/* * QEMU AArch64 CPU * * Copyright (c) 2013 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "cpu.h" #ifdef CONFIG_TCG #include "hw/core/tcg-cpu-ops.h" #endif /* CONFIG_TCG */ #include "qemu/module.h" #if !defined(CONFIG_USER_ONLY) #include "hw/loader.h" #endif #include "sysemu/kvm.h" #include "sysemu/hvf.h" #include "kvm_arm.h" #include "hvf_arm.h" #include "qapi/visitor.h" #include "hw/qdev-properties.h" #include "internals.h" static void aarch64_a35_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a35"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); /* From B2.2 AArch64 identification registers. */ cpu->midr = 0x411fd040; cpu->revidr = 0; cpu->ctr = 0x84448004; cpu->isar.id_pfr0 = 0x00000131; cpu->isar.id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64pfr1 = 0; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64dfr1 = 0; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64isar1 = 0; cpu->isar.id_aa64mmfr0 = 0x00101122; cpu->isar.id_aa64mmfr1 = 0; cpu->clidr = 0x0a200023; cpu->dcz_blocksize = 4; /* From B2.4 AArch64 Virtual Memory control registers */ cpu->reset_sctlr = 0x00c50838; /* From B2.10 AArch64 performance monitor registers */ cpu->isar.reset_pmcr_el0 = 0x410a3000; /* From B2.29 Cache ID registers */ cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ cpu->ccsidr[2] = 0x703fe03a; /* 512KB L2 cache */ /* From B3.5 VGIC Type register */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; /* From C6.4 Debug ID Register */ cpu->isar.dbgdidr = 0x3516d000; /* From C6.5 Debug Device ID Register */ cpu->isar.dbgdevid = 0x00110f13; /* From C6.6 Debug Device ID Register 1 */ cpu->isar.dbgdevid1 = 0x2; /* From Cortex-A35 SIMD and Floating-point Support r1p0 */ /* From 3.2 AArch32 register summary */ cpu->reset_fpsid = 0x41034043; /* From 2.2 AArch64 register summary */ cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; /* These values are the same with A53/A57/A72. */ define_cortex_a72_a57_a53_cp_reginfo(cpu); } void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { /* * If any vector lengths are explicitly enabled with sve properties, * then all other lengths are implicitly disabled. If sve-max-vq is * specified then it is the same as explicitly enabling all lengths * up to and including the specified maximum, which means all larger * lengths will be implicitly disabled. If no sve properties * are enabled and sve-max-vq is not specified, then all lengths not * explicitly disabled will be enabled. Additionally, all power-of-two * vector lengths less than the maximum enabled length will be * automatically enabled and all vector lengths larger than the largest * disabled power-of-two vector length will be automatically disabled. * Errors are generated if the user provided input that interferes with * any of the above. Finally, if SVE is not disabled, then at least one * vector length must be enabled. */ uint32_t vq_map = cpu->sve_vq.map; uint32_t vq_init = cpu->sve_vq.init; uint32_t vq_supported; uint32_t vq_mask = 0; uint32_t tmp, vq, max_vq = 0; /* * CPU models specify a set of supported vector lengths which are * enabled by default. Attempting to enable any vector length not set * in the supported bitmap results in an error. When KVM is enabled we * fetch the supported bitmap from the host. */ if (kvm_enabled()) { if (kvm_arm_sve_supported()) { cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu)); vq_supported = cpu->sve_vq.supported; } else { assert(!cpu_isar_feature(aa64_sve, cpu)); vq_supported = 0; } } else { vq_supported = cpu->sve_vq.supported; } /* * Process explicit sve properties. * From the properties, sve_vq_map implies sve_vq_init. * Check first for any sve enabled. */ if (vq_map != 0) { max_vq = 32 - clz32(vq_map); vq_mask = MAKE_64BIT_MASK(0, max_vq); if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) { error_setg(errp, "cannot enable sve%d", max_vq * 128); error_append_hint(errp, "sve%d is larger than the maximum vector " "length, sve-max-vq=%d (%d bits)\n", max_vq * 128, cpu->sve_max_vq, cpu->sve_max_vq * 128); return; } if (kvm_enabled()) { /* * For KVM we have to automatically enable all supported unitialized * lengths, even when the smaller lengths are not all powers-of-two. */ vq_map |= vq_supported & ~vq_init & vq_mask; } else { /* Propagate enabled bits down through required powers-of-two. */ vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask; } } else if (cpu->sve_max_vq == 0) { /* * No explicit bits enabled, and no implicit bits from sve-max-vq. */ if (!cpu_isar_feature(aa64_sve, cpu)) { /* SVE is disabled and so are all vector lengths. Good. */ return; } if (kvm_enabled()) { /* Disabling a supported length disables all larger lengths. */ tmp = vq_init & vq_supported; } else { /* Disabling a power-of-two disables all larger lengths. */ tmp = vq_init & SVE_VQ_POW2_MAP; } vq = ctz32(tmp) + 1; max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ; vq_mask = MAKE_64BIT_MASK(0, max_vq); vq_map = vq_supported & ~vq_init & vq_mask; if (max_vq == 0 || vq_map == 0) { error_setg(errp, "cannot disable sve%d", vq * 128); error_append_hint(errp, "Disabling sve%d results in all " "vector lengths being disabled.\n", vq * 128); error_append_hint(errp, "With SVE enabled, at least one " "vector length must be enabled.\n"); return; } max_vq = 32 - clz32(vq_map); vq_mask = MAKE_64BIT_MASK(0, max_vq); } /* * Process the sve-max-vq property. * Note that we know from the above that no bit above * sve-max-vq is currently set. */ if (cpu->sve_max_vq != 0) { max_vq = cpu->sve_max_vq; vq_mask = MAKE_64BIT_MASK(0, max_vq); if (vq_init & ~vq_map & (1 << (max_vq - 1))) { error_setg(errp, "cannot disable sve%d", max_vq * 128); error_append_hint(errp, "The maximum vector length must be " "enabled, sve-max-vq=%d (%d bits)\n", max_vq, max_vq * 128); return; } /* Set all bits not explicitly set within sve-max-vq. */ vq_map |= ~vq_init & vq_mask; } /* * We should know what max-vq is now. Also, as we're done * manipulating sve-vq-map, we ensure any bits above max-vq * are clear, just in case anybody looks. */ assert(max_vq != 0); assert(vq_mask != 0); vq_map &= vq_mask; /* Ensure the set of lengths matches what is supported. */ tmp = vq_map ^ (vq_supported & vq_mask); if (tmp) { vq = 32 - clz32(tmp); if (vq_map & (1 << (vq - 1))) { if (cpu->sve_max_vq) { error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq); error_append_hint(errp, "This CPU does not support " "the vector length %d-bits.\n", vq * 128); error_append_hint(errp, "It may not be possible to use " "sve-max-vq with this CPU. Try " "using only sve properties.\n"); } else { error_setg(errp, "cannot enable sve%d", vq * 128); if (vq_supported) { error_append_hint(errp, "This CPU does not support " "the vector length %d-bits.\n", vq * 128); } else { error_append_hint(errp, "SVE not supported by KVM " "on this host\n"); } } return; } else { if (kvm_enabled()) { error_setg(errp, "cannot disable sve%d", vq * 128); error_append_hint(errp, "The KVM host requires all " "supported vector lengths smaller " "than %d bits to also be enabled.\n", max_vq * 128); return; } else { /* Ensure all required powers-of-two are enabled. */ tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map; if (tmp) { vq = 32 - clz32(tmp); error_setg(errp, "cannot disable sve%d", vq * 128); error_append_hint(errp, "sve%d is required as it " "is a power-of-two length smaller " "than the maximum, sve%d\n", vq * 128, max_vq * 128); return; } } } } /* * Now that we validated all our vector lengths, the only question * left to answer is if we even want SVE at all. */ if (!cpu_isar_feature(aa64_sve, cpu)) { error_setg(errp, "cannot enable sve%d", max_vq * 128); error_append_hint(errp, "SVE must be enabled to enable vector " "lengths.\n"); error_append_hint(errp, "Add sve=on to the CPU property list.\n"); return; } /* From now on sve_max_vq is the actual maximum supported length. */ cpu->sve_max_vq = max_vq; cpu->sve_vq.map = vq_map; } static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint32_t value; /* All vector lengths are disabled when SVE is off. */ if (!cpu_isar_feature(aa64_sve, cpu)) { value = 0; } else { value = cpu->sve_max_vq; } visit_type_uint32(v, name, &value, errp); } static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint32_t max_vq; if (!visit_type_uint32(v, name, &max_vq, errp)) { return; } if (kvm_enabled() && !kvm_arm_sve_supported()) { error_setg(errp, "cannot set sve-max-vq"); error_append_hint(errp, "SVE not supported by KVM on this host\n"); return; } if (max_vq == 0 || max_vq > ARM_MAX_VQ) { error_setg(errp, "unsupported SVE vector length"); error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n", ARM_MAX_VQ); return; } cpu->sve_max_vq = max_vq; } /* * Note that cpu_arm_{get,set}_vq cannot use the simpler * object_property_add_bool interface because they make use of the * contents of "name" to determine which bit on which to operate. */ static void cpu_arm_get_vq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); ARMVQMap *vq_map = opaque; uint32_t vq = atoi(&name[3]) / 128; bool sve = vq_map == &cpu->sve_vq; bool value; /* All vector lengths are disabled when feature is off. */ if (sve ? !cpu_isar_feature(aa64_sve, cpu) : !cpu_isar_feature(aa64_sme, cpu)) { value = false; } else { value = extract32(vq_map->map, vq - 1, 1); } visit_type_bool(v, name, &value, errp); } static void cpu_arm_set_vq(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMVQMap *vq_map = opaque; uint32_t vq = atoi(&name[3]) / 128; bool value; if (!visit_type_bool(v, name, &value, errp)) { return; } vq_map->map = deposit32(vq_map->map, vq - 1, 1, value); vq_map->init |= 1 << (vq - 1); } static bool cpu_arm_get_sve(Object *obj, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); return cpu_isar_feature(aa64_sve, cpu); } static void cpu_arm_set_sve(Object *obj, bool value, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint64_t t; if (value && kvm_enabled() && !kvm_arm_sve_supported()) { error_setg(errp, "'sve' feature not supported by KVM on this host"); return; } t = cpu->isar.id_aa64pfr0; t = FIELD_DP64(t, ID_AA64PFR0, SVE, value); cpu->isar.id_aa64pfr0 = t; } void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp) { uint32_t vq_map = cpu->sme_vq.map; uint32_t vq_init = cpu->sme_vq.init; uint32_t vq_supported = cpu->sme_vq.supported; uint32_t vq; if (vq_map == 0) { if (!cpu_isar_feature(aa64_sme, cpu)) { cpu->isar.id_aa64smfr0 = 0; return; } /* TODO: KVM will require limitations via SMCR_EL2. */ vq_map = vq_supported & ~vq_init; if (vq_map == 0) { vq = ctz32(vq_supported) + 1; error_setg(errp, "cannot disable sme%d", vq * 128); error_append_hint(errp, "All SME vector lengths are disabled.\n"); error_append_hint(errp, "With SME enabled, at least one " "vector length must be enabled.\n"); return; } } else { if (!cpu_isar_feature(aa64_sme, cpu)) { vq = 32 - clz32(vq_map); error_setg(errp, "cannot enable sme%d", vq * 128); error_append_hint(errp, "SME must be enabled to enable " "vector lengths.\n"); error_append_hint(errp, "Add sme=on to the CPU property list.\n"); return; } /* TODO: KVM will require limitations via SMCR_EL2. */ } cpu->sme_vq.map = vq_map; } static bool cpu_arm_get_sme(Object *obj, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); return cpu_isar_feature(aa64_sme, cpu); } static void cpu_arm_set_sme(Object *obj, bool value, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint64_t t; t = cpu->isar.id_aa64pfr1; t = FIELD_DP64(t, ID_AA64PFR1, SME, value); cpu->isar.id_aa64pfr1 = t; } static bool cpu_arm_get_sme_fa64(Object *obj, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); return cpu_isar_feature(aa64_sme, cpu) && cpu_isar_feature(aa64_sme_fa64, cpu); } static void cpu_arm_set_sme_fa64(Object *obj, bool value, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); uint64_t t; t = cpu->isar.id_aa64smfr0; t = FIELD_DP64(t, ID_AA64SMFR0, FA64, value); cpu->isar.id_aa64smfr0 = t; } #ifdef CONFIG_USER_ONLY /* Mirror linux /proc/sys/abi/{sve,sme}_default_vector_length. */ static void cpu_arm_set_default_vec_len(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { uint32_t *ptr_default_vq = opaque; int32_t default_len, default_vq, remainder; if (!visit_type_int32(v, name, &default_len, errp)) { return; } /* Undocumented, but the kernel allows -1 to indicate "maximum". */ if (default_len == -1) { *ptr_default_vq = ARM_MAX_VQ; return; } default_vq = default_len / 16; remainder = default_len % 16; /* * Note that the 512 max comes from include/uapi/asm/sve_context.h * and is the maximum architectural width of ZCR_ELx.LEN. */ if (remainder || default_vq < 1 || default_vq > 512) { ARMCPU *cpu = ARM_CPU(obj); const char *which = (ptr_default_vq == &cpu->sve_default_vq ? "sve" : "sme"); error_setg(errp, "cannot set %s-default-vector-length", which); if (remainder) { error_append_hint(errp, "Vector length not a multiple of 16\n"); } else if (default_vq < 1) { error_append_hint(errp, "Vector length smaller than 16\n"); } else { error_append_hint(errp, "Vector length larger than %d\n", 512 * 16); } return; } *ptr_default_vq = default_vq; } static void cpu_arm_get_default_vec_len(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { uint32_t *ptr_default_vq = opaque; int32_t value = *ptr_default_vq * 16; visit_type_int32(v, name, &value, errp); } #endif static void aarch64_add_sve_properties(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); uint32_t vq; object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve); for (vq = 1; vq <= ARM_MAX_VQ; ++vq) { char name[8]; sprintf(name, "sve%d", vq * 128); object_property_add(obj, name, "bool", cpu_arm_get_vq, cpu_arm_set_vq, NULL, &cpu->sve_vq); } #ifdef CONFIG_USER_ONLY /* Mirror linux /proc/sys/abi/sve_default_vector_length. */ object_property_add(obj, "sve-default-vector-length", "int32", cpu_arm_get_default_vec_len, cpu_arm_set_default_vec_len, NULL, &cpu->sve_default_vq); #endif } static void aarch64_add_sme_properties(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); uint32_t vq; object_property_add_bool(obj, "sme", cpu_arm_get_sme, cpu_arm_set_sme); object_property_add_bool(obj, "sme_fa64", cpu_arm_get_sme_fa64, cpu_arm_set_sme_fa64); for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) { char name[8]; sprintf(name, "sme%d", vq * 128); object_property_add(obj, name, "bool", cpu_arm_get_vq, cpu_arm_set_vq, NULL, &cpu->sme_vq); } #ifdef CONFIG_USER_ONLY /* Mirror linux /proc/sys/abi/sme_default_vector_length. */ object_property_add(obj, "sme-default-vector-length", "int32", cpu_arm_get_default_vec_len, cpu_arm_set_default_vec_len, NULL, &cpu->sme_default_vq); #endif } void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { int arch_val = 0, impdef_val = 0; uint64_t t; /* Exit early if PAuth is enabled, and fall through to disable it */ if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) { if (!cpu_isar_feature(aa64_pauth, cpu)) { error_setg(errp, "'pauth' feature not supported by %s on this host", kvm_enabled() ? "KVM" : "hvf"); } return; } /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */ if (cpu->prop_pauth) { if (cpu->prop_pauth_impdef) { impdef_val = 1; } else { arch_val = 1; } } else if (cpu->prop_pauth_impdef) { error_setg(errp, "cannot enable pauth-impdef without pauth"); error_append_hint(errp, "Add pauth=on to the CPU property list.\n"); } t = cpu->isar.id_aa64isar1; t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val); t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val); t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val); t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val); cpu->isar.id_aa64isar1 = t; } static Property arm_cpu_pauth_property = DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true); static Property arm_cpu_pauth_impdef_property = DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false); static void aarch64_add_pauth_properties(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); /* Default to PAUTH on, with the architected algorithm on TCG. */ qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property); if (kvm_enabled() || hvf_enabled()) { /* * Mirror PAuth support from the probed sysregs back into the * property for KVM or hvf. Is it just a bit backward? Yes it is! * Note that prop_pauth is true whether the host CPU supports the * architected QARMA5 algorithm or the IMPDEF one. We don't * provide the separate pauth-impdef property for KVM or hvf, * only for TCG. */ cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu); } else { qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property); } } static Property arm_cpu_lpa2_property = DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true); void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { uint64_t t; /* * We only install the property for tcg -cpu max; this is the * only situation in which the cpu field can be true. */ if (!cpu->prop_lpa2) { return; } t = cpu->isar.id_aa64mmfr0; t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2); /* 16k pages w/ LPA2 */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1); /* 4k pages w/ LPA2 */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3); /* 4k stage2 w/ LPA2 */ cpu->isar.id_aa64mmfr0 = t; } static void aarch64_a57_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a57"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; cpu->midr = 0x411fd070; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034070; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; cpu->ctr = 0x8444c004; cpu->reset_sctlr = 0x00c50838; cpu->isar.id_pfr0 = 0x00000131; cpu->isar.id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->isar.id_mmfr0 = 0x10101105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_isar6 = 0; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64mmfr0 = 0x00001124; cpu->isar.dbgdidr = 0x3516d000; cpu->isar.dbgdevid = 0x01110f13; cpu->isar.dbgdevid1 = 0x2; cpu->isar.reset_pmcr_el0 = 0x41013000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; define_cortex_a72_a57_a53_cp_reginfo(cpu); } static void aarch64_a53_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a53"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; cpu->midr = 0x410fd034; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034070; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; cpu->ctr = 0x84448004; /* L1Ip = VIPT */ cpu->reset_sctlr = 0x00c50838; cpu->isar.id_pfr0 = 0x00000131; cpu->isar.id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->isar.id_mmfr0 = 0x10101105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_isar6 = 0; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ cpu->isar.dbgdidr = 0x3516d000; cpu->isar.dbgdevid = 0x00110f13; cpu->isar.dbgdevid1 = 0x1; cpu->isar.reset_pmcr_el0 = 0x41033000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; define_cortex_a72_a57_a53_cp_reginfo(cpu); } static void aarch64_a72_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a72"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->midr = 0x410fd083; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034080; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; cpu->ctr = 0x8444c004; cpu->reset_sctlr = 0x00c50838; cpu->isar.id_pfr0 = 0x00000131; cpu->isar.id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64mmfr0 = 0x00001124; cpu->isar.dbgdidr = 0x3516d000; cpu->isar.dbgdevid = 0x01110f13; cpu->isar.dbgdevid1 = 0x2; cpu->isar.reset_pmcr_el0 = 0x41023000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; define_cortex_a72_a57_a53_cp_reginfo(cpu); } static void aarch64_a76_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a76"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); /* Ordered by B2.4 AArch64 registers by functional group */ cpu->clidr = 0x82000023; cpu->ctr = 0x8444C004; cpu->dcz_blocksize = 4; cpu->isar.id_aa64dfr0 = 0x0000000010305408ull; cpu->isar.id_aa64isar0 = 0x0000100010211120ull; cpu->isar.id_aa64isar1 = 0x0000000000100001ull; cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull; cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull; cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull; cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */ cpu->isar.id_aa64pfr1 = 0x0000000000000010ull; cpu->id_afr0 = 0x00000000; cpu->isar.id_dfr0 = 0x04010088; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00010142; cpu->isar.id_isar5 = 0x01011121; cpu->isar.id_isar6 = 0x00000010; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02122211; cpu->isar.id_mmfr4 = 0x00021110; cpu->isar.id_pfr0 = 0x10010131; cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */ cpu->isar.id_pfr2 = 0x00000011; cpu->midr = 0x414fd0b1; /* r4p1 */ cpu->revidr = 0; /* From B2.18 CCSIDR_EL1 */ cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */ cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */ cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */ /* From B2.93 SCTLR_EL3 */ cpu->reset_sctlr = 0x30c50838; /* From B4.23 ICH_VTR_EL2 */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; /* From B5.1 AdvSIMD AArch64 register summary */ cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x13211111; cpu->isar.mvfr2 = 0x00000043; /* From D5.1 AArch64 PMU register summary */ cpu->isar.reset_pmcr_el0 = 0x410b3000; } static void aarch64_a64fx_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,a64fx"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->midr = 0x461f0010; cpu->revidr = 0x00000000; cpu->ctr = 0x86668006; cpu->reset_sctlr = 0x30000180; cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */ cpu->isar.id_aa64pfr1 = 0x0000000000000000; cpu->isar.id_aa64dfr0 = 0x0000000010305408; cpu->isar.id_aa64dfr1 = 0x0000000000000000; cpu->id_aa64afr0 = 0x0000000000000000; cpu->id_aa64afr1 = 0x0000000000000000; cpu->isar.id_aa64mmfr0 = 0x0000000000001122; cpu->isar.id_aa64mmfr1 = 0x0000000011212100; cpu->isar.id_aa64mmfr2 = 0x0000000000001011; cpu->isar.id_aa64isar0 = 0x0000000010211120; cpu->isar.id_aa64isar1 = 0x0000000000010001; cpu->isar.id_aa64zfr0 = 0x0000000000000000; cpu->clidr = 0x0000000080000023; cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */ cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */ cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */ cpu->dcz_blocksize = 6; /* 256 bytes */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; /* The A64FX supports only 128, 256 and 512 bit vector lengths */ aarch64_add_sve_properties(obj); cpu->sve_vq.supported = (1 << 0) /* 128bit */ | (1 << 1) /* 256bit */ | (1 << 3); /* 512bit */ cpu->isar.reset_pmcr_el0 = 0x46014040; /* TODO: Add A64FX specific HPC extension registers */ } static void aarch64_neoverse_n1_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,neoverse-n1"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); /* Ordered by B2.4 AArch64 registers by functional group */ cpu->clidr = 0x82000023; cpu->ctr = 0x8444c004; cpu->dcz_blocksize = 4; cpu->isar.id_aa64dfr0 = 0x0000000110305408ull; cpu->isar.id_aa64isar0 = 0x0000100010211120ull; cpu->isar.id_aa64isar1 = 0x0000000000100001ull; cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull; cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull; cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull; cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */ cpu->isar.id_aa64pfr1 = 0x0000000000000020ull; cpu->id_afr0 = 0x00000000; cpu->isar.id_dfr0 = 0x04010088; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00010142; cpu->isar.id_isar5 = 0x01011121; cpu->isar.id_isar6 = 0x00000010; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02122211; cpu->isar.id_mmfr4 = 0x00021110; cpu->isar.id_pfr0 = 0x10010131; cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */ cpu->isar.id_pfr2 = 0x00000011; cpu->midr = 0x414fd0c1; /* r4p1 */ cpu->revidr = 0; /* From B2.23 CCSIDR_EL1 */ cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */ cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */ cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */ /* From B2.98 SCTLR_EL3 */ cpu->reset_sctlr = 0x30c50838; /* From B4.23 ICH_VTR_EL2 */ cpu->gic_num_lrs = 4; cpu->gic_vpribits = 5; cpu->gic_vprebits = 5; cpu->gic_pribits = 5; /* From B5.1 AdvSIMD AArch64 register summary */ cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x13211111; cpu->isar.mvfr2 = 0x00000043; /* From D5.1 AArch64 PMU register summary */ cpu->isar.reset_pmcr_el0 = 0x410c3000; } static void aarch64_host_initfn(Object *obj) { #if defined(CONFIG_KVM) ARMCPU *cpu = ARM_CPU(obj); kvm_arm_set_cpu_features_from_host(cpu); if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { aarch64_add_sve_properties(obj); aarch64_add_pauth_properties(obj); } #elif defined(CONFIG_HVF) ARMCPU *cpu = ARM_CPU(obj); hvf_arm_set_cpu_features_from_host(cpu); aarch64_add_pauth_properties(obj); #else g_assert_not_reached(); #endif } /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); * otherwise, a CPU with as many features enabled as our emulation supports. * The version of '-cpu max' for qemu-system-arm is defined in cpu.c; * this only needs to handle 64 bits. */ static void aarch64_max_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); uint64_t t; uint32_t u; if (kvm_enabled() || hvf_enabled()) { /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */ aarch64_host_initfn(obj); return; } /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */ aarch64_a57_initfn(obj); /* * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real * one and try to apply errata workarounds or use impdef features we * don't provide. * An IMPLEMENTER field of 0 means "reserved for software use"; * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers * to see which features are present"; * the VARIANT, PARTNUM and REVISION fields are all implementation * defined and we choose to define PARTNUM just in case guest * code needs to distinguish this QEMU CPU from other software * implementations, though this shouldn't be needed. */ t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0); t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf); t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q'); t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0); t = FIELD_DP64(t, MIDR_EL1, REVISION, 0); cpu->midr = t; /* * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS} * are zero. */ u = cpu->clidr; u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0); u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0); cpu->clidr = u; t = cpu->isar.id_aa64isar0; t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* FEAT_PMULL */ t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); /* FEAT_SHA1 */ t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* FEAT_SHA512 */ t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); /* FEAT_LSE */ t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); /* FEAT_RDM */ t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); /* FEAT_SHA3 */ t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); /* FEAT_SM3 */ t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); /* FEAT_SM4 */ t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); /* FEAT_DotProd */ t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); /* FEAT_FHM */ t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* FEAT_FlagM2 */ t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */ t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); /* FEAT_RNG */ cpu->isar.id_aa64isar0 = t; t = cpu->isar.id_aa64isar1; t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); /* FEAT_DPB2 */ t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); /* FEAT_JSCVT */ t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); /* FEAT_FCMA */ t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* FEAT_LRCPC2 */ t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); /* FEAT_FRINTTS */ t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); /* FEAT_SB */ t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); /* FEAT_SPECRES */ t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1); /* FEAT_BF16 */ t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1); /* FEAT_DGH */ t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1); /* FEAT_I8MM */ cpu->isar.id_aa64isar1 = t; t = cpu->isar.id_aa64pfr0; t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); /* FEAT_FP16 */ t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); /* FEAT_FP16 */ t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2); /* FEAT_RASv1p1 + FEAT_DoubleFault */ t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); /* FEAT_SEL2 */ t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); /* FEAT_DIT */ t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2); /* FEAT_CSV2_2 */ t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1); /* FEAT_CSV3 */ cpu->isar.id_aa64pfr0 = t; t = cpu->isar.id_aa64pfr1; t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); /* FEAT_BTI */ t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); /* FEAT_SSBS2 */ /* * Begin with full support for MTE. This will be downgraded to MTE=0 * during realize if the board provides no tag memory, much like * we do for EL2 with the virtualization=on property. */ t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3); /* FEAT_MTE3 */ t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0); /* FEAT_RASv1p1 + FEAT_DoubleFault */ t = FIELD_DP64(t, ID_AA64PFR1, SME, 1); /* FEAT_SME */ t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */ cpu->isar.id_aa64pfr1 = t; t = cpu->isar.id_aa64mmfr0; t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1); /* 16k pages supported */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */ t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2); /* 4k stage2 supported */ cpu->isar.id_aa64mmfr0 = t; t = cpu->isar.id_aa64mmfr1; t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */ t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); /* FEAT_VHE */ t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* FEAT_HPDS */ t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); /* FEAT_LOR */ t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* FEAT_PAN2 */ t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* FEAT_XNX */ t = FIELD_DP64(t, ID_AA64MMFR1, ETS, 1); /* FEAT_ETS */ t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1); /* FEAT_HCX */ cpu->isar.id_aa64mmfr1 = t; t = cpu->isar.id_aa64mmfr2; t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* FEAT_TTCNP */ t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); /* FEAT_UAO */ t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1); /* FEAT_IESB */ t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1); /* FEAT_LVA */ t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* FEAT_TTST */ t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1); /* FEAT_IDST */ t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1); /* FEAT_S2FWB */ t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1); /* FEAT_TTL */ t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2); /* FEAT_BBM at level 2 */ cpu->isar.id_aa64mmfr2 = t; t = cpu->isar.id_aa64zfr0; t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1); t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* FEAT_SVE_PMULL128 */ t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1); /* FEAT_SVE_BitPerm */ t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1); /* FEAT_BF16 */ t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1); /* FEAT_SVE_SHA3 */ t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1); /* FEAT_SVE_SM4 */ t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1); /* FEAT_I8MM */ t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1); /* FEAT_F32MM */ t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1); /* FEAT_F64MM */ cpu->isar.id_aa64zfr0 = t; t = cpu->isar.id_aa64dfr0; t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9); /* FEAT_Debugv8p4 */ t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 6); /* FEAT_PMUv3p5 */ cpu->isar.id_aa64dfr0 = t; t = cpu->isar.id_aa64smfr0; t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1); /* FEAT_SME */ t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1); /* FEAT_SME */ t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1); /* FEAT_SME */ t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf); /* FEAT_SME */ t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1); /* FEAT_SME_F64F64 */ t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */ t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1); /* FEAT_SME_FA64 */ cpu->isar.id_aa64smfr0 = t; /* Replicate the same data to the 32-bit id registers. */ aa32_max_features(cpu); #ifdef CONFIG_USER_ONLY /* * For usermode -cpu max we can use a larger and more efficient DCZ * blocksize since we don't have to follow what the hardware does. */ cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ cpu->dcz_blocksize = 7; /* 512 bytes */ #endif cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ); cpu->sme_vq.supported = SVE_VQ_POW2_MAP; aarch64_add_pauth_properties(obj); aarch64_add_sve_properties(obj); aarch64_add_sme_properties(obj); object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq, cpu_max_set_sve_max_vq, NULL, NULL); qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property); } static const ARMCPUInfo aarch64_cpus[] = { { .name = "cortex-a35", .initfn = aarch64_a35_initfn }, { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, { .name = "cortex-a76", .initfn = aarch64_a76_initfn }, { .name = "a64fx", .initfn = aarch64_a64fx_initfn }, { .name = "neoverse-n1", .initfn = aarch64_neoverse_n1_initfn }, { .name = "max", .initfn = aarch64_max_initfn }, #if defined(CONFIG_KVM) || defined(CONFIG_HVF) { .name = "host", .initfn = aarch64_host_initfn }, #endif }; static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); } static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); /* At this time, this property is only allowed if KVM is enabled. This * restriction allows us to avoid fixing up functionality that assumes a * uniform execution state like do_interrupt. */ if (value == false) { if (!kvm_enabled() || !kvm_arm_aarch32_supported()) { error_setg(errp, "'aarch64' feature cannot be disabled " "unless KVM is enabled and 32-bit EL1 " "is supported"); return; } unset_feature(&cpu->env, ARM_FEATURE_AARCH64); } else { set_feature(&cpu->env, ARM_FEATURE_AARCH64); } } static void aarch64_cpu_finalizefn(Object *obj) { } static gchar *aarch64_gdb_arch_name(CPUState *cs) { return g_strdup("aarch64"); } static void aarch64_cpu_class_init(ObjectClass *oc, void *data) { CPUClass *cc = CPU_CLASS(oc); cc->gdb_read_register = aarch64_cpu_gdb_read_register; cc->gdb_write_register = aarch64_cpu_gdb_write_register; cc->gdb_num_core_regs = 34; cc->gdb_core_xml_file = "aarch64-core.xml"; cc->gdb_arch_name = aarch64_gdb_arch_name; object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64, aarch64_cpu_set_aarch64); object_class_property_set_description(oc, "aarch64", "Set on/off to enable/disable aarch64 " "execution state "); } static void aarch64_cpu_instance_init(Object *obj) { ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); acc->info->initfn(obj); arm_cpu_post_init(obj); } static void cpu_register_class_init(ObjectClass *oc, void *data) { ARMCPUClass *acc = ARM_CPU_CLASS(oc); acc->info = data; } void aarch64_cpu_register(const ARMCPUInfo *info) { TypeInfo type_info = { .parent = TYPE_AARCH64_CPU, .instance_size = sizeof(ARMCPU), .instance_init = aarch64_cpu_instance_init, .class_size = sizeof(ARMCPUClass), .class_init = info->class_init ?: cpu_register_class_init, .class_data = (void *)info, }; type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); type_register(&type_info); g_free((void *)type_info.name); } static const TypeInfo aarch64_cpu_type_info = { .name = TYPE_AARCH64_CPU, .parent = TYPE_ARM_CPU, .instance_size = sizeof(ARMCPU), .instance_finalize = aarch64_cpu_finalizefn, .abstract = true, .class_size = sizeof(AArch64CPUClass), .class_init = aarch64_cpu_class_init, }; static void aarch64_cpu_register_types(void) { size_t i; type_register_static(&aarch64_cpu_type_info); for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) { aarch64_cpu_register(&aarch64_cpus[i]); } } type_init(aarch64_cpu_register_types)