/*
* ARM gdb server stub: AArch64 specific functions.
*
* Copyright (c) 2013 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "internals.h"
#include "gdbstub/helpers.h"
int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (n < 31) {
/* Core integer register. */
return gdb_get_reg64(mem_buf, env->xregs[n]);
}
switch (n) {
case 31:
return gdb_get_reg64(mem_buf, env->xregs[31]);
case 32:
return gdb_get_reg64(mem_buf, env->pc);
case 33:
return gdb_get_reg32(mem_buf, pstate_read(env));
}
/* Unknown register. */
return 0;
}
int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t tmp;
tmp = ldq_p(mem_buf);
if (n < 31) {
/* Core integer register. */
env->xregs[n] = tmp;
return 8;
}
switch (n) {
case 31:
env->xregs[31] = tmp;
return 8;
case 32:
env->pc = tmp;
return 8;
case 33:
/* CPSR */
pstate_write(env, tmp);
return 4;
}
/* Unknown register. */
return 0;
}
int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg)
{
switch (reg) {
case 0 ... 31:
{
/* 128 bit FP register - quads are in LE order */
uint64_t *q = aa64_vfp_qreg(env, reg);
return gdb_get_reg128(buf, q[1], q[0]);
}
case 32:
/* FPSR */
return gdb_get_reg32(buf, vfp_get_fpsr(env));
case 33:
/* FPCR */
return gdb_get_reg32(buf, vfp_get_fpcr(env));
default:
return 0;
}
}
int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg)
{
switch (reg) {
case 0 ... 31:
/* 128 bit FP register */
{
uint64_t *q = aa64_vfp_qreg(env, reg);
q[0] = ldq_le_p(buf);
q[1] = ldq_le_p(buf + 8);
return 16;
}
case 32:
/* FPSR */
vfp_set_fpsr(env, ldl_p(buf));
return 4;
case 33:
/* FPCR */
vfp_set_fpcr(env, ldl_p(buf));
return 4;
default:
return 0;
}
}
int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg)
{
ARMCPU *cpu = env_archcpu(env);
switch (reg) {
/* The first 32 registers are the zregs */
case 0 ... 31:
{
int vq, len = 0;
for (vq = 0; vq < cpu->sve_max_vq; vq++) {
len += gdb_get_reg128(buf,
env->vfp.zregs[reg].d[vq * 2 + 1],
env->vfp.zregs[reg].d[vq * 2]);
}
return len;
}
case 32:
return gdb_get_reg32(buf, vfp_get_fpsr(env));
case 33:
return gdb_get_reg32(buf, vfp_get_fpcr(env));
/* then 16 predicates and the ffr */
case 34 ... 50:
{
int preg = reg - 34;
int vq, len = 0;
for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
}
return len;
}
case 51:
{
/*
* We report in Vector Granules (VG) which is 64bit in a Z reg
* while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
*/
int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1;
return gdb_get_reg64(buf, vq * 2);
}
default:
/* gdbstub asked for something out our range */
qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
break;
}
return 0;
}
int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg)
{
ARMCPU *cpu = env_archcpu(env);
/* The first 32 registers are the zregs */
switch (reg) {
/* The first 32 registers are the zregs */
case 0 ... 31:
{
int vq, len = 0;
uint64_t *p = (uint64_t *) buf;
for (vq = 0; vq < cpu->sve_max_vq; vq++) {
env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
env->vfp.zregs[reg].d[vq * 2] = *p++;
len += 16;
}
return len;
}
case 32:
vfp_set_fpsr(env, *(uint32_t *)buf);
return 4;
case 33:
vfp_set_fpcr(env, *(uint32_t *)buf);
return 4;
case 34 ... 50:
{
int preg = reg - 34;
int vq, len = 0;
uint64_t *p = (uint64_t *) buf;
for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
env->vfp.pregs[preg].p[vq / 4] = *p++;
len += 8;
}
return len;
}
case 51:
/* cannot set vg via gdbstub */
return 0;
default:
/* gdbstub asked for something out our range */
break;
}
return 0;
}
int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg)
{
switch (reg) {
case 0: /* pauth_dmask */
case 1: /* pauth_cmask */
case 2: /* pauth_dmask_high */
case 3: /* pauth_cmask_high */
/*
* Note that older versions of this feature only contained
* pauth_{d,c}mask, for use with Linux user processes, and
* thus exclusively in the low half of the address space.
*
* To support system mode, and to debug kernels, two new regs
* were added to cover the high half of the address space.
* For the purpose of pauth_ptr_mask, we can use any well-formed
* address within the address space half -- here, 0 and -1.
*/
{
bool is_data = !(reg & 1);
bool is_high = reg & 2;
uint64_t mask = pauth_ptr_mask(env, -is_high, is_data);
return gdb_get_reg64(buf, mask);
}
default:
return 0;
}
}
int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg)
{
/* All pseudo registers are read-only. */
return 0;
}
static void output_vector_union_type(GString *s, int reg_width,
const char *name)
{
struct TypeSize {
const char *gdb_type;
short size;
char sz, suffix;
};
static const struct TypeSize vec_lanes[] = {
/* quads */
{ "uint128", 128, 'q', 'u' },
{ "int128", 128, 'q', 's' },
/* 64 bit */
{ "ieee_double", 64, 'd', 'f' },
{ "uint64", 64, 'd', 'u' },
{ "int64", 64, 'd', 's' },
/* 32 bit */
{ "ieee_single", 32, 's', 'f' },
{ "uint32", 32, 's', 'u' },
{ "int32", 32, 's', 's' },
/* 16 bit */
{ "ieee_half", 16, 'h', 'f' },
{ "uint16", 16, 'h', 'u' },
{ "int16", 16, 'h', 's' },
/* bytes */
{ "uint8", 8, 'b', 'u' },
{ "int8", 8, 'b', 's' },
};
static const char suf[] = { 'b', 'h', 's', 'd', 'q' };
int i, j;
/* First define types and totals in a whole VL */
for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
g_string_append_printf(s,
"",
name, vec_lanes[i].sz, vec_lanes[i].suffix,
vec_lanes[i].gdb_type, reg_width / vec_lanes[i].size);
}
/*
* Now define a union for each size group containing unsigned and
* signed and potentially float versions of each size from 128 to
* 8 bits.
*/
for (i = 0; i < ARRAY_SIZE(suf); i++) {
int bits = 8 << i;
g_string_append_printf(s, "", name, suf[i]);
for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
if (vec_lanes[j].size == bits) {
g_string_append_printf(s, "",
vec_lanes[j].suffix, name,
vec_lanes[j].sz, vec_lanes[j].suffix);
}
}
g_string_append(s, "");
}
/* And now the final union of unions */
g_string_append_printf(s, "", name);
for (i = ARRAY_SIZE(suf) - 1; i >= 0; i--) {
g_string_append_printf(s, "",
suf[i], name, suf[i]);
}
g_string_append(s, "");
}
int arm_gen_dynamic_svereg_xml(CPUState *cs, int orig_base_reg)
{
ARMCPU *cpu = ARM_CPU(cs);
GString *s = g_string_new(NULL);
DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml;
int reg_width = cpu->sve_max_vq * 128;
int pred_width = cpu->sve_max_vq * 16;
int base_reg = orig_base_reg;
int i;
g_string_printf(s, "");
g_string_append_printf(s, "");
g_string_append_printf(s, "");
/* Create the vector union type. */
output_vector_union_type(s, reg_width, "svev");
/* Create the predicate vector type. */
g_string_append_printf(s,
"",
pred_width / 8);
/* Define the vector registers. */
for (i = 0; i < 32; i++) {
g_string_append_printf(s,
"",
i, reg_width, base_reg++);
}
/* fpscr & status registers */
g_string_append_printf(s, "", base_reg++);
g_string_append_printf(s, "", base_reg++);
/* Define the predicate registers. */
for (i = 0; i < 16; i++) {
g_string_append_printf(s,
"",
i, pred_width, base_reg++);
}
g_string_append_printf(s,
"",
pred_width, base_reg++);
/* Define the vector length pseudo-register. */
g_string_append_printf(s,
"",
base_reg++);
g_string_append_printf(s, "");
info->desc = g_string_free(s, false);
info->num = base_reg - orig_base_reg;
return info->num;
}