/* * ARM gdb server stub * * Copyright (c) 2003-2005 Fabrice Bellard * Copyright (c) 2013 SUSE LINUX Products GmbH * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/gdbstub.h" typedef struct RegisterSysregXmlParam { CPUState *cs; GString *s; int n; } RegisterSysregXmlParam; /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect whatever the target description contains. Due to a historical mishap the FPA registers appear in between core integer regs and the CPSR. We hack round this by giving the FPA regs zero size when talking to a newer gdb. */ int arm_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (n < 16) { /* Core integer register. */ return gdb_get_reg32(mem_buf, env->regs[n]); } if (n < 24) { /* FPA registers. */ if (gdb_has_xml) { return 0; } memset(mem_buf, 0, 12); return 12; } switch (n) { case 24: /* FPA status register. */ if (gdb_has_xml) { return 0; } return gdb_get_reg32(mem_buf, 0); case 25: /* CPSR */ return gdb_get_reg32(mem_buf, cpsr_read(env)); } /* Unknown register. */ return 0; } int arm_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint32_t tmp; tmp = ldl_p(mem_buf); /* Mask out low bit of PC to workaround gdb bugs. This will probably cause problems if we ever implement the Jazelle DBX extensions. */ if (n == 15) { tmp &= ~1; } if (n < 16) { /* Core integer register. */ env->regs[n] = tmp; return 4; } if (n < 24) { /* 16-23 */ /* FPA registers (ignored). */ if (gdb_has_xml) { return 0; } return 12; } switch (n) { case 24: /* FPA status register (ignored). */ if (gdb_has_xml) { return 0; } return 4; case 25: /* CPSR */ cpsr_write(env, tmp, 0xffffffff, CPSRWriteByGDBStub); return 4; } /* Unknown register. */ return 0; } static void arm_gen_one_xml_sysreg_tag(GString *s, DynamicGDBXMLInfo *dyn_xml, ARMCPRegInfo *ri, uint32_t ri_key, int bitsize, int regnum) { g_string_append_printf(s, "name); g_string_append_printf(s, " bitsize=\"%d\"", bitsize); g_string_append_printf(s, " regnum=\"%d\"", regnum); g_string_append_printf(s, " group=\"cp_regs\"/>"); dyn_xml->data.cpregs.keys[dyn_xml->num] = ri_key; dyn_xml->num++; } static void arm_register_sysreg_for_xml(gpointer key, gpointer value, gpointer p) { uint32_t ri_key = *(uint32_t *)key; ARMCPRegInfo *ri = value; RegisterSysregXmlParam *param = (RegisterSysregXmlParam *)p; GString *s = param->s; ARMCPU *cpu = ARM_CPU(param->cs); CPUARMState *env = &cpu->env; DynamicGDBXMLInfo *dyn_xml = &cpu->dyn_sysreg_xml; if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_NO_GDB))) { if (arm_feature(env, ARM_FEATURE_AARCH64)) { if (ri->state == ARM_CP_STATE_AA64) { arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64, param->n++); } } else { if (ri->state == ARM_CP_STATE_AA32) { if (!arm_feature(env, ARM_FEATURE_EL3) && (ri->secure & ARM_CP_SECSTATE_S)) { return; } if (ri->type & ARM_CP_64BIT) { arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64, param->n++); } else { arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 32, param->n++); } } } } } int arm_gen_dynamic_sysreg_xml(CPUState *cs, int base_reg) { ARMCPU *cpu = ARM_CPU(cs); GString *s = g_string_new(NULL); RegisterSysregXmlParam param = {cs, s, base_reg}; cpu->dyn_sysreg_xml.num = 0; cpu->dyn_sysreg_xml.data.cpregs.keys = g_new(uint32_t, g_hash_table_size(cpu->cp_regs)); g_string_printf(s, ""); g_string_append_printf(s, ""); g_string_append_printf(s, ""); g_hash_table_foreach(cpu->cp_regs, arm_register_sysreg_for_xml, ¶m); g_string_append_printf(s, ""); cpu->dyn_sysreg_xml.desc = g_string_free(s, false); return cpu->dyn_sysreg_xml.num; } struct TypeSize { const char *gdb_type; int size; const char sz, suffix; }; static const struct TypeSize vec_lanes[] = { /* quads */ { "uint128", 128, 'q', 'u' }, { "int128", 128, 'q', 's' }, /* 64 bit */ { "uint64", 64, 'd', 'u' }, { "int64", 64, 'd', 's' }, { "ieee_double", 64, 'd', 'f' }, /* 32 bit */ { "uint32", 32, 's', 'u' }, { "int32", 32, 's', 's' }, { "ieee_single", 32, 's', 'f' }, /* 16 bit */ { "uint16", 16, 'h', 'u' }, { "int16", 16, 'h', 's' }, { "ieee_half", 16, 'h', 'f' }, /* bytes */ { "uint8", 8, 'b', 'u' }, { "int8", 8, 'b', 's' }, }; int arm_gen_dynamic_svereg_xml(CPUState *cs, int base_reg) { ARMCPU *cpu = ARM_CPU(cs); GString *s = g_string_new(NULL); DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml; g_autoptr(GString) ts = g_string_new(""); int i, bits, reg_width = (cpu->sve_max_vq * 128); info->num = 0; g_string_printf(s, ""); g_string_append_printf(s, ""); g_string_append_printf(s, ""); /* First define types and totals in a whole VL */ for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) { int count = reg_width / vec_lanes[i].size; g_string_printf(ts, "vq%d%c%c", count, vec_lanes[i].sz, vec_lanes[i].suffix); g_string_append_printf(s, "", ts->str, vec_lanes[i].gdb_type, count); } /* * Now define a union for each size group containing unsigned and * signed and potentially float versions of each size from 128 to * 8 bits. */ for (bits = 128; bits >= 8; bits /= 2) { int count = reg_width / bits; g_string_append_printf(s, "", count); for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) { if (vec_lanes[i].size == bits) { g_string_append_printf(s, "", vec_lanes[i].suffix, count, vec_lanes[i].sz, vec_lanes[i].suffix); } } g_string_append(s, ""); } /* And now the final union of unions */ g_string_append(s, ""); for (bits = 128; bits >= 8; bits /= 2) { int count = reg_width / bits; for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) { if (vec_lanes[i].size == bits) { g_string_append_printf(s, "", vec_lanes[i].sz, count); break; } } } g_string_append(s, ""); /* Then define each register in parts for each vq */ for (i = 0; i < 32; i++) { g_string_append_printf(s, "", i, reg_width, base_reg++); info->num++; } /* fpscr & status registers */ g_string_append_printf(s, "", base_reg++); g_string_append_printf(s, "", base_reg++); info->num += 2; /* * Predicate registers aren't so big they are worth splitting up * but we do need to define a type to hold the array of quad * references. */ g_string_append_printf(s, "", cpu->sve_max_vq); for (i = 0; i < 16; i++) { g_string_append_printf(s, "", i, cpu->sve_max_vq * 16, base_reg++); info->num++; } g_string_append_printf(s, "", cpu->sve_max_vq * 16, base_reg++); g_string_append_printf(s, "", base_reg++); info->num += 2; g_string_append_printf(s, ""); cpu->dyn_svereg_xml.desc = g_string_free(s, false); return cpu->dyn_svereg_xml.num; } const char *arm_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname) { ARMCPU *cpu = ARM_CPU(cs); if (strcmp(xmlname, "system-registers.xml") == 0) { return cpu->dyn_sysreg_xml.desc; } else if (strcmp(xmlname, "sve-registers.xml") == 0) { return cpu->dyn_svereg_xml.desc; } return NULL; }