER_ONLY */ /* Return the TCR controlling this translation regime */ static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) { if (mmu_idx == ARMMMUIdx_S2NS) { return &env->cp15.vtcr_el2; } return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; } /* Convert a possible stage1+2 MMU index into the appropriate * stage 1 MMU index */ static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) { if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); } return mmu_idx; } /* Return true if the translation regime is using LPAE format page tables */ static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) { int el = regime_el(env, mmu_idx); if (el == 2 || arm_el_is_aa64(env, el)) { return true; } if (arm_feature(env, ARM_FEATURE_LPAE) && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { return true; } return false; } /* Returns true if the stage 1 translation regime is using LPAE format page * tables. Used when raising alignment exceptions, whose FSR changes depending * on whether the long or short descriptor format is in use. */ bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) { mmu_idx = stage_1_mmu_idx(mmu_idx); return regime_using_lpae_format(env, mmu_idx); } #ifndef CONFIG_USER_ONLY static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_S1SE0: case ARMMMUIdx_S1NSE0: case ARMMMUIdx_MUser: case ARMMMUIdx_MSUser: case ARMMMUIdx_MUserNegPri: case ARMMMUIdx_MSUserNegPri: return true; default: return false; case ARMMMUIdx_S12NSE0: case ARMMMUIdx_S12NSE1: g_assert_not_reached(); } } /* Translate section/page access permissions to page * R/W protection flags * * @env: CPUARMState * @mmu_idx: MMU index indicating required translation regime * @ap: The 3-bit access permissions (AP[2:0]) * @domain_prot: The 2-bit domain access permissions */ static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap, int domain_prot) { bool is_user = regime_is_user(env, mmu_idx); if (domain_prot == 3) { return PAGE_READ | PAGE_WRITE; } switch (ap) { case 0: if (arm_feature(env, ARM_FEATURE_V7)) { return 0; } switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { case SCTLR_S: return is_user ? 0 : PAGE_READ; case SCTLR_R: return PAGE_READ; default: return 0; } case 1: return is_user ? 0 : PAGE_READ | PAGE_WRITE; case 2: if (is_user) { return PAGE_READ; } else { return PAGE_READ | PAGE_WRITE; } case 3: return PAGE_READ | PAGE_WRITE; case 4: /* Reserved. */ return 0; case 5: return is_user ? 0 : PAGE_READ; case 6: return PAGE_READ; case 7: if (!arm_feature(env, ARM_FEATURE_V6K)) { return 0; } return PAGE_READ; default: g_assert_not_reached(); } } /* Translate section/page access permissions to page * R/W protection flags. * * @ap: The 2-bit simple AP (AP[2:1]) * @is_user: TRUE if accessing from PL0 */ static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) { switch (ap) { case 0: return is_user ? 0 : PAGE_READ | PAGE_WRITE; case 1: return PAGE_READ | PAGE_WRITE; case 2: return is_user ? 0 : PAGE_READ; case 3: return PAGE_READ; default: g_assert_not_reached(); } } static inline int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) { return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); } /* Translate S2 section/page access permissions to protection flags * * @env: CPUARMState * @s2ap: The 2-bit stage2 access permissions (S2AP) * @xn: XN (execute-never) bit */ static int get_S2prot(CPUARMState *env, int s2ap, int xn) { int prot = 0; if (s2ap & 1) { prot |= PAGE_READ; } if (s2ap & 2) { prot |= PAGE_WRITE; } if (!xn) { if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { prot |= PAGE_EXEC; } } return prot; } /* Translate section/page access permissions to protection flags * * @env: CPUARMState * @mmu_idx: MMU index indicating required translation regime * @is_aa64: TRUE if AArch64 * @ap: The 2-bit simple AP (AP[2:1]) * @ns: NS (non-secure) bit * @xn: XN (execute-never) bit * @pxn: PXN (privileged execute-never) bit */ static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, int ap, int ns, int xn, int pxn) { bool is_user = regime_is_user(env, mmu_idx); int prot_rw, user_rw; bool have_wxn; int wxn = 0; assert(mmu_idx != ARMMMUIdx_S2NS); user_rw = simple_ap_to_rw_prot_is_user(ap, true); if (is_user) { prot_rw = user_rw; } else { prot_rw = simple_ap_to_rw_prot_is_user(ap, false); } if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { return prot_rw; } /* TODO have_wxn should be replaced with * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE * compatible processors have EL2, which is required for [U]WXN. */ have_wxn = arm_feature(env, ARM_FEATURE_LPAE); if (have_wxn) { wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; } if (is_aa64) { switch (regime_el(env, mmu_idx)) { case 1: if (!is_user) { xn = pxn || (user_rw & PAGE_WRITE); } break; case 2: case 3: break; } } else if (arm_feature(env, ARM_FEATURE_V7)) { switch (regime_el(env, mmu_idx)) { case 1: case 3: if (is_user) { xn = xn || !(user_rw & PAGE_READ); } else { int uwxn = 0; if (have_wxn) { uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; } xn = xn || !(prot_rw & PAGE_READ) || pxn || (uwxn && (user_rw & PAGE_WRITE)); } break; case 2: break; } } else { xn = wxn = 0; } if (xn || (wxn && (prot_rw & PAGE_WRITE))) { return prot_rw; } return prot_rw | PAGE_EXEC; } static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, uint32_t *table, uint32_t address) { /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ TCR *tcr = regime_tcr(env, mmu_idx); if (address & tcr->mask) { if (tcr->raw_tcr & TTBCR_PD1) { /* Translation table walk disabled for TTBR1 */ return false; } *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; } else { if (tcr->raw_tcr & TTBCR_PD0) { /* Translation table walk disabled for TTBR0 */ return false; } *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; } *table |= (address >> 18) & 0x3ffc; return true; } /* Translate a S1 pagetable walk through S2 if needed. */ static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, hwaddr addr, MemTxAttrs txattrs, ARMMMUFaultInfo *fi) { if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { target_ulong s2size; hwaddr s2pa; int s2prot; int ret; ARMCacheAttrs cacheattrs = {}; ARMCacheAttrs *pcacheattrs = NULL; if (env->cp15.hcr_el2 & HCR_PTW) { /* * PTW means we must fault if this S1 walk touches S2 Device * memory; otherwise we don't care about the attributes and can * save the S2 translation the effort of computing them. */ pcacheattrs = &cacheattrs; } ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, &txattrs, &s2prot, &s2size, fi, pcacheattrs); if (ret) { assert(fi->type != ARMFault_None); fi->s2addr = addr; fi->stage2 = true; fi->s1ptw = true; return ~0; } if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { /* Access was to Device memory: generate Permission fault */ fi->type = ARMFault_Permission; fi->s2addr = addr; fi->stage2 = true; fi->s1ptw = true; return ~0; } addr = s2pa; } return addr; } /* All loads done in the course of a page table walk go through here. */ static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; MemTxAttrs attrs = {}; MemTxResult result = MEMTX_OK; AddressSpace *as; uint32_t data; attrs.secure = is_secure; as = arm_addressspace(cs, attrs); addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); if (fi->s1ptw) { return 0; } if (regime_translation_big_endian(env, mmu_idx)) { data = address_space_ldl_be(as, addr, attrs, &result); } else { data = address_space_ldl_le(as, addr, attrs, &result); } if (result == MEMTX_OK) { return data; } fi->type = ARMFault_SyncExternalOnWalk; fi->ea = arm_extabort_type(result); return 0; } static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; MemTxAttrs attrs = {}; MemTxResult result = MEMTX_OK; AddressSpace *as; uint64_t data; attrs.secure = is_secure; as = arm_addressspace(cs, attrs); addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); if (fi->s1ptw) { return 0; } if (regime_translation_big_endian(env, mmu_idx)) { data = address_space_ldq_be(as, addr, attrs, &result); } else { data = address_space_ldq_le(as, addr, attrs, &result); } if (result == MEMTX_OK) { return data; } fi->type = ARMFault_SyncExternalOnWalk; fi->ea = arm_extabort_type(result); return 0; } static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi) { CPUState *cs = env_cpu(env); int level = 1; uint32_t table; uint32_t desc; int type; int ap; int domain = 0; int domain_prot; hwaddr phys_addr; uint32_t dacr; /* Pagetable walk. */ /* Lookup l1 descriptor. */ if (!get_level1_table_address(env, mmu_idx, &table, address)) { /* Section translation fault if page walk is disabled by PD0 or PD1 */ fi->type = ARMFault_Translation; goto do_fault; } desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), mmu_idx, fi); if (fi->type != ARMFault_None) { goto do_fault; } type = (desc & 3); domain = (desc >> 5) & 0x0f; if (regime_el(env, mmu_idx) == 1) { dacr = env->cp15.dacr_ns; } else { dacr = env->cp15.dacr_s; } domain_prot = (dacr >> (domain * 2)) & 3; if (type == 0) { /* Section translation fault. */ fi->type = ARMFault_Translation; goto do_fault; } if (type != 2) { level = 2; } if (domain_prot == 0 || domain_prot == 2) { fi->type = ARMFault_Domain; goto do_fault; } if (type == 2) { /* 1Mb section. */ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); ap = (desc >> 10) & 3; *page_size = 1024 * 1024; } else { /* Lookup l2 entry. */ if (type == 1) { /* Coarse pagetable. */ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); } else { /* Fine pagetable. */ table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); } desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), mmu_idx, fi); if (fi->type != ARMFault_None) { goto do_fault; } switch (desc & 3) { case 0: /* Page translation fault. */ fi->type = ARMFault_Translation; goto do_fault; case 1: /* 64k page. */ phys_addr = (desc & 0xffff0000) | (address & 0xffff); ap = (desc >> (4 + ((address >> 13) & 6))) & 3; *page_size = 0x10000; break; case 2: /* 4k page. */ phys_addr = (desc & 0xfffff000) | (address & 0xfff); ap = (desc >> (4 + ((address >> 9) & 6))) & 3; *page_size = 0x1000; break; case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ if (type == 1) { /* ARMv6/XScale extended small page format */ if (arm_feature(env, ARM_FEATURE_XSCALE) || arm_feature(env, ARM_FEATURE_V6)) { phys_addr = (desc & 0xfffff000) | (address & 0xfff); *page_size = 0x1000; } else { /* UNPREDICTABLE in ARMv5; we choose to take a * page translation fault. */ fi->type = ARMFault_Translation; goto do_fault; } } else { phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); *page_size = 0x400; } ap = (desc >> 4) & 3; break; default: /* Never happens, but compiler isn't smart enough to tell. */ abort(); } } *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); *prot |= *prot ? PAGE_EXEC : 0; if (!(*prot & (1 << access_type))) { /* Access permission fault. */ fi->type = ARMFault_Permission; goto do_fault; } *phys_ptr = phys_addr; return false; do_fault: fi->domain = domain; fi->level = level; return true; } static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi) { CPUState *cs = env_cpu(env); int level = 1; uint32_t table; uint32_t desc; uint32_t xn; uint32_t pxn = 0; int type; int ap; int domain = 0; int domain_prot; hwaddr phys_addr; uint32_t dacr; bool ns; /* Pagetable walk. */ /* Lookup l1 descriptor. */ if (!get_level1_table_address(env, mmu_idx, &table, address)) { /* Section translation fault if page walk is disabled by PD0 or PD1 */ fi->type = ARMFault_Translation; goto do_fault; } desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), mmu_idx, fi); if (fi->type != ARMFault_None) { goto do_fault; } type = (desc & 3); if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { /* Section translation fault, or attempt to use the encoding * which is Reserved on implementations without PXN. */ fi->type = ARMFault_Translation; goto do_fault; } if ((type == 1) || !(desc & (1 << 18))) { /* Page or Section. */ domain = (desc >> 5) & 0x0f; } if (regime_el(env, mmu_idx) == 1) { dacr = env->cp15.dacr_ns; } else { dacr = env->cp15.dacr_s; } if (type == 1) { level = 2; } domain_prot = (dacr >> (domain * 2)) & 3; if (domain_prot == 0 || domain_prot == 2) { /* Section or Page domain fault */ fi->type = ARMFault_Domain; goto do_fault; } if (type != 1) { if (desc & (1 << 18)) { /* Supersection. */ phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; *page_size = 0x1000000; } else { /* Section. */ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); *page_size = 0x100000; } ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); xn = desc & (1 << 4); pxn = desc & 1; ns = extract32(desc, 19, 1); } else { if (arm_feature(env, ARM_FEATURE_PXN)) { pxn = (desc >> 2) & 1; } ns = extract32(desc, 3, 1); /* Lookup l2 entry. */ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), mmu_idx, fi); if (fi->type != ARMFault_None) { goto do_fault; } ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); switch (desc & 3) { case 0: /* Page translation fault. */ fi->type = ARMFault_Translation; goto do_fault; case 1: /* 64k page. */ phys_addr = (desc & 0xffff0000) | (address & 0xffff); xn = desc & (1 << 15); *page_size = 0x10000; break; case 2: case 3: /* 4k page. */ phys_addr = (desc & 0xfffff000) | (address & 0xfff); xn = desc & 1; *page_size = 0x1000; break; default: /* Never happens, but compiler isn't smart enough to tell. */ abort(); } } if (domain_prot == 3) { *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; } else { if (pxn && !regime_is_user(env, mmu_idx)) { xn = 1; } if (xn && access_type == MMU_INST_FETCH) { fi->type = ARMFault_Permission; goto do_fault; } if (arm_feature(env, ARM_FEATURE_V6K) && (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { /* The simplified model uses AP[0] as an access control bit. */ if ((ap & 1) == 0) { /* Access flag fault. */ fi->type = ARMFault_AccessFlag; goto do_fault; } *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); } else { *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); } if (*prot && !xn) { *prot |= PAGE_EXEC; } if (!(*prot & (1 << access_type))) { /* Access permission fault. */ fi->type = ARMFault_Permission; goto do_fault; } } if (ns) { /* The NS bit will (as required by the architecture) have no effect if * the CPU doesn't support TZ or this is a non-secure translation * regime, because the attribute will already be non-secure. */ attrs->secure = false; } *phys_ptr = phys_addr; return false; do_fault: fi->domain = domain; fi->level = level; return true; } /* * check_s2_mmu_setup * @cpu: ARMCPU * @is_aa64: True if the translation regime is in AArch64 state * @startlevel: Suggested starting level * @inputsize: Bitsize of IPAs * @stride: Page-table stride (See the ARM ARM) * * Returns true if the suggested S2 translation parameters are OK and * false otherwise. */ static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, int inputsize, int stride) { const int grainsize = stride + 3; int startsizecheck; /* Negative levels are never allowed. */ if (level < 0) { return false; } startsizecheck = inputsize - ((3 - level) * stride + grainsize); if (startsizecheck < 1 || startsizecheck > stride + 4) { return false; } if (is_aa64) { CPUARMState *env = &cpu->env; unsigned int pamax = arm_pamax(cpu); switch (stride) { case 13: /* 64KB Pages. */ if (level == 0 || (level == 1 && pamax <= 42)) { return false; } break; case 11: /* 16KB Pages. */ if (level == 0 || (level == 1 && pamax <= 40)) { return false; } break; case 9: /* 4KB Pages. */ if (level == 0 && pamax <= 42) { return false; } break; default: g_assert_not_reached(); } /* Inputsize checks. */ if (inputsize > pamax && (arm_el_is_aa64(env, 1) || inputsize > 40)) { /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ return false; } } else { /* AArch32 only supports 4KB pages. Assert on that. */ assert(stride == 9); if (level == 0) { return false; } } return true; } /* Translate from the 4-bit stage 2 representation of * memory attributes (without cache-allocation hints) to * the 8-bit representation of the stage 1 MAIR registers * (which includes allocation hints). * * ref: shared/translation/attrs/S2AttrDecode() * .../S2ConvertAttrsHints() */ static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) { uint8_t hiattr = extract32(s2attrs, 2, 2); uint8_t loattr = extract32(s2attrs, 0, 2); uint8_t hihint = 0, lohint = 0; if (hiattr != 0) { /* normal memory */ if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ hiattr = loattr = 1; /* non-cacheable */ } else { if (hiattr != 1) { /* Write-through or write-back */ hihint = 3; /* RW allocate */ } if (loattr != 1) { /* Write-through or write-back */ lohint = 3; /* RW allocate */ } } } return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; } #endif /* !CONFIG_USER_ONLY */ ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, ARMMMUIdx mmu_idx) { uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; uint32_t el = regime_el(env, mmu_idx); bool tbi, tbid, epd, hpd, using16k, using64k; int select, tsz; /* * Bit 55 is always between the two regions, and is canonical for * determining if address tagging is enabled. */ select = extract64(va, 55, 1); if (el > 1) { tsz = extract32(tcr, 0, 6); using64k = extract32(tcr, 14, 1); using16k = extract32(tcr, 15, 1); if (mmu_idx == ARMMMUIdx_S2NS) { /* VTCR_EL2 */ tbi = tbid = hpd = false; } else { tbi = extract32(tcr, 20, 1); hpd = extract32(tcr, 24, 1); tbid = extract32(tcr, 29, 1); } epd = false; } else if (!select) { tsz = extract32(tcr, 0, 6); epd = extract32(tcr, 7, 1); using64k = extract32(tcr, 14, 1); using16k = extract32(tcr, 15, 1); tbi = extract64(tcr, 37, 1); hpd = extract64(tcr, 41, 1); tbid = extract64(tcr, 51, 1); } else { int tg = extract32(tcr, 30, 2); using16k = tg == 1; using64k = tg == 3; tsz = extract32(tcr, 16, 6); epd = extract32(tcr, 23, 1); tbi = extract64(tcr, 38, 1); hpd = extract64(tcr, 42, 1); tbid = extract64(tcr, 52, 1); } tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ return (ARMVAParameters) { .tsz = tsz, .select = select, .tbi = tbi, .tbid = tbid, .epd = epd, .hpd = hpd, .using16k = using16k, .using64k = using64k, }; } ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, ARMMMUIdx mmu_idx, bool data) { ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); /* Present TBI as a composite with TBID. */ ret.tbi &= (data || !ret.tbid); return ret; } #ifndef CONFIG_USER_ONLY static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, ARMMMUIdx mmu_idx) { uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; uint32_t el = regime_el(env, mmu_idx); int select, tsz; bool epd, hpd; if (mmu_idx == ARMMMUIdx_S2NS) { /* VTCR */ bool sext = extract32(tcr, 4, 1); bool sign = extract32(tcr, 3, 1); /* * If the sign-extend bit is not the same as t0sz[3], the result * is unpredictable. Flag this as a guest error. */ if (sign != sext) { qemu_log_mask(LOG_GUEST_ERROR, "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); } tsz = sextract32(tcr, 0, 4) + 8; select = 0; hpd = false; epd = false; } else if (el == 2) { /* HTCR */ tsz = extract32(tcr, 0, 3); select = 0; hpd = extract64(tcr, 24, 1); epd = false; } else { int t0sz = extract32(tcr, 0, 3); int t1sz = extract32(tcr, 16, 3); if (t1sz == 0) { select = va > (0xffffffffu >> t0sz); } else { /* Note that we will detect errors later. */ select = va >= ~(0xffffffffu >> t1sz); } if (!select) { tsz = t0sz; epd = extract32(tcr, 7, 1); hpd = extract64(tcr, 41, 1); } else { tsz = t1sz; epd = extract32(tcr, 23, 1); hpd = extract64(tcr, 42, 1); } /* For aarch32, hpd0 is not enabled without t2e as well. */ hpd &= extract32(tcr, 6, 1); } return (ARMVAParameters) { .tsz = tsz, .select = select, .epd = epd, .hpd = hpd, }; } static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, target_ulong *page_size_ptr, ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) { ARMCPU *cpu = env_archcpu(env); CPUState *cs = CPU(cpu); /* Read an LPAE long-descriptor translation table. */ ARMFaultType fault_type = ARMFault_Translation; uint32_t level; ARMVAParameters param; uint64_t ttbr; hwaddr descaddr, indexmask, indexmask_grainsize; uint32_t tableattrs; target_ulong page_size; uint32_t attrs; int32_t stride; int addrsize, inputsize; TCR *tcr = regime_tcr(env, mmu_idx); int ap, ns, xn, pxn; uint32_t el = regime_el(env, mmu_idx); bool ttbr1_valid; uint64_t descaddrmask; bool aarch64 = arm_el_is_aa64(env, el); bool guarded = false; /* TODO: * This code does not handle the different format TCR for VTCR_EL2. * This code also does not support shareability levels. * Attribute and permission bit handling should also be checked when adding * support for those page table walks. */ if (aarch64) { param = aa64_va_parameters(env, address, mmu_idx, access_type != MMU_INST_FETCH); level = 0; /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it * invalid. */ ttbr1_valid = (el < 2); addrsize = 64 - 8 * param.tbi; inputsize = 64 - param.tsz; } else { param = aa32_va_parameters(env, address, mmu_idx); level = 1; /* There is no TTBR1 for EL2 */ ttbr1_valid = (el != 2); addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); inputsize = addrsize - param.tsz; } /* * We determined the region when collecting the parameters, but we * have not yet validated that the address is valid for the region. * Extract the top bits and verify that they all match select. * * For aa32, if inputsize == addrsize, then we have selected the * region by exclusion in aa32_va_parameters and there is no more * validation to do here. */ if (inputsize < addrsize) { target_ulong top_bits = sextract64(address, inputsize, addrsize - inputsize); if (-top_bits != param.select || (param.select && !ttbr1_valid)) { /* The gap between the two regions is a Translation fault */ fault_type = ARMFault_Translation; goto do_fault; } } if (param.using64k) { stride = 13; } else if (param.using16k) { stride = 11; } else { stride = 9; } /* Note that QEMU ignores shareability and cacheability attributes, * so we don't need to do anything with the SH, ORGN, IRGN fields * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently * implement any ASID-like capability so we can ignore it (instead * we will always flush the TLB any time the ASID is changed). */ ttbr = regime_ttbr(env, mmu_idx, param.select); /* Here we should have set up all the parameters for the translation: * inputsize, ttbr, epd, stride, tbi */ if (param.epd) { /* Translation table walk disabled => Translation fault on TLB miss * Note: This is always 0 on 64-bit EL2 and EL3. */ goto do_fault; } if (mmu_idx != ARMMMUIdx_S2NS) { /* The starting level depends on the virtual address size (which can * be up to 48 bits) and the translation granule size. It indicates * the number of strides (stride bits at a time) needed to * consume the bits of the input address. In the pseudocode this is: * level = 4 - RoundUp((inputsize - grainsize) / stride) * where their 'inputsize' is our 'inputsize', 'grainsize' is * our 'stride + 3' and 'stride' is our 'stride'. * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: * = 4 - (inputsize - stride - 3 + stride - 1) / stride * = 4 - (inputsize - 4) / stride; */ level = 4 - (inputsize - 4) / stride; } else { /* For stage 2 translations the starting level is specified by the * VTCR_EL2.SL0 field (whose interpretation depends on the page size) */ uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); uint32_t startlevel; bool ok; if (!aarch64 || stride == 9) { /* AArch32 or 4KB pages */ startlevel = 2 - sl0; } else { /* 16KB or 64KB pages */ startlevel = 3 - sl0; } /* Check that the starting level is valid. */ ok = check_s2_mmu_setup(cpu, aarch64, startlevel, inputsize, stride); if (!ok) { fault_type = ARMFault_Translation; goto do_fault; } level = startlevel; } indexmask_grainsize = (1ULL << (stride + 3)) - 1; indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; /* Now we can extract the actual base address from the TTBR */ descaddr = extract64(ttbr, 0, 48); descaddr &= ~indexmask; /* The address field in the descriptor goes up to bit 39 for ARMv7 * but up to bit 47 for ARMv8, but we use the descaddrmask * up to bit 39 for AArch32, because we don't need other bits in that case * to construct next descriptor address (anyway they should be all zeroes). */ descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & ~indexmask_grainsize; /* Secure accesses start with the page table in secure memory and * can be downgraded to non-secure at any step. Non-secure accesses * remain non-secure. We implement this by just ORing in the NSTable/NS * bits at each step. */ tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); for (;;) { uint64_t descriptor; bool nstable; descaddr |= (address >> (stride * (4 - level))) & indexmask; descaddr &= ~7ULL; nstable = extract32(tableattrs, 4, 1); descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); if (fi->type != ARMFault_None) { goto do_fault; } if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { /* Invalid, or the Reserved level 3 encoding */ goto do_fault; } descaddr = descriptor & descaddrmask; if ((descriptor & 2) && (level < 3)) { /* Table entry. The top five bits are attributes which may * propagate down through lower levels of the table (and * which are all arranged so that 0 means "no effect", so * we can gather them up by ORing in the bits at each level). */ tableattrs |= extract64(descriptor, 59, 5); level++; indexmask = indexmask_grainsize; continue; } /* Block entry at level 1 or 2, or page entry at level 3. * These are basically the same thing, although the number * of bits we pull in from the vaddr varies. */ page_size = (1ULL << ((stride * (4 - level)) + 3)); descaddr |= (address & (page_size - 1)); /* Extract attributes from the descriptor */ attrs = extract64(descriptor, 2, 10) | (extract64(descriptor, 52, 12) << 10); if (mmu_idx == ARMMMUIdx_S2NS) { /* Stage 2 table descriptors do not include any attribute fields */ break; } /* Merge in attributes from table descriptors */ attrs |= nstable << 3; /* NS */ guarded = extract64(descriptor, 50, 1); /* GP */ if (param.hpd) { /* HPD disables all the table attributes except NSTable. */ break; } attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 * means "force PL1 access only", which means forcing AP[1] to 0. */ attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ break; } /* Here descaddr is the final physical address, and attributes * are all in attrs. */ fault_type = ARMFault_AccessFlag; if ((attrs & (1 << 8)) == 0) { /* Access flag */ goto do_fault; } ap = extract32(attrs, 4, 2); xn = extract32(attrs, 12, 1); if (mmu_idx == ARMMMUIdx_S2NS) { ns = true; *prot = get_S2prot(env, ap, xn); } else { ns = extract32(attrs, 3, 1); pxn = extract32(attrs, 11, 1); *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); } fault_type = ARMFault_Permission; if (!(*prot & (1 << access_type))) { goto do_fault; } if (ns) { /* The NS bit will (as required by the architecture) have no effect if * the CPU doesn't support TZ or this is a non-secure translation * regime, because the attribute will already be non-secure. */ txattrs->secure = false; } /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { txattrs->target_tlb_bit0 = true; } if (cacheattrs != NULL) { if (mmu_idx == ARMMMUIdx_S2NS) { cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); } else { /* Index into MAIR registers for cache attributes */ uint8_t attrindx = extract32(attrs, 0, 3); uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; assert(attrindx <= 7); cacheattrs->attrs = extract64(mair, attrindx * 8, 8); } cacheattrs->shareability = extract32(attrs, 6, 2); } *phys_ptr = descaddr; *page_size_ptr = page_size; return false; do_fault: fi->type = fault_type; fi->level = level; /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); return true; } static inline void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, int32_t address, int *prot) { if (!arm_feature(env, ARM_FEATURE_M)) { *prot = PAGE_READ | PAGE_WRITE; switch (address) { case 0xF0000000 ... 0xFFFFFFFF: if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ *prot |= PAGE_EXEC; } break; case 0x00000000 ... 0x7FFFFFFF: *prot |= PAGE_EXEC; break; } } else { /* Default system address map for M profile cores. * The architecture specifies which regions are execute-never; * at the MPU level no other checks are defined. */ switch (address) { case 0x00000000 ... 0x1fffffff: /* ROM */ case 0x20000000 ... 0x3fffffff: /* SRAM */ case 0x60000000 ... 0x7fffffff: /* RAM */ case 0x80000000 ... 0x9fffffff: /* RAM */ *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; break; case 0x40000000 ... 0x5fffffff: /* Peripheral */ case 0xa0000000 ... 0xbfffffff: /* Device */ case 0xc0000000 ... 0xdfffffff: /* Device */ case 0xe0000000 ... 0xffffffff: /* System */ *prot = PAGE_READ | PAGE_WRITE; break; default: g_assert_not_reached(); } } } static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, bool is_user) { /* Return true if we should use the default memory map as a * "background" region if there are no hits against any MPU regions. */ CPUARMState *env = &cpu->env; if (is_user) { return false; } if (arm_feature(env, ARM_FEATURE_M)) { return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; } else { return regime_sctlr(env, mmu_idx) & SCTLR_BR; } } static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) { /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ return arm_feature(env, ARM_FEATURE_M) && extract32(address, 20, 12) == 0xe00; } static inline bool m_is_system_region(CPUARMState *env, uint32_t address) { /* True if address is in the M profile system region * 0xe0000000 - 0xffffffff */ return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; } static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi) { ARMCPU *cpu = env_archcpu(env); int n; bool is_user = regime_is_user(env, mmu_idx); *phys_ptr = address; *page_size = TARGET_PAGE_SIZE; *prot = 0; if (regime_translation_disabled(env, mmu_idx) || m_is_ppb_region(env, address)) { /* MPU disabled or M profile PPB access: use default memory map. * The other case which uses the default memory map in the * v7M ARM ARM pseudocode is exception vector reads from the vector * table. In QEMU those accesses are done in arm_v7m_load_vector(), * which always does a direct read using address_space_ldl(), rather * than going via this function, so we don't need to check that here. */ get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); } else { /* MPU enabled */ for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { /* region search */ uint32_t base = env->pmsav7.drbar[n]; uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); uint32_t rmask; bool srdis = false; if (!(env->pmsav7.drsr[n] & 0x1)) { continue; } if (!rsize) { qemu_log_mask(LOG_GUEST_ERROR, "DRSR[%d]: Rsize field cannot be 0\n", n); continue; } rsize++; rmask = (1ull << rsize) - 1; if (base & rmask) { qemu_log_mask(LOG_GUEST_ERROR, "DRBAR[%d]: 0x%" PRIx32 " misaligned " "to DRSR region size, mask = 0x%" PRIx32 "\n", n, base, rmask); continue; } if (address < base || address > base + rmask) { /* * Address not in this region. We must check whether the * region covers addresses in the same page as our address. * In that case we must not report a size that covers the * whole page for a subsequent hit against a different MPU * region or the background region, because it would result in * incorrect TLB hits for subsequent accesses to addresses that * are in this MPU region. */ if (ranges_overlap(base, rmask, address & TARGET_PAGE_MASK, TARGET_PAGE_SIZE)) { *page_size = 1; } continue; } /* Region matched */ if (rsize >= 8) { /* no subregions for regions < 256 bytes */ int i, snd; uint32_t srdis_mask; rsize -= 3; /* sub region size (power of 2) */ snd = ((address - base) >> rsize) & 0x7; srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); srdis_mask = srdis ? 0x3 : 0x0; for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { /* This will check in groups of 2, 4 and then 8, whether * the subregion bits are consistent. rsize is incremented * back up to give the region size, considering consistent * adjacent subregions as one region. Stop testing if rsize * is already big enough for an entire QEMU page. */ int snd_rounded = snd & ~(i - 1); uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], snd_rounded + 8, i); if (srdis_mask ^ srdis_multi) { break; } srdis_mask = (srdis_mask << i) | srdis_mask; rsize++; } } if (srdis) { continue; } if (rsize < TARGET_PAGE_BITS) { *page_size = 1 << rsize; } break; } if (n == -1) { /* no hits */ if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { /* background fault */ fi->type = ARMFault_Background; return true; } get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); } else { /* a MPU hit! */ uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); if (m_is_system_region(env, address)) { /* System space is always execute never */ xn = 1; } if (is_user) { /* User mode AP bit decoding */ switch (ap) { case 0: case 1: case 5: break; /* no access */ case 3: *prot |= PAGE_WRITE; /* fall through */ case 2: case 6: *prot |= PAGE_READ | PAGE_EXEC; break; case 7: /* for v7M, same as 6; for R profile a reserved value */ if (arm_feature(env, ARM_FEATURE_M)) { *prot |= PAGE_READ | PAGE_EXEC; break; } /* fall through */ default: qemu_log_mask(LOG_GUEST_ERROR, "DRACR[%d]: Bad value for AP bits: 0x%" PRIx32 "\n", n, ap); } } else { /* Priv. mode AP bits decoding */ switch (ap) { case 0: break; /* no access */ case 1: case 2: case 3: *prot |= PAGE_WRITE; /* fall through */ case 5: case 6: *prot |= PAGE_READ | PAGE_EXEC; break; case 7: /* for v7M, same as 6; for R profile a reserved value */ if (arm_feature(env, ARM_FEATURE_M)) { *prot |= PAGE_READ | PAGE_EXEC; break; } /* fall through */ default: qemu_log_mask(LOG_GUEST_ERROR, "DRACR[%d]: Bad value for AP bits: 0x%" PRIx32 "\n", n, ap); } } /* execute never */ if (xn) { *prot &= ~PAGE_EXEC; } } } fi->type = ARMFault_Permission; fi->level = 1; return !(*prot & (1 << access_type)); } static bool v8m_is_sau_exempt(CPUARMState *env, uint32_t address, MMUAccessType access_type) { /* The architecture specifies that certain address ranges are * exempt from v8M SAU/IDAU checks. */ return (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || (address >= 0xe0000000 && address <= 0xe0002fff) || (address >= 0xe000e000 && address <= 0xe000efff) || (address >= 0xe002e000 && address <= 0xe002efff) || (address >= 0xe0040000 && address <= 0xe0041fff) || (address >= 0xe00ff000 && address <= 0xe00fffff); } void v8m_security_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, V8M_SAttributes *sattrs) { /* Look up the security attributes for this address. Compare the * pseudocode SecurityCheck() function. * We assume the caller has zero-initialized *sattrs. */ ARMCPU *cpu = env_archcpu(env); int r; bool idau_exempt = false, idau_ns = true, idau_nsc = true; int idau_region = IREGION_NOTVALID; uint32_t addr_page_base = address & TARGET_PAGE_MASK; uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); if (cpu->idau) { IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, &idau_nsc); } if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { /* 0xf0000000..0xffffffff is always S for insn fetches */ return; } if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { sattrs->ns = !regime_is_secure(env, mmu_idx); return; } if (idau_region != IREGION_NOTVALID) { sattrs->irvalid = true; sattrs->iregion = idau_region; } switch (env->sau.ctrl & 3) { case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ break; case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ sattrs->ns = true; break; default: /* SAU.ENABLE == 1 */ for (r = 0; r < cpu->sau_sregion; r++) { if (env->sau.rlar[r] & 1) { uint32_t base = env->sau.rbar[r] & ~0x1f; uint32_t limit = env->sau.rlar[r] | 0x1f; if (base <= address && limit >= address) { if (base > addr_page_base || limit < addr_page_limit) { sattrs->subpage = true; } if (sattrs->srvalid) { /* If we hit in more than one region then we must report * as Secure, not NS-Callable, with no valid region * number info. */ sattrs->ns = false; sattrs->nsc = false; sattrs->sregion = 0; sattrs->srvalid = false; break; } else { if (env->sau.rlar[r] & 2) { sattrs->nsc = true; } else { sattrs->ns = true; } sattrs->srvalid = true; sattrs->sregion = r; } } else { /* * Address not in this region. We must check whether the * region covers addresses in the same page as our address. * In that case we must not report a size that covers the * whole page for a subsequent hit against a different MPU * region or the background region, because it would result * in incorrect TLB hits for subsequent accesses to * addresses that are in this MPU region. */ if (limit >= base && ranges_overlap(base, limit - base + 1, addr_page_base, TARGET_PAGE_SIZE)) { sattrs->subpage = true; } } } } break; } /* * The IDAU will override the SAU lookup results if it specifies * higher security than the SAU does. */ if (!idau_ns) { if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { sattrs->ns = false; sattrs->nsc = idau_nsc; } } } bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, bool *is_subpage, ARMMMUFaultInfo *fi, uint32_t *mregion) { /* Perform a PMSAv8 MPU lookup (without also doing the SAU check * that a full phys-to-virt translation does). * mregion is (if not NULL) set to the region number which matched, * or -1 if no region number is returned (MPU off, address did not * hit a region, address hit in multiple regions). * We set is_subpage to true if the region hit doesn't cover the * entire TARGET_PAGE the address is within. */ ARMCPU *cpu = env_archcpu(env); bool is_user = regime_is_user(env, mmu_idx); uint32_t secure = regime_is_secure(env, mmu_idx); int n; int matchregion = -1; bool hit = false; uint32_t addr_page_base = address & TARGET_PAGE_MASK; uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); *is_subpage = false; *phys_ptr = address; *prot = 0; if (mregion) { *mregion = -1; } /* Unlike the ARM ARM pseudocode, we don't need to check whether this * was an exception vector read from the vector table (which is always * done using the default system address map), because those accesses * are done in arm_v7m_load_vector(), which always does a direct * read using address_space_ldl(), rather than going via this function. */ if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ hit = true; } else if (m_is_ppb_region(env, address)) { hit = true; } else { if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { hit = true; } for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { /* region search */ /* Note that the base address is bits [31:5] from the register * with bits [4:0] all zeroes, but the limit address is bits * [31:5] from the register with bits [4:0] all ones. */ uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; if (!(env->pmsav8.rlar[secure][n] & 0x1)) { /* Region disabled */ continue; } if (address < base || address > limit) { /* * Address not in this region. We must check whether the * region covers addresses in the same page as our address. * In that case we must not report a size that covers the * whole page for a subsequent hit against a different MPU * region or the background region, because it would result in * incorrect TLB hits for subsequent accesses to addresses that * are in this MPU region. */ if (limit >= base && ranges_overlap(base, limit - base + 1, addr_page_base, TARGET_PAGE_SIZE)) { *is_subpage = true; } continue; } if (base > addr_page_base || limit < addr_page_limit) { *is_subpage = true; } if (matchregion != -1) { /* Multiple regions match -- always a failure (unlike * PMSAv7 where highest-numbered-region wins) */ fi->type = ARMFault_Permission; fi->level = 1; return true; } matchregion = n; hit = true; } } if (!hit) { /* background fault */ fi->type = ARMFault_Background; return true; } if (matchregion == -1) { /* hit using the background region */ get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); } else { uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); if (m_is_system_region(env, address)) { /* System space is always execute never */ xn = 1; } *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); if (*prot && !xn) { *prot |= PAGE_EXEC; } /* We don't need to look the attribute up in the MAIR0/MAIR1 * registers because that only tells us about cacheability. */ if (mregion) { *mregion = matchregion; } } fi->type = ARMFault_Permission; fi->level = 1; return !(*prot & (1 << access_type)); } static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi) { uint32_t secure = regime_is_secure(env, mmu_idx); V8M_SAttributes sattrs = {}; bool ret; bool mpu_is_subpage; if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); if (access_type == MMU_INST_FETCH) { /* Instruction fetches always use the MMU bank and the * transaction attribute determined by the fetch address, * regardless of CPU state. This is painful for QEMU * to handle, because it would mean we need to encode * into the mmu_idx not just the (user, negpri) information * for the current security state but also that for the * other security state, which would balloon the number * of mmu_idx values needed alarmingly. * Fortunately we can avoid this because it's not actually * possible to arbitrarily execute code from memory with * the wrong security attribute: it will always generate * an exception of some kind or another, apart from the * special case of an NS CPU executing an SG instruction * in S&NSC memory. So we always just fail the translation * here and sort things out in the exception handler * (including possibly emulating an SG instruction). */ if (sattrs.ns != !secure) { if (sattrs.nsc) { fi->type = ARMFault_QEMU_NSCExec; } else { fi->type = ARMFault_QEMU_SFault; } *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; *phys_ptr = address; *prot = 0; return true; } } else { /* For data accesses we always use the MMU bank indicated * by the current CPU state, but the security attributes * might downgrade a secure access to nonsecure. */ if (sattrs.ns) { txattrs->secure = false; } else if (!secure) { /* NS access to S memory must fault. * Architecturally we should first check whether the * MPU information for this address indicates that we * are doing an unaligned access to Device memory, which * should generate a UsageFault instead. QEMU does not * currently check for that kind of unaligned access though. * If we added it we would need to do so as a special case * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). */ fi->type = ARMFault_QEMU_SFault; *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; *phys_ptr = address; *prot = 0; return true; } } } ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, txattrs, prot, &mpu_is_subpage, fi, NULL); *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; return ret; } static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, int *prot, ARMMMUFaultInfo *fi) { int n; uint32_t mask; uint32_t base; bool is_user = regime_is_user(env, mmu_idx); if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled. */ *phys_ptr = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return false; } *phys_ptr = address; for (n = 7; n >= 0; n--) { base = env->cp15.c6_region[n]; if ((base & 1) == 0) { continue; } mask = 1 << ((base >> 1) & 0x1f); /* Keep this shift separate from the above to avoid an (undefined) << 32. */ mask = (mask << 1) - 1; if (((base ^ address) & ~mask) == 0) { break; } } if (n < 0) { fi->type = ARMFault_Background; return true; } if (access_type == MMU_INST_FETCH) { mask = env->cp15.pmsav5_insn_ap; } else { mask = env->cp15.pmsav5_data_ap; } mask = (mask >> (n * 4)) & 0xf; switch (mask) { case 0: fi->type = ARMFault_Permission; fi->level = 1; return true; case 1: if (is_user) { fi->type = ARMFault_Permission; fi->level = 1; return true; } *prot = PAGE_READ | PAGE_WRITE; break; case 2: *prot = PAGE_READ; if (!is_user) { *prot |= PAGE_WRITE; } break; case 3: *prot = PAGE_READ | PAGE_WRITE; break; case 5: if (is_user) { fi->type = ARMFault_Permission; fi->level = 1; return true; } *prot = PAGE_READ; break; case 6: *prot = PAGE_READ; break; default: /* Bad permission. */ fi->type = ARMFault_Permission; fi->level = 1; return true; } *prot |= PAGE_EXEC; return false; } /* Combine either inner or outer cacheability attributes for normal * memory, according to table D4-42 and pseudocode procedure * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). * * NB: only stage 1 includes allocation hints (RW bits), leading to * some asymmetry. */ static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) { if (s1 == 4 || s2 == 4) { /* non-cacheable has precedence */ return 4; } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { /* stage 1 write-through takes precedence */ return s1; } else if (extract32(s2, 2, 2) == 2) { /* stage 2 write-through takes precedence, but the allocation hint * is still taken from stage 1 */ return (2 << 2) | extract32(s1, 0, 2); } else { /* write-back */ return s1; } } /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 * and CombineS1S2Desc() * * @s1: Attributes from stage 1 walk * @s2: Attributes from stage 2 walk */ static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) { uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); ARMCacheAttrs ret; /* Combine shareability attributes (table D4-43) */ if (s1.shareability == 2 || s2.shareability == 2) { /* if either are outer-shareable, the result is outer-shareable */ ret.shareability = 2; } else if (s1.shareability == 3 || s2.shareability == 3) { /* if either are inner-shareable, the result is inner-shareable */ ret.shareability = 3; } else { /* both non-shareable */ ret.shareability = 0; } /* Combine memory type and cacheability attributes */ if (s1hi == 0 || s2hi == 0) { /* Device has precedence over normal */ if (s1lo == 0 || s2lo == 0) { /* nGnRnE has precedence over anything */ ret.attrs = 0; } else if (s1lo == 4 || s2lo == 4) { /* non-Reordering has precedence over Reordering */ ret.attrs = 4; /* nGnRE */ } else if (s1lo == 8 || s2lo == 8) { /* non-Gathering has precedence over Gathering */ ret.attrs = 8; /* nGRE */ } else { ret.attrs = 0xc; /* GRE */ } /* Any location for which the resultant memory type is any * type of Device memory is always treated as Outer Shareable. */ ret.shareability = 2; } else { /* Normal memory */ /* Outer/inner cacheability combine independently */ ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 | combine_cacheattr_nibble(s1lo, s2lo); if (ret.attrs == 0x44) { /* Any location for which the resultant memory type is Normal * Inner Non-cacheable, Outer Non-cacheable is always treated * as Outer Shareable. */ ret.shareability = 2; } } return ret; } /* get_phys_addr - get the physical address for this virtual address * * Find the physical address corresponding to the given virtual address, * by doing a translation table walk on MMU based systems or using the * MPU state on MPU based systems. * * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, * prot and page_size may not be filled in, and the populated fsr value provides * information on why the translation aborted, in the format of a * DFSR/IFSR fault register, with the following caveats: * * we honour the short vs long DFSR format differences. * * the WnR bit is never set (the caller must do this). * * for PSMAv5 based systems we don't bother to return a full FSR format * value. * * @env: CPUARMState * @address: virtual address to get physical address for * @access_type: 0 for read, 1 for write, 2 for execute * @mmu_idx: MMU index indicating required translation regime * @phys_ptr: set to the physical address corresponding to the virtual address * @attrs: set to the memory transaction attributes to use * @prot: set to the permissions for the page containing phys_ptr * @page_size: set to the size of the page containing phys_ptr * @fi: set to fault info if the translation fails * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes */ bool get_phys_addr(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) { if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { /* Call ourselves recursively to do the stage 1 and then stage 2 * translations. */ if (arm_feature(env, ARM_FEATURE_EL2)) { hwaddr ipa; int s2_prot; int ret; ARMCacheAttrs cacheattrs2 = {}; ret = get_phys_addr(env, address, access_type, stage_1_mmu_idx(mmu_idx), &ipa, attrs, prot, page_size, fi, cacheattrs); /* If S1 fails or S2 is disabled, return early. */ if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { *phys_ptr = ipa; return ret; } /* S1 is done. Now do S2 translation. */ ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, phys_ptr, attrs, &s2_prot, page_size, fi, cacheattrs != NULL ? &cacheattrs2 : NULL); fi->s2addr = ipa; /* Combine the S1 and S2 perms. */ *prot &= s2_prot; /* Combine the S1 and S2 cache attributes, if needed */ if (!ret && cacheattrs != NULL) { if (env->cp15.hcr_el2 & HCR_DC) { /* * HCR.DC forces the first stage attributes to * Normal Non-Shareable, * Inner Write-Back Read-Allocate Write-Allocate, * Outer Write-Back Read-Allocate Write-Allocate. */ cacheattrs->attrs = 0xff; cacheattrs->shareability = 0; } *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); } return ret; } else { /* * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. */ mmu_idx = stage_1_mmu_idx(mmu_idx); } } /* The page table entries may downgrade secure to non-secure, but * cannot upgrade an non-secure translation regime's attributes * to secure. */ attrs->secure = regime_is_secure(env, mmu_idx); attrs->user = regime_is_user(env, mmu_idx); /* Fast Context Switch Extension. This doesn't exist at all in v8. * In v7 and earlier it affects all stage 1 translations. */ if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS && !arm_feature(env, ARM_FEATURE_V8)) { if (regime_el(env, mmu_idx) == 3) { address += env->cp15.fcseidr_s; } else { address += env->cp15.fcseidr_ns; } } if (arm_feature(env, ARM_FEATURE_PMSA)) { bool ret; *page_size = TARGET_PAGE_SIZE; if (arm_feature(env, ARM_FEATURE_V8)) { /* PMSAv8 */ ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, phys_ptr, attrs, prot, page_size, fi); } else if (arm_feature(env, ARM_FEATURE_V7)) { /* PMSAv7 */ ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, phys_ptr, prot, page_size, fi); } else { /* Pre-v7 MPU */ ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, phys_ptr, prot, fi); } qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 " mmu_idx %u -> %s (prot %c%c%c)\n", access_type == MMU_DATA_LOAD ? "reading" : (access_type == MMU_DATA_STORE ? "writing" : "execute"), (uint32_t)address, mmu_idx, ret ? "Miss" : "Hit", *prot & PAGE_READ ? 'r' : '-', *prot & PAGE_WRITE ? 'w' : '-', *prot & PAGE_EXEC ? 'x' : '-'); return ret; } /* Definitely a real MMU, not an MPU */ if (regime_translation_disabled(env, mmu_idx)) { /* MMU disabled. */ *phys_ptr = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; *page_size = TARGET_PAGE_SIZE; return 0; } if (regime_using_lpae_format(env, mmu_idx)) { return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, attrs, prot, page_size, fi, cacheattrs); } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, attrs, prot, page_size, fi); } else { return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, prot, page_size, fi); } } hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, MemTxAttrs *attrs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; hwaddr phys_addr; target_ulong page_size; int prot; bool ret; ARMMMUFaultInfo fi = {}; ARMMMUIdx mmu_idx = arm_mmu_idx(env); *attrs = (MemTxAttrs) {}; ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, attrs, &prot, &page_size, &fi, NULL); if (ret) { return -1; } return phys_addr; } #endif /* Note that signed overflow is undefined in C. The following routines are careful to use unsigned types where modulo arithmetic is required. Failure to do so _will_ break on newer gcc. */ /* Signed saturating arithmetic. */ /* Perform 16-bit signed saturating addition. */ static inline uint16_t add16_sat(uint16_t a, uint16_t b) { uint16_t res; res = a + b; if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { if (a & 0x8000) res = 0x8000; else res = 0x7fff; } return res; } /* Perform 8-bit signed saturating addition. */ static inline uint8_t add8_sat(uint8_t a, uint8_t b) { uint8_t res; res = a + b; if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { if (a & 0x80) res = 0x80; else res = 0x7f; } return res; } /* Perform 16-bit signed saturating subtraction. */ static inline uint16_t sub16_sat(uint16_t a, uint16_t b) { uint16_t res; res = a - b; if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { if (a & 0x8000) res = 0x8000; else res = 0x7fff; } return res; } /* Perform 8-bit signed saturating subtraction. */ static inline uint8_t sub8_sat(uint8_t a, uint8_t b) { uint8_t res; res = a - b; if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { if (a & 0x80) res = 0x80; else res = 0x7f; } return res; } #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); #define PFX q #include "op_addsub.h" /* Unsigned saturating arithmetic. */ static inline uint16_t add16_usat(uint16_t a, uint16_t b) { uint16_t res; res = a + b; if (res < a) res = 0xffff; return res; } static inline uint16_t sub16_usat(uint16_t a, uint16_t b) { if (a > b) return a - b; else return 0; } static inline uint8_t add8_usat(uint8_t a, uint8_t b) { uint8_t res; res = a + b; if (res < a) res = 0xff; return res; } static inline uint8_t sub8_usat(uint8_t a, uint8_t b) { if (a > b) return a - b; else return 0; } #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); #define PFX uq #include "op_addsub.h" /* Signed modulo arithmetic. */ #define SARITH16(a, b, n, op) do { \ int32_t sum; \ sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ RESULT(sum, n, 16); \ if (sum >= 0) \ ge |= 3 << (n * 2); \ } while(0) #define SARITH8(a, b, n, op) do { \ int32_t sum; \ sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ RESULT(sum, n, 8); \ if (sum >= 0) \ ge |= 1 << n; \ } while(0) #define ADD16(a, b, n) SARITH16(a, b, n, +) #define SUB16(a, b, n) SARITH16(a, b, n, -) #define ADD8(a, b, n) SARITH8(a, b, n, +) #define SUB8(a, b, n) SARITH8(a, b, n, -) #define PFX s #define ARITH_GE #include "op_addsub.h" /* Unsigned modulo arithmetic. */ #define ADD16(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ RESULT(sum, n, 16); \ if ((sum >> 16) == 1) \ ge |= 3 << (n * 2); \ } while(0) #define ADD8(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ RESULT(sum, n, 8); \ if ((sum >> 8) == 1) \ ge |= 1 << n; \ } while(0) #define SUB16(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ RESULT(sum, n, 16); \ if ((sum >> 16) == 0) \ ge |= 3 << (n * 2); \ } while(0) #define SUB8(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ RESULT(sum, n, 8); \ if ((sum >> 8) == 0) \ ge |= 1 << n; \ } while(0) #define PFX u #define ARITH_GE #include "op_addsub.h" /* Halved signed arithmetic. */ #define ADD16(a, b, n) \ RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) #define SUB16(a, b, n) \ RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) #define ADD8(a, b, n) \ RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) #define SUB8(a, b, n) \ RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) #define PFX sh #include "op_addsub.h" /* Halved unsigned arithmetic. */ #define ADD16(a, b, n) \ RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) #define SUB16(a, b, n) \ RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) #define ADD8(a, b, n) \ RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) #define SUB8(a, b, n) \ RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) #define PFX uh #include "op_addsub.h" static inline uint8_t do_usad(uint8_t a, uint8_t b) { if (a > b) return a - b; else return b - a; } /* Unsigned sum of absolute byte differences. */ uint32_t HELPER(usad8)(uint32_t a, uint32_t b) { uint32_t sum; sum = do_usad(a, b); sum += do_usad(a >> 8, b >> 8); sum += do_usad(a >> 16, b >>16); sum += do_usad(a >> 24, b >> 24); return sum; } /* For ARMv6 SEL instruction. */ uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) { uint32_t mask; mask = 0; if (flags & 1) mask |= 0xff; if (flags & 2) mask |= 0xff00; if (flags & 4) mask |= 0xff0000; if (flags & 8) mask |= 0xff000000; return (a & mask) | (b & ~mask); } /* CRC helpers. * The upper bytes of val (above the number specified by 'bytes') must have * been zeroed out by the caller. */ uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) { uint8_t buf[4]; stl_le_p(buf, val); /* zlib crc32 converts the accumulator and output to one's complement. */ return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; } uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) { uint8_t buf[4]; stl_le_p(buf, val); /* Linux crc32c converts the output to one's complement. */ return crc32c(acc, buf, bytes) ^ 0xffffffff; } /* Return the exception level to which FP-disabled exceptions should * be taken, or 0 if FP is enabled. */ int fp_exception_el(CPUARMState *env, int cur_el) { #ifndef CONFIG_USER_ONLY int fpen; /* CPACR and the CPTR registers don't exist before v6, so FP is * always accessible */ if (!arm_feature(env, ARM_FEATURE_V6)) { return 0; } if (arm_feature(env, ARM_FEATURE_M)) { /* CPACR can cause a NOCP UsageFault taken to current security state */ if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { return 1; } if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { if (!extract32(env->v7m.nsacr, 10, 1)) { /* FP insns cause a NOCP UsageFault taken to Secure */ return 3; } } return 0; } /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: * 0, 2 : trap EL0 and EL1/PL1 accesses * 1 : trap only EL0 accesses * 3 : trap no accesses */ fpen = extract32(env->cp15.cpacr_el1, 20, 2); switch (fpen) { case 0: case 2: if (cur_el == 0 || cur_el == 1) { /* Trap to PL1, which might be EL1 or EL3 */ if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { return 3; } return 1; } if (cur_el == 3 && !is_a64(env)) { /* Secure PL1 running at EL3 */ return 3; } break; case 1: if (cur_el == 0) { return 1; } break; case 3: break; } /* * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode * to control non-secure access to the FPU. It doesn't have any * effect if EL3 is AArch64 or if EL3 doesn't exist at all. */ if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && cur_el <= 2 && !arm_is_secure_below_el3(env))) { if (!extract32(env->cp15.nsacr, 10, 1)) { /* FP insns act as UNDEF */ return cur_el == 2 ? 2 : 1; } } /* For the CPTR registers we don't need to guard with an ARM_FEATURE * check because zero bits in the registers mean "don't trap". */ /* CPTR_EL2 : present in v7VE or v8 */ if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) && !arm_is_secure_below_el3(env)) { /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ return 2; } /* CPTR_EL3 : present in v8 */ if (extract32(env->cp15.cptr_el[3], 10, 1)) { /* Trap all FP ops to EL3 */ return 3; } #endif return 0; } #ifndef CONFIG_TCG ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) { g_assert_not_reached(); } #endif ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) { if (arm_feature(env, ARM_FEATURE_M)) { return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); } if (el < 2 && arm_is_secure_below_el3(env)) { return ARMMMUIdx_S1SE0 + el; } else { return ARMMMUIdx_S12NSE0 + el; } } ARMMMUIdx arm_mmu_idx(CPUARMState *env) { return arm_mmu_idx_el(env, arm_current_el(env)); } int cpu_mmu_index(CPUARMState *env, bool ifetch) { return arm_to_core_mmu_idx(arm_mmu_idx(env)); } #ifndef CONFIG_USER_ONLY ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) { return stage_1_mmu_idx(arm_mmu_idx(env)); } #endif static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, ARMMMUIdx mmu_idx, uint32_t flags) { flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); if (arm_singlestep_active(env)) { flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); } return flags; } static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, ARMMMUIdx mmu_idx, uint32_t flags) { bool sctlr_b = arm_sctlr_b(env); if (sctlr_b) { flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); } if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); } flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); return rebuild_hflags_common(env, fp_el, mmu_idx, flags); } static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, ARMMMUIdx mmu_idx) { uint32_t flags = 0; /* v8M always enables the fpu. */ flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); if (arm_v7m_is_handler_mode(env)) { flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); } /* * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN * is suppressing them because the requested execution priority * is less than 0. */ if (arm_feature(env, ARM_FEATURE_V8) && !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); } return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); } static uint32_t rebuild_hflags_aprofile(CPUARMState *env) { int flags = 0; flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, arm_debug_target_el(env)); return flags; } static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, ARMMMUIdx mmu_idx) { uint32_t flags = rebuild_hflags_aprofile(env); if (arm_el_is_aa64(env, 1)) { flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); } if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); } return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); } static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, ARMMMUIdx mmu_idx) { uint32_t flags = rebuild_hflags_aprofile(env); ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); uint64_t sctlr; int tbii, tbid; flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); /* FIXME: ARMv8.1-VHE S2 translation regime. */ if (regime_el(env, stage1) < 2) { ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); tbid = (p1.tbi << 1) | p0.tbi; tbii = tbid & ~((p1.tbid << 1) | p0.tbid); } else { tbid = p0.tbi; tbii = tbid & !p0.tbid; } flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { int sve_el = sve_exception_el(env, el); uint32_t zcr_len; /* * If SVE is disabled, but FP is enabled, * then the effective len is 0. */ if (sve_el != 0 && fp_el == 0) { zcr_len = 0; } else { zcr_len = sve_zcr_len_for_el(env, el); } flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); } sctlr = arm_sctlr(env, el); if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); } if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { /* * In order to save space in flags, we record only whether * pauth is "inactive", meaning all insns are implemented as * a nop, or "active" when some action must be performed. * The decision of which action to take is left to a helper. */ if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); } } if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); } } return rebuild_hflags_common(env, fp_el, mmu_idx, flags); } static uint32_t rebuild_hflags_internal(CPUARMState *env) { int el = arm_current_el(env); int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); if (is_a64(env)) { return rebuild_hflags_a64(env, el, fp_el, mmu_idx); } else if (arm_feature(env, ARM_FEATURE_M)) { return rebuild_hflags_m32(env, fp_el, mmu_idx); } else { return rebuild_hflags_a32(env, fp_el, mmu_idx); } } void arm_rebuild_hflags(CPUARMState *env) { env->hflags = rebuild_hflags_internal(env); } void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) { int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); } /* * If we have triggered a EL state change we can't rely on the * translator having passed it too us, we need to recompute. */ void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) { int el = arm_current_el(env); int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); } void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) { int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); } void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) { int fp_el = fp_exception_el(env, el); ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); } static inline void assert_hflags_rebuild_correctly(CPUARMState *env) { #ifdef CONFIG_DEBUG_TCG uint32_t env_flags_current = env->hflags; uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); if (unlikely(env_flags_current != env_flags_rebuilt)) { fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", env_flags_current, env_flags_rebuilt); abort(); } #endif } void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, target_ulong *cs_base, uint32_t *pflags) { uint32_t flags = env->hflags; uint32_t pstate_for_ss; *cs_base = 0; assert_hflags_rebuild_correctly(env); if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { *pc = env->pc; if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); } pstate_for_ss = env->pstate; } else { *pc = env->regs[15]; if (arm_feature(env, ARM_FEATURE_M)) { if (arm_feature(env, ARM_FEATURE_M_SECURITY) && FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) { flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); } if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || (env->v7m.secure && !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { /* * ASPEN is set, but FPCA/SFPA indicate that there is no * active FP context; we must create a new FP context before * executing any FP insn. */ flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); } bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); } } else { /* * Note that XSCALE_CPAR shares bits with VECSTRIDE. * Note that VECLEN+VECSTRIDE are RES0 for M-profile. */ if (arm_feature(env, ARM_FEATURE_XSCALE)) { flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar); } else { flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len); flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride); } if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); } } flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); pstate_for_ss = env->uncached_cpsr; } /* * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine * states defined in the ARM ARM for software singlestep: * SS_ACTIVE PSTATE.SS State * 0 x Inactive (the TB flag for SS is always 0) * 1 0 Active-pending * 1 1 Active-not-pending * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. */ if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && (pstate_for_ss & PSTATE_SS)) { flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); } *pflags = flags; } #ifdef TARGET_AARCH64 /* * The manual says that when SVE is enabled and VQ is widened the * implementation is allowed to zero the previously inaccessible * portion of the registers. The corollary to that is that when * SVE is enabled and VQ is narrowed we are also allowed to zero * the now inaccessible portion of the registers. * * The intent of this is that no predicate bit beyond VQ is ever set. * Which means that some operations on predicate registers themselves * may operate on full uint64_t or even unrolled across the maximum * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally * may well be cheaper than conditionals to restrict the operation * to the relevant portion of a uint16_t[16]. */ void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { int i, j; uint64_t pmask; assert(vq >= 1 && vq <= ARM_MAX_VQ); assert(vq <= env_archcpu(env)->sve_max_vq); /* Zap the high bits of the zregs. */ for (i = 0; i < 32; i++) { memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); } /* Zap the high bits of the pregs and ffr. */ pmask = 0; if (vq & 3) { pmask = ~(-1ULL << (16 * (vq & 3))); } for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { for (i = 0; i < 17; ++i) { env->vfp.pregs[i].p[j] &= pmask; } pmask = 0; } } /* * Notice a change in SVE vector size when changing EL. */ void aarch64_sve_change_el(CPUARMState *env, int old_el, int new_el, bool el0_a64) { ARMCPU *cpu = env_archcpu(env); int old_len, new_len; bool old_a64, new_a64; /* Nothing to do if no SVE. */ if (!cpu_isar_feature(aa64_sve, cpu)) { return; } /* Nothing to do if FP is disabled in either EL. */ if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { return; } /* * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped * at ELx, or not available because the EL is in AArch32 state, then * for all purposes other than a direct read, the ZCR_ELx.LEN field * has an effective value of 0". * * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). * If we ignore aa32 state, we would fail to see the vq4->vq0 transition * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that * we already have the correct register contents when encountering the * vq0->vq0 transition between EL0->EL1. */ old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; old_len = (old_a64 && !sve_exception_el(env, old_el) ? sve_zcr_len_for_el(env, old_el) : 0); new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; new_len = (new_a64 && !sve_exception_el(env, new_el) ? sve_zcr_len_for_el(env, new_el) : 0); /* When changing vector length, clear inaccessible state. */ if (new_len < old_len) { aarch64_sve_narrow_vq(env, new_len + 1); } } #endif