/* * QEMU AArch64 CPU * * Copyright (c) 2013 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "cpu.h" #include "qemu/module.h" #if !defined(CONFIG_USER_ONLY) #include "hw/loader.h" #endif #include "sysemu/kvm.h" #include "kvm_arm.h" #include "qapi/visitor.h" #ifndef CONFIG_USER_ONLY static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = env_archcpu(env); /* Number of cores is in [25:24]; otherwise we RAZ */ return (cpu->core_count - 1) << 24; } #endif static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = { #ifndef CONFIG_USER_ONLY { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2, .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, .writefn = arm_cp_write_ignore }, { .name = "L2CTLR", .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2, .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, .writefn = arm_cp_write_ignore }, #endif { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "L2ECTLR", .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUACTLR", .cp = 15, .opc1 = 0, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUECTLR", .cp = 15, .opc1 = 1, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUMERRSR", .cp = 15, .opc1 = 2, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "L2MERRSR", .cp = 15, .opc1 = 3, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, REGINFO_SENTINEL }; static void aarch64_a57_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a57"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; cpu->midr = 0x411fd070; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034070; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; cpu->ctr = 0x8444c004; cpu->reset_sctlr = 0x00c50838; cpu->id_pfr0 = 0x00000131; cpu->id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->isar.id_mmfr0 = 0x10101105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_isar6 = 0; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64mmfr0 = 0x00001124; cpu->isar.dbgdidr = 0x3516d000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); } static void aarch64_a53_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a53"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; cpu->midr = 0x410fd034; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034070; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; cpu->ctr = 0x84448004; /* L1Ip = VIPT */ cpu->reset_sctlr = 0x00c50838; cpu->id_pfr0 = 0x00000131; cpu->id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->isar.id_mmfr0 = 0x10101105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_isar6 = 0; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ cpu->isar.dbgdidr = 0x3516d000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); } static void aarch64_a72_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a72"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->midr = 0x410fd083; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034080; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; cpu->ctr = 0x8444c004; cpu->reset_sctlr = 0x00c50838; cpu->id_pfr0 = 0x00000131; cpu->id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64mmfr0 = 0x00001124; cpu->isar.dbgdidr = 0x3516d000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); } void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { /* * If any vector lengths are explicitly enabled with sve properties, * then all other lengths are implicitly disabled. If sve-max-vq is * specified then it is the same as explicitly enabling all lengths * up to and including the specified maximum, which means all larger * lengths will be implicitly disabled. If no sve properties * are enabled and sve-max-vq is not specified, then all lengths not * explicitly disabled will be enabled. Additionally, all power-of-two * vector lengths less than the maximum enabled length will be * automatically enabled and all vector lengths larger than the largest * disabled power-of-two vector length will be automatically disabled. * Errors are generated if the user provided input that interferes with * any of the above. Finally, if SVE is not disabled, then at least one * vector length must be enabled. */ DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ); DECLARE_BITMAP(tmp, ARM_MAX_VQ); uint32_t vq, max_vq = 0; /* Collect the set of vector lengths supported by KVM. */ bitmap_zero(kvm_supported, ARM_MAX_VQ); if (kvm_enabled() && kvm_arm_sve_supported()) { kvm_arm_sve_get_vls(CPU(cpu), kvm_supported); } else if (kvm_enabled()) { assert(!cpu_isar_feature(aa64_sve, cpu)); } /* * Process explicit sve properties. * From the properties, sve_vq_map implies sve_vq_init. * Check first for any sve enabled. */ if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) { max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1; if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) { error_setg(errp, "cannot enable sve%d", max_vq * 128); error_append_hint(errp, "sve%d is larger than the maximum vector " "length, sve-max-vq=%d (%d bits)\n", max_vq * 128, cpu->sve_max_vq, cpu->sve_max_vq * 128); return; } if (kvm_enabled()) { /* * For KVM we have to automatically enable all supported unitialized * lengths, even when the smaller lengths are not all powers-of-two. */ bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq); bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); } else { /* Propagate enabled bits down through required powers-of-two. */ for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { if (!test_bit(vq - 1, cpu->sve_vq_init)) { set_bit(vq - 1, cpu->sve_vq_map); } } } } else if (cpu->sve_max_vq == 0) { /* * No explicit bits enabled, and no implicit bits from sve-max-vq. */ if (!cpu_isar_feature(aa64_sve, cpu)) { /* SVE is disabled and so are all vector lengths. Good. */ return; } if (kvm_enabled()) { /* Disabling a supported length disables all larger lengths. */ for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { if (test_bit(vq - 1, cpu->sve_vq_init) && test_bit(vq - 1, kvm_supported)) { break; } } max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; bitmap_andnot(cpu->sve_vq_map, kvm_supported, cpu->sve_vq_init, max_vq); if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) { error_setg(errp, "cannot disable sve%d", vq * 128); error_append_hint(errp, "Disabling sve%d results in all " "vector lengths being disabled.\n", vq * 128); error_append_hint(errp, "With SVE enabled, at least one " "vector length must be enabled.\n"); return; } } else { /* Disabling a power-of-two disables all larger lengths. */ if (test_bit(0, cpu->sve_vq_init)) { error_setg(errp, "cannot disable sve128"); error_append_hint(errp, "Disabling sve128 results in all " "vector lengths being disabled.\n"); error_append_hint(errp, "With SVE enabled, at least one " "vector length must be enabled.\n"); return; } for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) { if (test_bit(vq - 1, cpu->sve_vq_init)) { break; } } max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq); } max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1; } /* * Process the sve-max-vq property. * Note that we know from the above that no bit above * sve-max-vq is currently set. */ if (cpu->sve_max_vq != 0) { max_vq = cpu->sve_max_vq; if (!test_bit(max_vq - 1, cpu->sve_vq_map) && test_bit(max_vq - 1, cpu->sve_vq_init)) { error_setg(errp, "cannot disable sve%d", max_vq * 128); error_append_hint(errp, "The maximum vector length must be " "enabled, sve-max-vq=%d (%d bits)\n", max_vq, max_vq * 128); return; } /* Set all bits not explicitly set within sve-max-vq. */ bitmap_complement(tmp, cpu->sve_vq_init, max_vq); bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq); } /* * We should know what max-vq is now. Also, as we're done * manipulating sve-vq-map, we ensure any bits above max-vq * are clear, just in case anybody looks. */ assert(max_vq != 0); bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq); if (kvm_enabled()) { /* Ensure the set of lengths matches what KVM supports. */ bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq); if (!bitmap_empty(tmp, max_vq)) { vq = find_last_bit(tmp, max_vq) + 1; if (test_bit(vq - 1, cpu->sve_vq_map)) { if (cpu->sve_max_vq) { error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq); error_append_hint(errp, "This KVM host does not support " "the vector length %d-bits.\n", vq * 128); error_append_hint(errp, "It may not be possible to use " "sve-max-vq with this KVM host. Try " "using only sve properties.\n"); } else { error_setg(errp, "cannot enable sve%d", vq * 128); error_append_hint(errp, "This KVM host does not support " "the vector length %d-bits.\n", vq * 128); } } else { error_setg(errp, "cannot disable sve%d", vq * 128); error_append_hint(errp, "The KVM host requires all " "supported vector lengths smaller " "than %d bits to also be enabled.\n", max_vq * 128); } return; } } else { /* Ensure all required powers-of-two are enabled. */ for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) { if (!test_bit(vq - 1, cpu->sve_vq_map)) { error_setg(errp, "cannot disable sve%d", vq * 128); error_append_hint(errp, "sve%d is required as it " "is a power-of-two length smaller than " "the maximum, sve%d\n", vq * 128, max_vq * 128); return; } } } /* * Now that we validated all our vector lengths, the only question * left to answer is if we even want SVE at all. */ if (!cpu_isar_feature(aa64_sve, cpu)) { error_setg(errp, "cannot enable sve%d", max_vq * 128); error_append_hint(errp, "SVE must be enabled to enable vector " "lengths.\n"); error_append_hint(errp, "Add sve=on to the CPU property list.\n"); return; } /* From now on sve_max_vq is the actual maximum supported length. */ cpu->sve_max_vq = max_vq; } static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint32_t value; /* All vector lengths are disabled when SVE is off. */ if (!cpu_isar_feature(aa64_sve, cpu)) { value = 0; } else { value = cpu->sve_max_vq; } visit_type_uint32(v, name, &value, errp); } static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint32_t max_vq; if (!visit_type_uint32(v, name, &max_vq, errp)) { return; } if (kvm_enabled() && !kvm_arm_sve_supported()) { error_setg(errp, "cannot set sve-max-vq"); error_append_hint(errp, "SVE not supported by KVM on this host\n"); return; } if (max_vq == 0 || max_vq > ARM_MAX_VQ) { error_setg(errp, "unsupported SVE vector length"); error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n", ARM_MAX_VQ); return; } cpu->sve_max_vq = max_vq; } static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint32_t vq = atoi(&name[3]) / 128; bool value; /* All vector lengths are disabled when SVE is off. */ if (!cpu_isar_feature(aa64_sve, cpu)) { value = false; } else { value = test_bit(vq - 1, cpu->sve_vq_map); } visit_type_bool(v, name, &value, errp); } static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint32_t vq = atoi(&name[3]) / 128; bool value; if (!visit_type_bool(v, name, &value, errp)) { return; } if (value && kvm_enabled() && !kvm_arm_sve_supported()) { error_setg(errp, "cannot enable %s", name); error_append_hint(errp, "SVE not supported by KVM on this host\n"); return; } if (value) { set_bit(vq - 1, cpu->sve_vq_map); } else { clear_bit(vq - 1, cpu->sve_vq_map); } set_bit(vq - 1, cpu->sve_vq_init); } static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); bool value = cpu_isar_feature(aa64_sve, cpu); visit_type_bool(v, name, &value, errp); } static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); bool value; uint64_t t; if (!visit_type_bool(v, name, &value, errp)) { return; } if (value && kvm_enabled() && !kvm_arm_sve_supported()) { error_setg(errp, "'sve' feature not supported by KVM on this host"); return; } t = cpu->isar.id_aa64pfr0; t = FIELD_DP64(t, ID_AA64PFR0, SVE, value); cpu->isar.id_aa64pfr0 = t; } void aarch64_add_sve_properties(Object *obj) { uint32_t vq; object_property_add(obj, "sve", "bool", cpu_arm_get_sve, cpu_arm_set_sve, NULL, NULL); for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { char name[8]; sprintf(name, "sve%d", vq * 128); object_property_add(obj, name, "bool", cpu_arm_get_sve_vq, cpu_arm_set_sve_vq, NULL, NULL); } } /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); * otherwise, a CPU with as many features enabled as our emulation supports. * The version of '-cpu max' for qemu-system-arm is defined in cpu.c; * this only needs to handle 64 bits. */ static void aarch64_max_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); if (kvm_enabled()) { kvm_arm_set_cpu_features_from_host(cpu); } else { uint64_t t; uint32_t u; aarch64_a57_initfn(obj); /* * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real * one and try to apply errata workarounds or use impdef features we * don't provide. * An IMPLEMENTER field of 0 means "reserved for software use"; * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers * to see which features are present"; * the VARIANT, PARTNUM and REVISION fields are all implementation * defined and we choose to define PARTNUM just in case guest * code needs to distinguish this QEMU CPU from other software * implementations, though this shouldn't be needed. */ t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0); t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf); t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q'); t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0); t = FIELD_DP64(t, MIDR_EL1, REVISION, 0); cpu->midr = t; t = cpu->isar.id_aa64isar0; t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */ t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */ t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */ t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); cpu->isar.id_aa64isar0 = t; t = cpu->isar.id_aa64isar1; t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */ t = FIELD_DP64(t, ID_AA64ISAR1, API, 0); t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1); t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0); t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */ cpu->isar.id_aa64isar1 = t; t = cpu->isar.id_aa64pfr0; t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); cpu->isar.id_aa64pfr0 = t; t = cpu->isar.id_aa64pfr1; t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); /* * Begin with full support for MTE. This will be downgraded to MTE=0 * during realize if the board provides no tag memory, much like * we do for EL2 with the virtualization=on property. */ t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2); cpu->isar.id_aa64pfr1 = t; t = cpu->isar.id_aa64mmfr1; t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */ t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */ t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */ t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */ cpu->isar.id_aa64mmfr1 = t; t = cpu->isar.id_aa64mmfr2; t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */ cpu->isar.id_aa64mmfr2 = t; /* Replicate the same data to the 32-bit id registers. */ u = cpu->isar.id_isar5; u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */ u = FIELD_DP32(u, ID_ISAR5, SHA1, 1); u = FIELD_DP32(u, ID_ISAR5, SHA2, 1); u = FIELD_DP32(u, ID_ISAR5, CRC32, 1); u = FIELD_DP32(u, ID_ISAR5, RDM, 1); u = FIELD_DP32(u, ID_ISAR5, VCMA, 1); cpu->isar.id_isar5 = u; u = cpu->isar.id_isar6; u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1); u = FIELD_DP32(u, ID_ISAR6, DP, 1); u = FIELD_DP32(u, ID_ISAR6, FHM, 1); u = FIELD_DP32(u, ID_ISAR6, SB, 1); u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1); cpu->isar.id_isar6 = u; u = cpu->isar.id_mmfr3; u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */ cpu->isar.id_mmfr3 = u; u = cpu->isar.id_mmfr4; u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */ u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */ u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */ u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */ cpu->isar.id_mmfr4 = u; t = cpu->isar.id_aa64dfr0; t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */ cpu->isar.id_aa64dfr0 = t; u = cpu->isar.id_dfr0; u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */ cpu->isar.id_dfr0 = u; u = cpu->isar.mvfr1; u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */ u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */ cpu->isar.mvfr1 = u; #ifdef CONFIG_USER_ONLY /* For usermode -cpu max we can use a larger and more efficient DCZ * blocksize since we don't have to follow what the hardware does. */ cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ cpu->dcz_blocksize = 7; /* 512 bytes */ #endif } aarch64_add_sve_properties(obj); object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq, cpu_max_set_sve_max_vq, NULL, NULL); } static const ARMCPUInfo aarch64_cpus[] = { { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, { .name = "max", .initfn = aarch64_max_initfn }, }; static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); } static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); /* At this time, this property is only allowed if KVM is enabled. This * restriction allows us to avoid fixing up functionality that assumes a * uniform execution state like do_interrupt. */ if (value == false) { if (!kvm_enabled() || !kvm_arm_aarch32_supported()) { error_setg(errp, "'aarch64' feature cannot be disabled " "unless KVM is enabled and 32-bit EL1 " "is supported"); return; } unset_feature(&cpu->env, ARM_FEATURE_AARCH64); } else { set_feature(&cpu->env, ARM_FEATURE_AARCH64); } } static void aarch64_cpu_initfn(Object *obj) { object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64, aarch64_cpu_set_aarch64); object_property_set_description(obj, "aarch64", "Set on/off to enable/disable aarch64 " "execution state "); } static void aarch64_cpu_finalizefn(Object *obj) { } static gchar *aarch64_gdb_arch_name(CPUState *cs) { return g_strdup("aarch64"); } static void aarch64_cpu_class_init(ObjectClass *oc, void *data) { CPUClass *cc = CPU_CLASS(oc); cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; cc->gdb_read_register = aarch64_cpu_gdb_read_register; cc->gdb_write_register = aarch64_cpu_gdb_write_register; cc->gdb_num_core_regs = 34; cc->gdb_core_xml_file = "aarch64-core.xml"; cc->gdb_arch_name = aarch64_gdb_arch_name; } static void aarch64_cpu_instance_init(Object *obj) { ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); acc->info->initfn(obj); arm_cpu_post_init(obj); } static void cpu_register_class_init(ObjectClass *oc, void *data) { ARMCPUClass *acc = ARM_CPU_CLASS(oc); acc->info = data; } void aarch64_cpu_register(const ARMCPUInfo *info) { TypeInfo type_info = { .parent = TYPE_AARCH64_CPU, .instance_size = sizeof(ARMCPU), .instance_init = aarch64_cpu_instance_init, .class_size = sizeof(ARMCPUClass), .class_init = info->class_init ?: cpu_register_class_init, .class_data = (void *)info, }; type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); type_register(&type_info); g_free((void *)type_info.name); } static const TypeInfo aarch64_cpu_type_info = { .name = TYPE_AARCH64_CPU, .parent = TYPE_ARM_CPU, .instance_size = sizeof(ARMCPU), .instance_init = aarch64_cpu_initfn, .instance_finalize = aarch64_cpu_finalizefn, .abstract = true, .class_size = sizeof(AArch64CPUClass), .class_init = aarch64_cpu_class_init, }; static void aarch64_cpu_register_types(void) { size_t i; type_register_static(&aarch64_cpu_type_info); for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) { aarch64_cpu_register(&aarch64_cpus[i]); } } type_init(aarch64_cpu_register_types)