/* * ARM virtual CPU header * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #ifndef ARM_CPU_H #define ARM_CPU_H #include "kvm-consts.h" #include "hw/registerfields.h" #include "cpu-qom.h" #include "exec/cpu-defs.h" #include "qapi/qapi-types-common.h" /* ARM processors have a weak memory model */ #define TCG_GUEST_DEFAULT_MO (0) #ifdef TARGET_AARCH64 #define KVM_HAVE_MCE_INJECTION 1 #endif #define EXCP_UDEF 1 /* undefined instruction */ #define EXCP_SWI 2 /* software interrupt */ #define EXCP_PREFETCH_ABORT 3 #define EXCP_DATA_ABORT 4 #define EXCP_IRQ 5 #define EXCP_FIQ 6 #define EXCP_BKPT 7 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ #define EXCP_HVC 11 /* HyperVisor Call */ #define EXCP_HYP_TRAP 12 #define EXCP_SMC 13 /* Secure Monitor Call */ #define EXCP_VIRQ 14 #define EXCP_VFIQ 15 #define EXCP_SEMIHOST 16 /* semihosting call */ #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */ /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ #define ARMV7M_EXCP_RESET 1 #define ARMV7M_EXCP_NMI 2 #define ARMV7M_EXCP_HARD 3 #define ARMV7M_EXCP_MEM 4 #define ARMV7M_EXCP_BUS 5 #define ARMV7M_EXCP_USAGE 6 #define ARMV7M_EXCP_SECURE 7 #define ARMV7M_EXCP_SVC 11 #define ARMV7M_EXCP_DEBUG 12 #define ARMV7M_EXCP_PENDSV 14 #define ARMV7M_EXCP_SYSTICK 15 /* For M profile, some registers are banked secure vs non-secure; * these are represented as a 2-element array where the first element * is the non-secure copy and the second is the secure copy. * When the CPU does not have implement the security extension then * only the first element is used. * This means that the copy for the current security state can be * accessed via env->registerfield[env->v7m.secure] (whether the security * extension is implemented or not). */ enum { M_REG_NS = 0, M_REG_S = 1, M_REG_NUM_BANKS = 2, }; /* ARM-specific interrupt pending bits. */ #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 /* The usual mapping for an AArch64 system register to its AArch32 * counterpart is for the 32 bit world to have access to the lower * half only (with writes leaving the upper half untouched). It's * therefore useful to be able to pass TCG the offset of the least * significant half of a uint64_t struct member. */ #ifdef HOST_WORDS_BIGENDIAN #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) #define offsetofhigh32(S, M) offsetof(S, M) #else #define offsetoflow32(S, M) offsetof(S, M) #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) #endif /* Meanings of the ARMCPU object's four inbound GPIO lines */ #define ARM_CPU_IRQ 0 #define ARM_CPU_FIQ 1 #define ARM_CPU_VIRQ 2 #define ARM_CPU_VFIQ 3 /* ARM-specific extra insn start words: * 1: Conditional execution bits * 2: Partial exception syndrome for data aborts */ #define TARGET_INSN_START_EXTRA_WORDS 2 /* The 2nd extra word holding syndrome info for data aborts does not use * the upper 6 bits nor the lower 14 bits. We mask and shift it down to * help the sleb128 encoder do a better job. * When restoring the CPU state, we shift it back up. */ #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) #define ARM_INSN_START_WORD2_SHIFT 14 /* We currently assume float and double are IEEE single and double precision respectively. Doing runtime conversions is tricky because VFP registers may contain integer values (eg. as the result of a FTOSI instruction). s<2n> maps to the least significant half of d s<2n+1> maps to the most significant half of d */ /** * DynamicGDBXMLInfo: * @desc: Contains the XML descriptions. * @num: Number of the registers in this XML seen by GDB. * @data: A union with data specific to the set of registers * @cpregs_keys: Array that contains the corresponding Key of * a given cpreg with the same order of the cpreg * in the XML description. */ typedef struct DynamicGDBXMLInfo { char *desc; int num; union { struct { uint32_t *keys; } cpregs; } data; } DynamicGDBXMLInfo; /* CPU state for each instance of a generic timer (in cp15 c14) */ typedef struct ARMGenericTimer { uint64_t cval; /* Timer CompareValue register */ uint64_t ctl; /* Timer Control register */ } ARMGenericTimer; #define GTIMER_PHYS 0 #define GTIMER_VIRT 1 #define GTIMER_HYP 2 #define GTIMER_SEC 3 #define GTIMER_HYPVIRT 4 #define NUM_GTIMERS 5 typedef struct { uint64_t raw_tcr; uint32_t mask; uint32_t base_mask; } TCR; #define VTCR_NSW (1u << 29) #define VTCR_NSA (1u << 30) #define VSTCR_SW VTCR_NSW #define VSTCR_SA VTCR_NSA /* Define a maximum sized vector register. * For 32-bit, this is a 128-bit NEON/AdvSIMD register. * For 64-bit, this is a 2048-bit SVE register. * * Note that the mapping between S, D, and Q views of the register bank * differs between AArch64 and AArch32. * In AArch32: * Qn = regs[n].d[1]:regs[n].d[0] * Dn = regs[n / 2].d[n & 1] * Sn = regs[n / 4].d[n % 4 / 2], * bits 31..0 for even n, and bits 63..32 for odd n * (and regs[16] to regs[31] are inaccessible) * In AArch64: * Zn = regs[n].d[*] * Qn = regs[n].d[1]:regs[n].d[0] * Dn = regs[n].d[0] * Sn = regs[n].d[0] bits 31..0 * Hn = regs[n].d[0] bits 15..0 * * This corresponds to the architecturally defined mapping between * the two execution states, and means we do not need to explicitly * map these registers when changing states. * * Align the data for use with TCG host vector operations. */ #ifdef TARGET_AARCH64 # define ARM_MAX_VQ 16 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); #else # define ARM_MAX_VQ 1 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { } static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { } #endif typedef struct ARMVectorReg { uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); } ARMVectorReg; #ifdef TARGET_AARCH64 /* In AArch32 mode, predicate registers do not exist at all. */ typedef struct ARMPredicateReg { uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); } ARMPredicateReg; /* In AArch32 mode, PAC keys do not exist at all. */ typedef struct ARMPACKey { uint64_t lo, hi; } ARMPACKey; #endif /* See the commentary above the TBFLAG field definitions. */ typedef struct CPUARMTBFlags { uint32_t flags; target_ulong flags2; } CPUARMTBFlags; typedef struct CPUARMState { /* Regs for current mode. */ uint32_t regs[16]; /* 32/64 switch only happens when taking and returning from * exceptions so the overlap semantics are taken care of then * instead of having a complicated union. */ /* Regs for A64 mode. */ uint64_t xregs[32]; uint64_t pc; /* PSTATE isn't an architectural register for ARMv8. However, it is * convenient for us to assemble the underlying state into a 32 bit format * identical to the architectural format used for the SPSR. (This is also * what the Linux kernel's 'pstate' field in signal handlers and KVM's * 'pstate' register are.) Of the PSTATE bits: * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same * semantics as for AArch32, as described in the comments on each field) * nRW (also known as M[4]) is kept, inverted, in env->aarch64 * DAIF (exception masks) are kept in env->daif * BTYPE is kept in env->btype * all other bits are stored in their correct places in env->pstate */ uint32_t pstate; uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ /* Cached TBFLAGS state. See below for which bits are included. */ CPUARMTBFlags hflags; /* Frequently accessed CPSR bits are stored separately for efficiency. This contains all the other bits. Use cpsr_{read,write} to access the whole CPSR. */ uint32_t uncached_cpsr; uint32_t spsr; /* Banked registers. */ uint64_t banked_spsr[8]; uint32_t banked_r13[8]; uint32_t banked_r14[8]; /* These hold r8-r12. */ uint32_t usr_regs[5]; uint32_t fiq_regs[5]; /* cpsr flag cache for faster execution */ uint32_t CF; /* 0 or 1 */ uint32_t VF; /* V is the bit 31. All other bits are undefined */ uint32_t NF; /* N is bit 31. All other bits are undefined. */ uint32_t ZF; /* Z set if zero. */ uint32_t QF; /* 0 or 1 */ uint32_t GE; /* cpsr[19:16] */ uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ uint32_t btype; /* BTI branch type. spsr[11:10]. */ uint64_t daif; /* exception masks, in the bits they are in PSTATE */ uint64_t elr_el[4]; /* AArch64 exception link regs */ uint64_t sp_el[4]; /* AArch64 banked stack pointers */ /* System control coprocessor (cp15) */ struct { uint32_t c0_cpuid; union { /* Cache size selection */ struct { uint64_t _unused_csselr0; uint64_t csselr_ns; uint64_t _unused_csselr1; uint64_t csselr_s; }; uint64_t csselr_el[4]; }; union { /* System control register. */ struct { uint64_t _unused_sctlr; uint64_t sctlr_ns; uint64_t hsctlr; uint64_t sctlr_s; }; uint64_t sctlr_el[4]; }; uint64_t cpacr_el1; /* Architectural feature access control register */ uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ uint64_t sder; /* Secure debug enable register. */ uint32_t nsacr; /* Non-secure access control register. */ union { /* MMU translation table base 0. */ struct { uint64_t _unused_ttbr0_0; uint64_t ttbr0_ns; uint64_t _unused_ttbr0_1; uint64_t ttbr0_s; }; uint64_t ttbr0_el[4]; }; union { /* MMU translation table base 1. */ struct { uint64_t _unused_ttbr1_0; uint64_t ttbr1_ns; uint64_t _unused_ttbr1_1; uint64_t ttbr1_s; }; uint64_t ttbr1_el[4]; }; uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */ /* MMU translation table base control. */ TCR tcr_el[4]; TCR vtcr_el2; /* Virtualization Translation Control. */ TCR vstcr_el2; /* Secure Virtualization Translation Control. */ uint32_t c2_data; /* MPU data cacheable bits. */ uint32_t c2_insn; /* MPU instruction cacheable bits. */ union { /* MMU domain access control register * MPU write buffer control. */ struct { uint64_t dacr_ns; uint64_t dacr_s; }; struct { uint64_t dacr32_el2; }; }; uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ uint64_t hcr_el2; /* Hypervisor configuration register */ uint64_t scr_el3; /* Secure configuration register. */ union { /* Fault status registers. */ struct { uint64_t ifsr_ns; uint64_t ifsr_s; }; struct { uint64_t ifsr32_el2; }; }; union { struct { uint64_t _unused_dfsr; uint64_t dfsr_ns; uint64_t hsr; uint64_t dfsr_s; }; uint64_t esr_el[4]; }; uint32_t c6_region[8]; /* MPU base/size registers. */ union { /* Fault address registers. */ struct { uint64_t _unused_far0; #ifdef HOST_WORDS_BIGENDIAN uint32_t ifar_ns; uint32_t dfar_ns; uint32_t ifar_s; uint32_t dfar_s; #else uint32_t dfar_ns; uint32_t ifar_ns; uint32_t dfar_s; uint32_t ifar_s; #endif uint64_t _unused_far3; }; uint64_t far_el[4]; }; uint64_t hpfar_el2; uint64_t hstr_el2; union { /* Translation result. */ struct { uint64_t _unused_par_0; uint64_t par_ns; uint64_t _unused_par_1; uint64_t par_s; }; uint64_t par_el[4]; }; uint32_t c9_insn; /* Cache lockdown registers. */ uint32_t c9_data; uint64_t c9_pmcr; /* performance monitor control register */ uint64_t c9_pmcnten; /* perf monitor counter enables */ uint64_t c9_pmovsr; /* perf monitor overflow status */ uint64_t c9_pmuserenr; /* perf monitor user enable */ uint64_t c9_pmselr; /* perf monitor counter selection register */ uint64_t c9_pminten; /* perf monitor interrupt enables */ union { /* Memory attribute redirection */ struct { #ifdef HOST_WORDS_BIGENDIAN uint64_t _unused_mair_0; uint32_t mair1_ns; uint32_t mair0_ns; uint64_t _unused_mair_1; uint32_t mair1_s; uint32_t mair0_s; #else uint64_t _unused_mair_0; uint32_t mair0_ns; uint32_t mair1_ns; uint64_t _unused_mair_1; uint32_t mair0_s; uint32_t mair1_s; #endif }; uint64_t mair_el[4]; }; union { /* vector base address register */ struct { uint64_t _unused_vbar; uint64_t vbar_ns; uint64_t hvbar; uint64_t vbar_s; }; uint64_t vbar_el[4]; }; uint32_t mvbar; /* (monitor) vector base address register */ struct { /* FCSE PID. */ uint32_t fcseidr_ns; uint32_t fcseidr_s; }; union { /* Context ID. */ struct { uint64_t _unused_contextidr_0; uint64_t contextidr_ns; uint64_t _unused_contextidr_1; uint64_t contextidr_s; }; uint64_t contextidr_el[4]; }; union { /* User RW Thread register. */ struct { uint64_t tpidrurw_ns; uint64_t tpidrprw_ns; uint64_t htpidr; uint64_t _tpidr_el3; }; uint64_t tpidr_el[4]; }; /* The secure banks of these registers don't map anywhere */ uint64_t tpidrurw_s; uint64_t tpidrprw_s; uint64_t tpidruro_s; union { /* User RO Thread register. */ uint64_t tpidruro_ns; uint64_t tpidrro_el[1]; }; uint64_t c14_cntfrq; /* Counter Frequency register */ uint64_t c14_cntkctl; /* Timer Control register */ uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ uint64_t cntvoff_el2; /* Counter Virtual Offset register */ ARMGenericTimer c14_timer[NUM_GTIMERS]; uint32_t c15_cpar; /* XScale Coprocessor Access Register */ uint32_t c15_ticonfig; /* TI925T configuration byte. */ uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ uint32_t c15_threadid; /* TI debugger thread-ID. */ uint32_t c15_config_base_address; /* SCU base address. */ uint32_t c15_diagnostic; /* diagnostic register */ uint32_t c15_power_diagnostic; uint32_t c15_power_control; /* power control */ uint64_t dbgbvr[16]; /* breakpoint value registers */ uint64_t dbgbcr[16]; /* breakpoint control registers */ uint64_t dbgwvr[16]; /* watchpoint value registers */ uint64_t dbgwcr[16]; /* watchpoint control registers */ uint64_t mdscr_el1; uint64_t oslsr_el1; /* OS Lock Status */ uint64_t mdcr_el2; uint64_t mdcr_el3; /* Stores the architectural value of the counter *the last time it was * updated* by pmccntr_op_start. Accesses should always be surrounded * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest * architecturally-correct value is being read/set. */ uint64_t c15_ccnt; /* Stores the delta between the architectural value and the underlying * cycle count during normal operation. It is used to update c15_ccnt * to be the correct architectural value before accesses. During * accesses, c15_ccnt_delta contains the underlying count being used * for the access, after which it reverts to the delta value in * pmccntr_op_finish. */ uint64_t c15_ccnt_delta; uint64_t c14_pmevcntr[31]; uint64_t c14_pmevcntr_delta[31]; uint64_t c14_pmevtyper[31]; uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ uint64_t vpidr_el2; /* Virtualization Processor ID Register */ uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ uint64_t gcr_el1; uint64_t rgsr_el1; } cp15; struct { /* M profile has up to 4 stack pointers: * a Main Stack Pointer and a Process Stack Pointer for each * of the Secure and Non-Secure states. (If the CPU doesn't support * the security extension then it has only two SPs.) * In QEMU we always store the currently active SP in regs[13], * and the non-active SP for the current security state in * v7m.other_sp. The stack pointers for the inactive security state * are stored in other_ss_msp and other_ss_psp. * switch_v7m_security_state() is responsible for rearranging them * when we change security state. */ uint32_t other_sp; uint32_t other_ss_msp; uint32_t other_ss_psp; uint32_t vecbase[M_REG_NUM_BANKS]; uint32_t basepri[M_REG_NUM_BANKS]; uint32_t control[M_REG_NUM_BANKS]; uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ uint32_t hfsr; /* HardFault Status */ uint32_t dfsr; /* Debug Fault Status Register */ uint32_t sfsr; /* Secure Fault Status Register */ uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ uint32_t bfar; /* BusFault Address */ uint32_t sfar; /* Secure Fault Address Register */ unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ int exception; uint32_t primask[M_REG_NUM_BANKS]; uint32_t faultmask[M_REG_NUM_BANKS]; uint32_t aircr; /* only holds r/w state if security extn implemented */ uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ uint32_t csselr[M_REG_NUM_BANKS]; uint32_t scr[M_REG_NUM_BANKS]; uint32_t msplim[M_REG_NUM_BANKS]; uint32_t psplim[M_REG_NUM_BANKS]; uint32_t fpcar[M_REG_NUM_BANKS]; uint32_t fpccr[M_REG_NUM_BANKS]; uint32_t fpdscr[M_REG_NUM_BANKS]; uint32_t cpacr[M_REG_NUM_BANKS]; uint32_t nsacr; uint32_t ltpsize; uint32_t vpr; } v7m; /* Information associated with an exception about to be taken: * code which raises an exception must set cs->exception_index and * the relevant parts of this structure; the cpu_do_interrupt function * will then set the guest-visible registers as part of the exception * entry process. */ struct { uint32_t syndrome; /* AArch64 format syndrome register */ uint32_t fsr; /* AArch32 format fault status register info */ uint64_t vaddress; /* virtual addr associated with exception, if any */ uint32_t target_el; /* EL the exception should be targeted for */ /* If we implement EL2 we will also need to store information * about the intermediate physical address for stage 2 faults. */ } exception; /* Information associated with an SError */ struct { uint8_t pending; uint8_t has_esr; uint64_t esr; } serror; uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ uint32_t irq_line_state; /* Thumb-2 EE state. */ uint32_t teecr; uint32_t teehbr; /* VFP coprocessor state. */ struct { ARMVectorReg zregs[32]; #ifdef TARGET_AARCH64 /* Store FFR as pregs[16] to make it easier to treat as any other. */ #define FFR_PRED_NUM 16 ARMPredicateReg pregs[17]; /* Scratch space for aa64 sve predicate temporary. */ ARMPredicateReg preg_tmp; #endif /* We store these fpcsr fields separately for convenience. */ uint32_t qc[4] QEMU_ALIGNED(16); int vec_len; int vec_stride; uint32_t xregs[16]; /* Scratch space for aa32 neon expansion. */ uint32_t scratch[8]; /* There are a number of distinct float control structures: * * fp_status: is the "normal" fp status. * fp_status_fp16: used for half-precision calculations * standard_fp_status : the ARM "Standard FPSCR Value" * standard_fp_status_fp16 : used for half-precision * calculations with the ARM "Standard FPSCR Value" * * Half-precision operations are governed by a separate * flush-to-zero control bit in FPSCR:FZ16. We pass a separate * status structure to control this. * * The "Standard FPSCR", ie default-NaN, flush-to-zero, * round-to-nearest and is used by any operations (generally * Neon) which the architecture defines as controlled by the * standard FPSCR value rather than the FPSCR. * * The "standard FPSCR but for fp16 ops" is needed because * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than * using a fixed value for it. * * To avoid having to transfer exception bits around, we simply * say that the FPSCR cumulative exception flags are the logical * OR of the flags in the four fp statuses. This relies on the * only thing which needs to read the exception flags being * an explicit FPSCR read. */ float_status fp_status; float_status fp_status_f16; float_status standard_fp_status; float_status standard_fp_status_f16; /* ZCR_EL[1-3] */ uint64_t zcr_el[4]; } vfp; uint64_t exclusive_addr; uint64_t exclusive_val; uint64_t exclusive_high; /* iwMMXt coprocessor state. */ struct { uint64_t regs[16]; uint64_t val; uint32_t cregs[16]; } iwmmxt; #ifdef TARGET_AARCH64 struct { ARMPACKey apia; ARMPACKey apib; ARMPACKey apda; ARMPACKey apdb; ARMPACKey apga; } keys; #endif #if defined(CONFIG_USER_ONLY) /* For usermode syscall translation. */ int eabi; #endif struct CPUBreakpoint *cpu_breakpoint[16]; struct CPUWatchpoint *cpu_watchpoint[16]; /* Fields up to this point are cleared by a CPU reset */ struct {} end_reset_fields; /* Fields after this point are preserved across CPU reset. */ /* Internal CPU feature flags. */ uint64_t features; /* PMSAv7 MPU */ struct { uint32_t *drbar; uint32_t *drsr; uint32_t *dracr; uint32_t rnr[M_REG_NUM_BANKS]; } pmsav7; /* PMSAv8 MPU */ struct { /* The PMSAv8 implementation also shares some PMSAv7 config * and state: * pmsav7.rnr (region number register) * pmsav7_dregion (number of configured regions) */ uint32_t *rbar[M_REG_NUM_BANKS]; uint32_t *rlar[M_REG_NUM_BANKS]; uint32_t mair0[M_REG_NUM_BANKS]; uint32_t mair1[M_REG_NUM_BANKS]; } pmsav8; /* v8M SAU */ struct { uint32_t *rbar; uint32_t *rlar; uint32_t rnr; uint32_t ctrl; } sau; void *nvic; const struct arm_boot_info *boot_info; /* Store GICv3CPUState to access from this struct */ void *gicv3state; #ifdef TARGET_TAGGED_ADDRESSES /* Linux syscall tagged address support */ bool tagged_addr_enable; #endif } CPUARMState; static inline void set_feature(CPUARMState *env, int feature) { env->features |= 1ULL << feature; } static inline void unset_feature(CPUARMState *env, int feature) { env->features &= ~(1ULL << feature); } /** * ARMELChangeHookFn: * type of a function which can be registered via arm_register_el_change_hook() * to get callbacks when the CPU changes its exception level or mode. */ typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); typedef struct ARMELChangeHook ARMELChangeHook; struct ARMELChangeHook { ARMELChangeHookFn *hook; void *opaque; QLIST_ENTRY(ARMELChangeHook) node; }; /* These values map onto the return values for * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ typedef enum ARMPSCIState { PSCI_ON = 0, PSCI_OFF = 1, PSCI_ON_PENDING = 2 } ARMPSCIState; typedef struct ARMISARegisters ARMISARegisters; /** * ARMCPU: * @env: #CPUARMState * * An ARM CPU core. */ struct ARMCPU { /*< private >*/ CPUState parent_obj; /*< public >*/ CPUNegativeOffsetState neg; CPUARMState env; /* Coprocessor information */ GHashTable *cp_regs; /* For marshalling (mostly coprocessor) register state between the * kernel and QEMU (for KVM) and between two QEMUs (for migration), * we use these arrays. */ /* List of register indexes managed via these arrays; (full KVM style * 64 bit indexes, not CPRegInfo 32 bit indexes) */ uint64_t *cpreg_indexes; /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ uint64_t *cpreg_values; /* Length of the indexes, values, reset_values arrays */ int32_t cpreg_array_len; /* These are used only for migration: incoming data arrives in * these fields and is sanity checked in post_load before copying * to the working data structures above. */ uint64_t *cpreg_vmstate_indexes; uint64_t *cpreg_vmstate_values; int32_t cpreg_vmstate_array_len; DynamicGDBXMLInfo dyn_sysreg_xml; DynamicGDBXMLInfo dyn_svereg_xml; /* Timers used by the generic (architected) timer */ QEMUTimer *gt_timer[NUM_GTIMERS]; /* * Timer used by the PMU. Its state is restored after migration by * pmu_op_finish() - it does not need other handling during migration */ QEMUTimer *pmu_timer; /* GPIO outputs for generic timer */ qemu_irq gt_timer_outputs[NUM_GTIMERS]; /* GPIO output for GICv3 maintenance interrupt signal */ qemu_irq gicv3_maintenance_interrupt; /* GPIO output for the PMU interrupt */ qemu_irq pmu_interrupt; /* MemoryRegion to use for secure physical accesses */ MemoryRegion *secure_memory; /* MemoryRegion to use for allocation tag accesses */ MemoryRegion *tag_memory; MemoryRegion *secure_tag_memory; /* For v8M, pointer to the IDAU interface provided by board/SoC */ Object *idau; /* 'compatible' string for this CPU for Linux device trees */ const char *dtb_compatible; /* PSCI version for this CPU * Bits[31:16] = Major Version * Bits[15:0] = Minor Version */ uint32_t psci_version; /* Current power state, access guarded by BQL */ ARMPSCIState power_state; /* CPU has virtualization extension */ bool has_el2; /* CPU has security extension */ bool has_el3; /* CPU has PMU (Performance Monitor Unit) */ bool has_pmu; /* CPU has VFP */ bool has_vfp; /* CPU has Neon */ bool has_neon; /* CPU has M-profile DSP extension */ bool has_dsp; /* CPU has memory protection unit */ bool has_mpu; /* PMSAv7 MPU number of supported regions */ uint32_t pmsav7_dregion; /* v8M SAU number of supported regions */ uint32_t sau_sregion; /* PSCI conduit used to invoke PSCI methods * 0 - disabled, 1 - smc, 2 - hvc */ uint32_t psci_conduit; /* For v8M, initial value of the Secure VTOR */ uint32_t init_svtor; /* For v8M, initial value of the Non-secure VTOR */ uint32_t init_nsvtor; /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. */ uint32_t kvm_target; /* KVM init features for this CPU */ uint32_t kvm_init_features[7]; /* KVM CPU state */ /* KVM virtual time adjustment */ bool kvm_adjvtime; bool kvm_vtime_dirty; uint64_t kvm_vtime; /* KVM steal time */ OnOffAuto kvm_steal_time; /* Uniprocessor system with MP extensions */ bool mp_is_up; /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init * and the probe failed (so we need to report the error in realize) */ bool host_cpu_probe_failed; /* Specify the number of cores in this CPU cluster. Used for the L2CTLR * register. */ int32_t core_count; /* The instance init functions for implementation-specific subclasses * set these fields to specify the implementation-dependent values of * various constant registers and reset values of non-constant * registers. * Some of these might become QOM properties eventually. * Field names match the official register names as defined in the * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix * is used for reset values of non-constant registers; no reset_ * prefix means a constant register. * Some of these registers are split out into a substructure that * is shared with the translators to control the ISA. * * Note that if you add an ID register to the ARMISARegisters struct * you need to also update the 32-bit and 64-bit versions of the * kvm_arm_get_host_cpu_features() function to correctly populate the * field by reading the value from the KVM vCPU. */ struct ARMISARegisters { uint32_t id_isar0; uint32_t id_isar1; uint32_t id_isar2; uint32_t id_isar3; uint32_t id_isar4; uint32_t id_isar5; uint32_t id_isar6; uint32_t id_mmfr0; uint32_t id_mmfr1; uint32_t id_mmfr2; uint32_t id_mmfr3; uint32_t id_mmfr4; uint32_t id_pfr0; uint32_t id_pfr1; uint32_t id_pfr2; uint32_t mvfr0; uint32_t mvfr1; uint32_t mvfr2; uint32_t id_dfr0; uint32_t dbgdidr; uint64_t id_aa64isar0; uint64_t id_aa64isar1; uint64_t id_aa64pfr0; uint64_t id_aa64pfr1; uint64_t id_aa64mmfr0; uint64_t id_aa64mmfr1; uint64_t id_aa64mmfr2; uint64_t id_aa64dfr0; uint64_t id_aa64dfr1; uint64_t id_aa64zfr0; } isar; uint64_t midr; uint32_t revidr; uint32_t reset_fpsid; uint64_t ctr; uint32_t reset_sctlr; uint64_t pmceid0; uint64_t pmceid1; uint32_t id_afr0; uint64_t id_aa64afr0; uint64_t id_aa64afr1; uint64_t clidr; uint64_t mp_affinity; /* MP ID without feature bits */ /* The elements of this array are the CCSIDR values for each cache, * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. */ uint64_t ccsidr[16]; uint64_t reset_cbar; uint32_t reset_auxcr; bool reset_hivecs; /* * Intermediate values used during property parsing. * Once finalized, the values should be read from ID_AA64ISAR1. */ bool prop_pauth; bool prop_pauth_impdef; /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ uint32_t dcz_blocksize; uint64_t rvbar; /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ int gic_num_lrs; /* number of list registers */ int gic_vpribits; /* number of virtual priority bits */ int gic_vprebits; /* number of virtual preemption bits */ /* Whether the cfgend input is high (i.e. this CPU should reset into * big-endian mode). This setting isn't used directly: instead it modifies * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the * architecture version. */ bool cfgend; QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; QLIST_HEAD(, ARMELChangeHook) el_change_hooks; int32_t node_id; /* NUMA node this CPU belongs to */ /* Used to synchronize KVM and QEMU in-kernel device levels */ uint8_t device_irq_level; /* Used to set the maximum vector length the cpu will support. */ uint32_t sve_max_vq; #ifdef CONFIG_USER_ONLY /* Used to set the default vector length at process start. */ uint32_t sve_default_vq; #endif /* * In sve_vq_map each set bit is a supported vector length of * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector * length in quadwords. * * While processing properties during initialization, corresponding * sve_vq_init bits are set for bits in sve_vq_map that have been * set by properties. * * Bits set in sve_vq_supported represent valid vector lengths for * the CPU type. */ DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ); DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ); DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ); /* Generic timer counter frequency, in Hz */ uint64_t gt_cntfrq_hz; }; unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); void arm_cpu_post_init(Object *obj); uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); #ifndef CONFIG_USER_ONLY extern const VMStateDescription vmstate_arm_cpu; void arm_cpu_do_interrupt(CPUState *cpu); void arm_v7m_cpu_do_interrupt(CPUState *cpu); #endif /* !CONFIG_USER_ONLY */ hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, MemTxAttrs *attrs); int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); /* * Helpers to dynamically generates XML descriptions of the sysregs * and SVE registers. Returns the number of registers in each set. */ int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg); int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); /* Returns the dynamically generated XML for the gdb stub. * Returns a pointer to the XML contents for the specified XML file or NULL * if the XML name doesn't match the predefined one. */ const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, int cpuid, void *opaque); int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, int cpuid, void *opaque); #ifdef TARGET_AARCH64 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); void aarch64_sve_change_el(CPUARMState *env, int old_el, int new_el, bool el0_a64); void aarch64_add_sve_properties(Object *obj); void aarch64_add_pauth_properties(Object *obj); /* * SVE registers are encoded in KVM's memory in an endianness-invariant format. * The byte at offset i from the start of the in-memory representation contains * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the * lowest offsets are stored in the lowest memory addresses, then that nearly * matches QEMU's representation, which is to use an array of host-endian * uint64_t's, where the lower offsets are at the lower indices. To complete * the translation we just need to byte swap the uint64_t's on big-endian hosts. */ static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) { #ifdef HOST_WORDS_BIGENDIAN int i; for (i = 0; i < nr; ++i) { dst[i] = bswap64(src[i]); } return dst; #else return src; #endif } #else static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } static inline void aarch64_sve_change_el(CPUARMState *env, int o, int n, bool a) { } static inline void aarch64_add_sve_properties(Object *obj) { } #endif void aarch64_sync_32_to_64(CPUARMState *env); void aarch64_sync_64_to_32(CPUARMState *env); int fp_exception_el(CPUARMState *env, int cur_el); int sve_exception_el(CPUARMState *env, int cur_el); uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); static inline bool is_a64(CPUARMState *env) { return env->aarch64; } /** * pmu_op_start/finish * @env: CPUARMState * * Convert all PMU counters between their delta form (the typical mode when * they are enabled) and the guest-visible values. These two calls must * surround any action which might affect the counters. */ void pmu_op_start(CPUARMState *env); void pmu_op_finish(CPUARMState *env); /* * Called when a PMU counter is due to overflow */ void arm_pmu_timer_cb(void *opaque); /** * Functions to register as EL change hooks for PMU mode filtering */ void pmu_pre_el_change(ARMCPU *cpu, void *ignored); void pmu_post_el_change(ARMCPU *cpu, void *ignored); /* * pmu_init * @cpu: ARMCPU * * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state * for the current configuration */ void pmu_init(ARMCPU *cpu); /* SCTLR bit meanings. Several bits have been reused in newer * versions of the architecture; in that case we define constants * for both old and new bit meanings. Code which tests against those * bits should probably check or otherwise arrange that the CPU * is the architectural version it expects. */ #define SCTLR_M (1U << 0) #define SCTLR_A (1U << 1) #define SCTLR_C (1U << 2) #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ #define SCTLR_SA (1U << 3) /* AArch64 only */ #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ #define SCTLR_ITD (1U << 7) /* v8 onward */ #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ #define SCTLR_SED (1U << 8) /* v8 onward */ #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ #define SCTLR_F (1U << 10) /* up to v6 */ #define SCTLR_SW (1U << 10) /* v7 */ #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ #define SCTLR_I (1U << 12) #define SCTLR_V (1U << 13) /* AArch32 only */ #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ #define SCTLR_RR (1U << 14) /* up to v7 */ #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ #define SCTLR_nTWI (1U << 16) /* v8 onward */ #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ #define SCTLR_BR (1U << 17) /* PMSA only */ #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ #define SCTLR_nTWE (1U << 18) /* v8 onward */ #define SCTLR_WXN (1U << 19) #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ #define SCTLR_VE (1U << 24) /* up to v7 */ #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ #define SCTLR_EE (1U << 25) #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ #define SCTLR_TRE (1U << 28) /* AArch32 only */ #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ #define SCTLR_AFE (1U << 29) /* AArch32 only */ #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ #define SCTLR_TE (1U << 30) /* AArch32 only */ #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */ #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */ #define CPTR_TCPAC (1U << 31) #define CPTR_TTA (1U << 20) #define CPTR_TFP (1U << 10) #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ #define MDCR_EPMAD (1U << 21) #define MDCR_EDAD (1U << 20) #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ #define MDCR_SDD (1U << 16) #define MDCR_SPD (3U << 14) #define MDCR_TDRA (1U << 11) #define MDCR_TDOSA (1U << 10) #define MDCR_TDA (1U << 9) #define MDCR_TDE (1U << 8) #define MDCR_HPME (1U << 7) #define MDCR_TPM (1U << 6) #define MDCR_TPMCR (1U << 5) #define MDCR_HPMN (0x1fU) /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) #define CPSR_M (0x1fU) #define CPSR_T (1U << 5) #define CPSR_F (1U << 6) #define CPSR_I (1U << 7) #define CPSR_A (1U << 8) #define CPSR_E (1U << 9) #define CPSR_IT_2_7 (0xfc00U) #define CPSR_GE (0xfU << 16) #define CPSR_IL (1U << 20) #define CPSR_DIT (1U << 21) #define CPSR_PAN (1U << 22) #define CPSR_SSBS (1U << 23) #define CPSR_J (1U << 24) #define CPSR_IT_0_1 (3U << 25) #define CPSR_Q (1U << 27) #define CPSR_V (1U << 28) #define CPSR_C (1U << 29) #define CPSR_Z (1U << 30) #define CPSR_N (1U << 31) #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ | CPSR_NZCV) /* Bits writable in user mode. */ #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) /* Execution state bits. MRS read as zero, MSR writes ignored. */ #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ #define XPSR_EXCP 0x1ffU #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ #define XPSR_IT_2_7 CPSR_IT_2_7 #define XPSR_GE CPSR_GE #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ #define XPSR_IT_0_1 CPSR_IT_0_1 #define XPSR_Q CPSR_Q #define XPSR_V CPSR_V #define XPSR_C CPSR_C #define XPSR_Z CPSR_Z #define XPSR_N CPSR_N #define XPSR_NZCV CPSR_NZCV #define XPSR_IT CPSR_IT #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ #define TTBCR_PD0 (1U << 4) #define TTBCR_PD1 (1U << 5) #define TTBCR_EPD0 (1U << 7) #define TTBCR_IRGN0 (3U << 8) #define TTBCR_ORGN0 (3U << 10) #define TTBCR_SH0 (3U << 12) #define TTBCR_T1SZ (3U << 16) #define TTBCR_A1 (1U << 22) #define TTBCR_EPD1 (1U << 23) #define TTBCR_IRGN1 (3U << 24) #define TTBCR_ORGN1 (3U << 26) #define TTBCR_SH1 (1U << 28) #define TTBCR_EAE (1U << 31) /* Bit definitions for ARMv8 SPSR (PSTATE) format. * Only these are valid when in AArch64 mode; in * AArch32 mode SPSRs are basically CPSR-format. */ #define PSTATE_SP (1U) #define PSTATE_M (0xFU) #define PSTATE_nRW (1U << 4) #define PSTATE_F (1U << 6) #define PSTATE_I (1U << 7) #define PSTATE_A (1U << 8) #define PSTATE_D (1U << 9) #define PSTATE_BTYPE (3U << 10) #define PSTATE_SSBS (1U << 12) #define PSTATE_IL (1U << 20) #define PSTATE_SS (1U << 21) #define PSTATE_PAN (1U << 22) #define PSTATE_UAO (1U << 23) #define PSTATE_DIT (1U << 24) #define PSTATE_TCO (1U << 25) #define PSTATE_V (1U << 28) #define PSTATE_C (1U << 29) #define PSTATE_Z (1U << 30) #define PSTATE_N (1U << 31) #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) /* Mode values for AArch64 */ #define PSTATE_MODE_EL3h 13 #define PSTATE_MODE_EL3t 12 #define PSTATE_MODE_EL2h 9 #define PSTATE_MODE_EL2t 8 #define PSTATE_MODE_EL1h 5 #define PSTATE_MODE_EL1t 4 #define PSTATE_MODE_EL0t 0 /* Write a new value to v7m.exception, thus transitioning into or out * of Handler mode; this may result in a change of active stack pointer. */ void write_v7m_exception(CPUARMState *env, uint32_t new_exc); /* Map EL and handler into a PSTATE_MODE. */ static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) { return (el << 2) | handler; } /* Return the current PSTATE value. For the moment we don't support 32<->64 bit * interprocessing, so we don't attempt to sync with the cpsr state used by * the 32 bit decoder. */ static inline uint32_t pstate_read(CPUARMState *env) { int ZF; ZF = (env->ZF == 0); return (env->NF & 0x80000000) | (ZF << 30) | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | env->pstate | env->daif | (env->btype << 10); } static inline void pstate_write(CPUARMState *env, uint32_t val) { env->ZF = (~val) & PSTATE_Z; env->NF = val; env->CF = (val >> 29) & 1; env->VF = (val << 3) & 0x80000000; env->daif = val & PSTATE_DAIF; env->btype = (val >> 10) & 3; env->pstate = val & ~CACHED_PSTATE_BITS; } /* Return the current CPSR value. */ uint32_t cpsr_read(CPUARMState *env); typedef enum CPSRWriteType { CPSRWriteByInstr = 0, /* from guest MSR or CPS */ CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ CPSRWriteRaw = 2, /* trust values, no reg bank switch, no hflags rebuild */ CPSRWriteByGDBStub = 3, /* from the GDB stub */ } CPSRWriteType; /* * Set the CPSR. Note that some bits of mask must be all-set or all-clear. * This will do an arm_rebuild_hflags() if any of the bits in @mask * correspond to TB flags bits cached in the hflags, unless @write_type * is CPSRWriteRaw. */ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, CPSRWriteType write_type); /* Return the current xPSR value. */ static inline uint32_t xpsr_read(CPUARMState *env) { int ZF; ZF = (env->ZF == 0); return (env->NF & 0x80000000) | (ZF << 30) | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) | ((env->condexec_bits & 0xfc) << 8) | (env->GE << 16) | env->v7m.exception; } /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) { if (mask & XPSR_NZCV) { env->ZF = (~val) & XPSR_Z; env->NF = val; env->CF = (val >> 29) & 1; env->VF = (val << 3) & 0x80000000; } if (mask & XPSR_Q) { env->QF = ((val & XPSR_Q) != 0); } if (mask & XPSR_GE) { env->GE = (val & XPSR_GE) >> 16; } #ifndef CONFIG_USER_ONLY if (mask & XPSR_T) { env->thumb = ((val & XPSR_T) != 0); } if (mask & XPSR_IT_0_1) { env->condexec_bits &= ~3; env->condexec_bits |= (val >> 25) & 3; } if (mask & XPSR_IT_2_7) { env->condexec_bits &= 3; env->condexec_bits |= (val >> 8) & 0xfc; } if (mask & XPSR_EXCP) { /* Note that this only happens on exception exit */ write_v7m_exception(env, val & XPSR_EXCP); } #endif } #define HCR_VM (1ULL << 0) #define HCR_SWIO (1ULL << 1) #define HCR_PTW (1ULL << 2) #define HCR_FMO (1ULL << 3) #define HCR_IMO (1ULL << 4) #define HCR_AMO (1ULL << 5) #define HCR_VF (1ULL << 6) #define HCR_VI (1ULL << 7) #define HCR_VSE (1ULL << 8) #define HCR_FB (1ULL << 9) #define HCR_BSU_MASK (3ULL << 10) #define HCR_DC (1ULL << 12) #define HCR_TWI (1ULL << 13) #define HCR_TWE (1ULL << 14) #define HCR_TID0 (1ULL << 15) #define HCR_TID1 (1ULL << 16) #define HCR_TID2 (1ULL << 17) #define HCR_TID3 (1ULL << 18) #define HCR_TSC (1ULL << 19) #define HCR_TIDCP (1ULL << 20) #define HCR_TACR (1ULL << 21) #define HCR_TSW (1ULL << 22) #define HCR_TPCP (1ULL << 23) #define HCR_TPU (1ULL << 24) #define HCR_TTLB (1ULL << 25) #define HCR_TVM (1ULL << 26) #define HCR_TGE (1ULL << 27) #define HCR_TDZ (1ULL << 28) #define HCR_HCD (1ULL << 29) #define HCR_TRVM (1ULL << 30) #define HCR_RW (1ULL << 31) #define HCR_CD (1ULL << 32) #define HCR_ID (1ULL << 33) #define HCR_E2H (1ULL << 34) #define HCR_TLOR (1ULL << 35) #define HCR_TERR (1ULL << 36) #define HCR_TEA (1ULL << 37) #define HCR_MIOCNCE (1ULL << 38) /* RES0 bit 39 */ #define HCR_APK (1ULL << 40) #define HCR_API (1ULL << 41) #define HCR_NV (1ULL << 42) #define HCR_NV1 (1ULL << 43) #define HCR_AT (1ULL << 44) #define HCR_NV2 (1ULL << 45) #define HCR_FWB (1ULL << 46) #define HCR_FIEN (1ULL << 47) /* RES0 bit 48 */ #define HCR_TID4 (1ULL << 49) #define HCR_TICAB (1ULL << 50) #define HCR_AMVOFFEN (1ULL << 51) #define HCR_TOCU (1ULL << 52) #define HCR_ENSCXT (1ULL << 53) #define HCR_TTLBIS (1ULL << 54) #define HCR_TTLBOS (1ULL << 55) #define HCR_ATA (1ULL << 56) #define HCR_DCT (1ULL << 57) #define HCR_TID5 (1ULL << 58) #define HCR_TWEDEN (1ULL << 59) #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) #define HPFAR_NS (1ULL << 63) #define SCR_NS (1U << 0) #define SCR_IRQ (1U << 1) #define SCR_FIQ (1U << 2) #define SCR_EA (1U << 3) #define SCR_FW (1U << 4) #define SCR_AW (1U << 5) #define SCR_NET (1U << 6) #define SCR_SMD (1U << 7) #define SCR_HCE (1U << 8) #define SCR_SIF (1U << 9) #define SCR_RW (1U << 10) #define SCR_ST (1U << 11) #define SCR_TWI (1U << 12) #define SCR_TWE (1U << 13) #define SCR_TLOR (1U << 14) #define SCR_TERR (1U << 15) #define SCR_APK (1U << 16) #define SCR_API (1U << 17) #define SCR_EEL2 (1U << 18) #define SCR_EASE (1U << 19) #define SCR_NMEA (1U << 20) #define SCR_FIEN (1U << 21) #define SCR_ENSCXT (1U << 25) #define SCR_ATA (1U << 26) #define HSTR_TTEE (1 << 16) #define HSTR_TJDBX (1 << 17) /* Return the current FPSCR value. */ uint32_t vfp_get_fpscr(CPUARMState *env); void vfp_set_fpscr(CPUARMState *env, uint32_t val); /* FPCR, Floating Point Control Register * FPSR, Floating Poiht Status Register * * For A64 the FPSCR is split into two logically distinct registers, * FPCR and FPSR. However since they still use non-overlapping bits * we store the underlying state in fpscr and just mask on read/write. */ #define FPSR_MASK 0xf800009f #define FPCR_MASK 0x07ff9f00 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ #define FPCR_DN (1 << 25) /* Default NaN enable bit */ #define FPCR_AHP (1 << 26) /* Alternative half-precision */ #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ #define FPCR_V (1 << 28) /* FP overflow flag */ #define FPCR_C (1 << 29) /* FP carry flag */ #define FPCR_Z (1 << 30) /* FP zero flag */ #define FPCR_N (1 << 31) /* FP negative flag */ #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) #define FPCR_LTPSIZE_LENGTH 3 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V) #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC) static inline uint32_t vfp_get_fpsr(CPUARMState *env) { return vfp_get_fpscr(env) & FPSR_MASK; } static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) { uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); vfp_set_fpscr(env, new_fpscr); } static inline uint32_t vfp_get_fpcr(CPUARMState *env) { return vfp_get_fpscr(env) & FPCR_MASK; } static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) { uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); vfp_set_fpscr(env, new_fpscr); } enum arm_cpu_mode { ARM_CPU_MODE_USR = 0x10, ARM_CPU_MODE_FIQ = 0x11, ARM_CPU_MODE_IRQ = 0x12, ARM_CPU_MODE_SVC = 0x13, ARM_CPU_MODE_MON = 0x16, ARM_CPU_MODE_ABT = 0x17, ARM_CPU_MODE_HYP = 0x1a, ARM_CPU_MODE_UND = 0x1b, ARM_CPU_MODE_SYS = 0x1f }; /* VFP system registers. */ #define ARM_VFP_FPSID 0 #define ARM_VFP_FPSCR 1 #define ARM_VFP_MVFR2 5 #define ARM_VFP_MVFR1 6 #define ARM_VFP_MVFR0 7 #define ARM_VFP_FPEXC 8 #define ARM_VFP_FPINST 9 #define ARM_VFP_FPINST2 10 /* These ones are M-profile only */ #define ARM_VFP_FPSCR_NZCVQC 2 #define ARM_VFP_VPR 12 #define ARM_VFP_P0 13 #define ARM_VFP_FPCXT_NS 14 #define ARM_VFP_FPCXT_S 15 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ #define QEMU_VFP_FPSCR_NZCV 0xffff /* iwMMXt coprocessor control registers. */ #define ARM_IWMMXT_wCID 0 #define ARM_IWMMXT_wCon 1 #define ARM_IWMMXT_wCSSF 2 #define ARM_IWMMXT_wCASF 3 #define ARM_IWMMXT_wCGR0 8 #define ARM_IWMMXT_wCGR1 9 #define ARM_IWMMXT_wCGR2 10 #define ARM_IWMMXT_wCGR3 11 /* V7M CCR bits */ FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) FIELD(V7M_CCR, USERSETMPEND, 1, 1) FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) FIELD(V7M_CCR, DIV_0_TRP, 4, 1) FIELD(V7M_CCR, BFHFNMIGN, 8, 1) FIELD(V7M_CCR, STKALIGN, 9, 1) FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) FIELD(V7M_CCR, DC, 16, 1) FIELD(V7M_CCR, IC, 17, 1) FIELD(V7M_CCR, BP, 18, 1) FIELD(V7M_CCR, LOB, 19, 1) FIELD(V7M_CCR, TRD, 20, 1) /* V7M SCR bits */ FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) FIELD(V7M_SCR, SLEEPDEEP, 2, 1) FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) FIELD(V7M_SCR, SEVONPEND, 4, 1) /* V7M AIRCR bits */ FIELD(V7M_AIRCR, VECTRESET, 0, 1) FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) FIELD(V7M_AIRCR, PRIGROUP, 8, 3) FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) FIELD(V7M_AIRCR, PRIS, 14, 1) FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) FIELD(V7M_AIRCR, VECTKEY, 16, 16) /* V7M CFSR bits for MMFSR */ FIELD(V7M_CFSR, IACCVIOL, 0, 1) FIELD(V7M_CFSR, DACCVIOL, 1, 1) FIELD(V7M_CFSR, MUNSTKERR, 3, 1) FIELD(V7M_CFSR, MSTKERR, 4, 1) FIELD(V7M_CFSR, MLSPERR, 5, 1) FIELD(V7M_CFSR, MMARVALID, 7, 1) /* V7M CFSR bits for BFSR */ FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) FIELD(V7M_CFSR, STKERR, 8 + 4, 1) FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) /* V7M CFSR bits for UFSR */ FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) FIELD(V7M_CFSR, INVPC, 16 + 2, 1) FIELD(V7M_CFSR, NOCP, 16 + 3, 1) FIELD(V7M_CFSR, STKOF, 16 + 4, 1) FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) /* V7M CFSR bit masks covering all of the subregister bits */ FIELD(V7M_CFSR, MMFSR, 0, 8) FIELD(V7M_CFSR, BFSR, 8, 8) FIELD(V7M_CFSR, UFSR, 16, 16) /* V7M HFSR bits */ FIELD(V7M_HFSR, VECTTBL, 1, 1) FIELD(V7M_HFSR, FORCED, 30, 1) FIELD(V7M_HFSR, DEBUGEVT, 31, 1) /* V7M DFSR bits */ FIELD(V7M_DFSR, HALTED, 0, 1) FIELD(V7M_DFSR, BKPT, 1, 1) FIELD(V7M_DFSR, DWTTRAP, 2, 1) FIELD(V7M_DFSR, VCATCH, 3, 1) FIELD(V7M_DFSR, EXTERNAL, 4, 1) /* V7M SFSR bits */ FIELD(V7M_SFSR, INVEP, 0, 1) FIELD(V7M_SFSR, INVIS, 1, 1) FIELD(V7M_SFSR, INVER, 2, 1) FIELD(V7M_SFSR, AUVIOL, 3, 1) FIELD(V7M_SFSR, INVTRAN, 4, 1) FIELD(V7M_SFSR, LSPERR, 5, 1) FIELD(V7M_SFSR, SFARVALID, 6, 1) FIELD(V7M_SFSR, LSERR, 7, 1) /* v7M MPU_CTRL bits */ FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) /* v7M CLIDR bits */ FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) FIELD(V7M_CLIDR, LOUIS, 21, 3) FIELD(V7M_CLIDR, LOC, 24, 3) FIELD(V7M_CLIDR, LOUU, 27, 3) FIELD(V7M_CLIDR, ICB, 30, 2) FIELD(V7M_CSSELR, IND, 0, 1) FIELD(V7M_CSSELR, LEVEL, 1, 3) /* We use the combination of InD and Level to index into cpu->ccsidr[]; * define a mask for this and check that it doesn't permit running off * the end of the array. */ FIELD(V7M_CSSELR, INDEX, 0, 4) /* v7M FPCCR bits */ FIELD(V7M_FPCCR, LSPACT, 0, 1) FIELD(V7M_FPCCR, USER, 1, 1) FIELD(V7M_FPCCR, S, 2, 1) FIELD(V7M_FPCCR, THREAD, 3, 1) FIELD(V7M_FPCCR, HFRDY, 4, 1) FIELD(V7M_FPCCR, MMRDY, 5, 1) FIELD(V7M_FPCCR, BFRDY, 6, 1) FIELD(V7M_FPCCR, SFRDY, 7, 1) FIELD(V7M_FPCCR, MONRDY, 8, 1) FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) FIELD(V7M_FPCCR, UFRDY, 10, 1) FIELD(V7M_FPCCR, RES0, 11, 15) FIELD(V7M_FPCCR, TS, 26, 1) FIELD(V7M_FPCCR, CLRONRETS, 27, 1) FIELD(V7M_FPCCR, CLRONRET, 28, 1) FIELD(V7M_FPCCR, LSPENS, 29, 1) FIELD(V7M_FPCCR, LSPEN, 30, 1) FIELD(V7M_FPCCR, ASPEN, 31, 1) /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ #define R_V7M_FPCCR_BANKED_MASK \ (R_V7M_FPCCR_LSPACT_MASK | \ R_V7M_FPCCR_USER_MASK | \ R_V7M_FPCCR_THREAD_MASK | \ R_V7M_FPCCR_MMRDY_MASK | \ R_V7M_FPCCR_SPLIMVIOL_MASK | \ R_V7M_FPCCR_UFRDY_MASK | \ R_V7M_FPCCR_ASPEN_MASK) /* v7M VPR bits */ FIELD(V7M_VPR, P0, 0, 16) FIELD(V7M_VPR, MASK01, 16, 4) FIELD(V7M_VPR, MASK23, 20, 4) /* * System register ID fields. */ FIELD(CLIDR_EL1, CTYPE1, 0, 3) FIELD(CLIDR_EL1, CTYPE2, 3, 3) FIELD(CLIDR_EL1, CTYPE3, 6, 3) FIELD(CLIDR_EL1, CTYPE4, 9, 3) FIELD(CLIDR_EL1, CTYPE5, 12, 3) FIELD(CLIDR_EL1, CTYPE6, 15, 3) FIELD(CLIDR_EL1, CTYPE7, 18, 3) FIELD(CLIDR_EL1, LOUIS, 21, 3) FIELD(CLIDR_EL1, LOC, 24, 3) FIELD(CLIDR_EL1, LOUU, 27, 3) FIELD(CLIDR_EL1, ICB, 30, 3) /* When FEAT_CCIDX is implemented */ FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) /* When FEAT_CCIDX is not implemented */ FIELD(CCSIDR_EL1, LINESIZE, 0, 3) FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) FIELD(CCSIDR_EL1, NUMSETS, 13, 15) FIELD(CTR_EL0, IMINLINE, 0, 4) FIELD(CTR_EL0, L1IP, 14, 2) FIELD(CTR_EL0, DMINLINE, 16, 4) FIELD(CTR_EL0, ERG, 20, 4) FIELD(CTR_EL0, CWG, 24, 4) FIELD(CTR_EL0, IDC, 28, 1) FIELD(CTR_EL0, DIC, 29, 1) FIELD(CTR_EL0, TMINLINE, 32, 6) FIELD(MIDR_EL1, REVISION, 0, 4) FIELD(MIDR_EL1, PARTNUM, 4, 12) FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) FIELD(MIDR_EL1, VARIANT, 20, 4) FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) FIELD(ID_ISAR0, SWAP, 0, 4) FIELD(ID_ISAR0, BITCOUNT, 4, 4) FIELD(ID_ISAR0, BITFIELD, 8, 4) FIELD(ID_ISAR0, CMPBRANCH, 12, 4) FIELD(ID_ISAR0, COPROC, 16, 4) FIELD(ID_ISAR0, DEBUG, 20, 4) FIELD(ID_ISAR0, DIVIDE, 24, 4) FIELD(ID_ISAR1, ENDIAN, 0, 4) FIELD(ID_ISAR1, EXCEPT, 4, 4) FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) FIELD(ID_ISAR1, EXTEND, 12, 4) FIELD(ID_ISAR1, IFTHEN, 16, 4) FIELD(ID_ISAR1, IMMEDIATE, 20, 4) FIELD(ID_ISAR1, INTERWORK, 24, 4) FIELD(ID_ISAR1, JAZELLE, 28, 4) FIELD(ID_ISAR2, LOADSTORE, 0, 4) FIELD(ID_ISAR2, MEMHINT, 4, 4) FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) FIELD(ID_ISAR2, MULT, 12, 4) FIELD(ID_ISAR2, MULTS, 16, 4) FIELD(ID_ISAR2, MULTU, 20, 4) FIELD(ID_ISAR2, PSR_AR, 24, 4) FIELD(ID_ISAR2, REVERSAL, 28, 4) FIELD(ID_ISAR3, SATURATE, 0, 4) FIELD(ID_ISAR3, SIMD, 4, 4) FIELD(ID_ISAR3, SVC, 8, 4) FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) FIELD(ID_ISAR3, TABBRANCH, 16, 4) FIELD(ID_ISAR3, T32COPY, 20, 4) FIELD(ID_ISAR3, TRUENOP, 24, 4) FIELD(ID_ISAR3, T32EE, 28, 4) FIELD(ID_ISAR4, UNPRIV, 0, 4) FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) FIELD(ID_ISAR4, WRITEBACK, 8, 4) FIELD(ID_ISAR4, SMC, 12, 4) FIELD(ID_ISAR4, BARRIER, 16, 4) FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) FIELD(ID_ISAR4, PSR_M, 24, 4) FIELD(ID_ISAR4, SWP_FRAC, 28, 4) FIELD(ID_ISAR5, SEVL, 0, 4) FIELD(ID_ISAR5, AES, 4, 4) FIELD(ID_ISAR5, SHA1, 8, 4) FIELD(ID_ISAR5, SHA2, 12, 4) FIELD(ID_ISAR5, CRC32, 16, 4) FIELD(ID_ISAR5, RDM, 24, 4) FIELD(ID_ISAR5, VCMA, 28, 4) FIELD(ID_ISAR6, JSCVT, 0, 4) FIELD(ID_ISAR6, DP, 4, 4) FIELD(ID_ISAR6, FHM, 8, 4) FIELD(ID_ISAR6, SB, 12, 4) FIELD(ID_ISAR6, SPECRES, 16, 4) FIELD(ID_ISAR6, BF16, 20, 4) FIELD(ID_ISAR6, I8MM, 24, 4) FIELD(ID_MMFR0, VMSA, 0, 4) FIELD(ID_MMFR0, PMSA, 4, 4) FIELD(ID_MMFR0, OUTERSHR, 8, 4) FIELD(ID_MMFR0, SHARELVL, 12, 4) FIELD(ID_MMFR0, TCM, 16, 4) FIELD(ID_MMFR0, AUXREG, 20, 4) FIELD(ID_MMFR0, FCSE, 24, 4) FIELD(ID_MMFR0, INNERSHR, 28, 4) FIELD(ID_MMFR1, L1HVDVA, 0, 4) FIELD(ID_MMFR1, L1UNIVA, 4, 4) FIELD(ID_MMFR1, L1HVDSW, 8, 4) FIELD(ID_MMFR1, L1UNISW, 12, 4) FIELD(ID_MMFR1, L1HVD, 16, 4) FIELD(ID_MMFR1, L1UNI, 20, 4) FIELD(ID_MMFR1, L1TSTCLN, 24, 4) FIELD(ID_MMFR1, BPRED, 28, 4) FIELD(ID_MMFR2, L1HVDFG, 0, 4) FIELD(ID_MMFR2, L1HVDBG, 4, 4) FIELD(ID_MMFR2, L1HVDRNG, 8, 4) FIELD(ID_MMFR2, HVDTLB, 12, 4) FIELD(ID_MMFR2, UNITLB, 16, 4) FIELD(ID_MMFR2, MEMBARR, 20, 4) FIELD(ID_MMFR2, WFISTALL, 24, 4) FIELD(ID_MMFR2, HWACCFLG, 28, 4) FIELD(ID_MMFR3, CMAINTVA, 0, 4) FIELD(ID_MMFR3, CMAINTSW, 4, 4) FIELD(ID_MMFR3, BPMAINT, 8, 4) FIELD(ID_MMFR3, MAINTBCST, 12, 4) FIELD(ID_MMFR3, PAN, 16, 4) FIELD(ID_MMFR3, COHWALK, 20, 4) FIELD(ID_MMFR3, CMEMSZ, 24, 4) FIELD(ID_MMFR3, SUPERSEC, 28, 4) FIELD(ID_MMFR4, SPECSEI, 0, 4) FIELD(ID_MMFR4, AC2, 4, 4) FIELD(ID_MMFR4, XNX, 8, 4) FIELD(ID_MMFR4, CNP, 12, 4) FIELD(ID_MMFR4, HPDS, 16, 4) FIELD(ID_MMFR4, LSM, 20, 4) FIELD(ID_MMFR4, CCIDX, 24, 4) FIELD(ID_MMFR4, EVT, 28, 4) FIELD(ID_MMFR5, ETS, 0, 4) FIELD(ID_PFR0, STATE0, 0, 4) FIELD(ID_PFR0, STATE1, 4, 4) FIELD(ID_PFR0, STATE2, 8, 4) FIELD(ID_PFR0, STATE3, 12, 4) FIELD(ID_PFR0, CSV2, 16, 4) FIELD(ID_PFR0, AMU, 20, 4) FIELD(ID_PFR0, DIT, 24, 4) FIELD(ID_PFR0, RAS, 28, 4) FIELD(ID_PFR1, PROGMOD, 0, 4) FIELD(ID_PFR1, SECURITY, 4, 4) FIELD(ID_PFR1, MPROGMOD, 8, 4) FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) FIELD(ID_PFR1, GENTIMER, 16, 4) FIELD(ID_PFR1, SEC_FRAC, 20, 4) FIELD(ID_PFR1, VIRT_FRAC, 24, 4) FIELD(ID_PFR1, GIC, 28, 4) FIELD(ID_PFR2, CSV3, 0, 4) FIELD(ID_PFR2, SSBS, 4, 4) FIELD(ID_PFR2, RAS_FRAC, 8, 4) FIELD(ID_AA64ISAR0, AES, 4, 4) FIELD(ID_AA64ISAR0, SHA1, 8, 4) FIELD(ID_AA64ISAR0, SHA2, 12, 4) FIELD(ID_AA64ISAR0, CRC32, 16, 4) FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) FIELD(ID_AA64ISAR0, RDM, 28, 4) FIELD(ID_AA64ISAR0, SHA3, 32, 4) FIELD(ID_AA64ISAR0, SM3, 36, 4) FIELD(ID_AA64ISAR0, SM4, 40, 4) FIELD(ID_AA64ISAR0, DP, 44, 4) FIELD(ID_AA64ISAR0, FHM, 48, 4) FIELD(ID_AA64ISAR0, TS, 52, 4) FIELD(ID_AA64ISAR0, TLB, 56, 4) FIELD(ID_AA64ISAR0, RNDR, 60, 4) FIELD(ID_AA64ISAR1, DPB, 0, 4) FIELD(ID_AA64ISAR1, APA, 4, 4) FIELD(ID_AA64ISAR1, API, 8, 4) FIELD(ID_AA64ISAR1, JSCVT, 12, 4) FIELD(ID_AA64ISAR1, FCMA, 16, 4) FIELD(ID_AA64ISAR1, LRCPC, 20, 4) FIELD(ID_AA64ISAR1, GPA, 24, 4) FIELD(ID_AA64ISAR1, GPI, 28, 4) FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) FIELD(ID_AA64ISAR1, SB, 36, 4) FIELD(ID_AA64ISAR1, SPECRES, 40, 4) FIELD(ID_AA64ISAR1, BF16, 44, 4) FIELD(ID_AA64ISAR1, DGH, 48, 4) FIELD(ID_AA64ISAR1, I8MM, 52, 4) FIELD(ID_AA64PFR0, EL0, 0, 4) FIELD(ID_AA64PFR0, EL1, 4, 4) FIELD(ID_AA64PFR0, EL2, 8, 4) FIELD(ID_AA64PFR0, EL3, 12, 4) FIELD(ID_AA64PFR0, FP, 16, 4) FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) FIELD(ID_AA64PFR0, GIC, 24, 4) FIELD(ID_AA64PFR0, RAS, 28, 4) FIELD(ID_AA64PFR0, SVE, 32, 4) FIELD(ID_AA64PFR0, SEL2, 36, 4) FIELD(ID_AA64PFR0, MPAM, 40, 4) FIELD(ID_AA64PFR0, AMU, 44, 4) FIELD(ID_AA64PFR0, DIT, 48, 4) FIELD(ID_AA64PFR0, CSV2, 56, 4) FIELD(ID_AA64PFR0, CSV3, 60, 4) FIELD(ID_AA64PFR1, BT, 0, 4) FIELD(ID_AA64PFR1, SSBS, 4, 4) FIELD(ID_AA64PFR1, MTE, 8, 4) FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) FIELD(ID_AA64MMFR0, PARANGE, 0, 4) FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) FIELD(ID_AA64MMFR0, BIGEND, 8, 4) FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) FIELD(ID_AA64MMFR0, EXS, 44, 4) FIELD(ID_AA64MMFR0, FGT, 56, 4) FIELD(ID_AA64MMFR0, ECV, 60, 4) FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) FIELD(ID_AA64MMFR1, VH, 8, 4) FIELD(ID_AA64MMFR1, HPDS, 12, 4) FIELD(ID_AA64MMFR1, LO, 16, 4) FIELD(ID_AA64MMFR1, PAN, 20, 4) FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) FIELD(ID_AA64MMFR1, XNX, 28, 4) FIELD(ID_AA64MMFR1, TWED, 32, 4) FIELD(ID_AA64MMFR1, ETS, 36, 4) FIELD(ID_AA64MMFR2, CNP, 0, 4) FIELD(ID_AA64MMFR2, UAO, 4, 4) FIELD(ID_AA64MMFR2, LSM, 8, 4) FIELD(ID_AA64MMFR2, IESB, 12, 4) FIELD(ID_AA64MMFR2, VARANGE, 16, 4) FIELD(ID_AA64MMFR2, CCIDX, 20, 4) FIELD(ID_AA64MMFR2, NV, 24, 4) FIELD(ID_AA64MMFR2, ST, 28, 4) FIELD(ID_AA64MMFR2, AT, 32, 4) FIELD(ID_AA64MMFR2, IDS, 36, 4) FIELD(ID_AA64MMFR2, FWB, 40, 4) FIELD(ID_AA64MMFR2, TTL, 48, 4) FIELD(ID_AA64MMFR2, BBM, 52, 4) FIELD(ID_AA64MMFR2, EVT, 56, 4) FIELD(ID_AA64MMFR2, E0PD, 60, 4) FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) FIELD(ID_AA64DFR0, TRACEVER, 4, 4) FIELD(ID_AA64DFR0, PMUVER, 8, 4) FIELD(ID_AA64DFR0, BRPS, 12, 4) FIELD(ID_AA64DFR0, WRPS, 20, 4) FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) FIELD(ID_AA64DFR0, PMSVER, 32, 4) FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) FIELD(ID_AA64DFR0, MTPMU, 48, 4) FIELD(ID_AA64ZFR0, SVEVER, 0, 4) FIELD(ID_AA64ZFR0, AES, 4, 4) FIELD(ID_AA64ZFR0, BITPERM, 16, 4) FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4) FIELD(ID_AA64ZFR0, SHA3, 32, 4) FIELD(ID_AA64ZFR0, SM4, 40, 4) FIELD(ID_AA64ZFR0, I8MM, 44, 4) FIELD(ID_AA64ZFR0, F32MM, 52, 4) FIELD(ID_AA64ZFR0, F64MM, 56, 4) FIELD(ID_DFR0, COPDBG, 0, 4) FIELD(ID_DFR0, COPSDBG, 4, 4) FIELD(ID_DFR0, MMAPDBG, 8, 4) FIELD(ID_DFR0, COPTRC, 12, 4) FIELD(ID_DFR0, MMAPTRC, 16, 4) FIELD(ID_DFR0, MPROFDBG, 20, 4) FIELD(ID_DFR0, PERFMON, 24, 4) FIELD(ID_DFR0, TRACEFILT, 28, 4) FIELD(ID_DFR1, MTPMU, 0, 4) FIELD(DBGDIDR, SE_IMP, 12, 1) FIELD(DBGDIDR, NSUHD_IMP, 14, 1) FIELD(DBGDIDR, VERSION, 16, 4) FIELD(DBGDIDR, CTX_CMPS, 20, 4) FIELD(DBGDIDR, BRPS, 24, 4) FIELD(DBGDIDR, WRPS, 28, 4) FIELD(MVFR0, SIMDREG, 0, 4) FIELD(MVFR0, FPSP, 4, 4) FIELD(MVFR0, FPDP, 8, 4) FIELD(MVFR0, FPTRAP, 12, 4) FIELD(MVFR0, FPDIVIDE, 16, 4) FIELD(MVFR0, FPSQRT, 20, 4) FIELD(MVFR0, FPSHVEC, 24, 4) FIELD(MVFR0, FPROUND, 28, 4) FIELD(MVFR1, FPFTZ, 0, 4) FIELD(MVFR1, FPDNAN, 4, 4) FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ FIELD(MVFR1, FPHP, 24, 4) FIELD(MVFR1, SIMDFMAC, 28, 4) FIELD(MVFR2, SIMDMISC, 0, 4) FIELD(MVFR2, FPMISC, 4, 4) QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); /* If adding a feature bit which corresponds to a Linux ELF * HWCAP bit, remember to update the feature-bit-to-hwcap * mapping in linux-user/elfload.c:get_elf_hwcap(). */ enum arm_features { ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ ARM_FEATURE_V6, ARM_FEATURE_V6K, ARM_FEATURE_V7, ARM_FEATURE_THUMB2, ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ ARM_FEATURE_NEON, ARM_FEATURE_M, /* Microcontroller profile. */ ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ ARM_FEATURE_THUMB2EE, ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ ARM_FEATURE_V4T, ARM_FEATURE_V5, ARM_FEATURE_STRONGARM, ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ ARM_FEATURE_GENERIC_TIMER, ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ ARM_FEATURE_V8, ARM_FEATURE_AARCH64, /* supports 64 bit mode */ ARM_FEATURE_CBAR, /* has cp15 CBAR */ ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ ARM_FEATURE_EL2, /* has EL2 Virtualization support */ ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ ARM_FEATURE_PMU, /* has PMU support */ ARM_FEATURE_VBAR, /* has cp15 VBAR */ ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ ARM_FEATURE_M_MAIN, /* M profile Main Extension */ ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ }; static inline int arm_feature(CPUARMState *env, int feature) { return (env->features & (1ULL << feature)) != 0; } void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); #if !defined(CONFIG_USER_ONLY) /* Return true if exception levels below EL3 are in secure state, * or would be following an exception return to that level. * Unlike arm_is_secure() (which is always a question about the * _current_ state of the CPU) this doesn't care about the current * EL or mode. */ static inline bool arm_is_secure_below_el3(CPUARMState *env) { if (arm_feature(env, ARM_FEATURE_EL3)) { return !(env->cp15.scr_el3 & SCR_NS); } else { /* If EL3 is not supported then the secure state is implementation * defined, in which case QEMU defaults to non-secure. */ return false; } } /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ static inline bool arm_is_el3_or_mon(CPUARMState *env) { if (arm_feature(env, ARM_FEATURE_EL3)) { if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { /* CPU currently in AArch64 state and EL3 */ return true; } else if (!is_a64(env) && (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { /* CPU currently in AArch32 state and monitor mode */ return true; } } return false; } /* Return true if the processor is in secure state */ static inline bool arm_is_secure(CPUARMState *env) { if (arm_is_el3_or_mon(env)) { return true; } return arm_is_secure_below_el3(env); } /* * Return true if the current security state has AArch64 EL2 or AArch32 Hyp. * This corresponds to the pseudocode EL2Enabled() */ static inline bool arm_is_el2_enabled(CPUARMState *env) { if (arm_feature(env, ARM_FEATURE_EL2)) { if (arm_is_secure_below_el3(env)) { return (env->cp15.scr_el3 & SCR_EEL2) != 0; } return true; } return false; } #else static inline bool arm_is_secure_below_el3(CPUARMState *env) { return false; } static inline bool arm_is_secure(CPUARMState *env) { return false; } static inline bool arm_is_el2_enabled(CPUARMState *env) { return false; } #endif /** * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. * E.g. when in secure state, fields in HCR_EL2 are suppressed, * "for all purposes other than a direct read or write access of HCR_EL2." * Not included here is HCR_RW. */ uint64_t arm_hcr_el2_eff(CPUARMState *env); /* Return true if the specified exception level is running in AArch64 state. */ static inline bool arm_el_is_aa64(CPUARMState *env, int el) { /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, * and if we're not in EL0 then the state of EL0 isn't well defined.) */ assert(el >= 1 && el <= 3); bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); /* The highest exception level is always at the maximum supported * register width, and then lower levels have a register width controlled * by bits in the SCR or HCR registers. */ if (el == 3) { return aa64; } if (arm_feature(env, ARM_FEATURE_EL3) && ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) { aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); } if (el == 2) { return aa64; } if (arm_is_el2_enabled(env)) { aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); } return aa64; } /* Function for determing whether guest cp register reads and writes should * access the secure or non-secure bank of a cp register. When EL3 is * operating in AArch32 state, the NS-bit determines whether the secure * instance of a cp register should be used. When EL3 is AArch64 (or if * it doesn't exist at all) then there is no register banking, and all * accesses are to the non-secure version. */ static inline bool access_secure_reg(CPUARMState *env) { bool ret = (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && !(env->cp15.scr_el3 & SCR_NS)); return ret; } /* Macros for accessing a specified CP register bank */ #define A32_BANKED_REG_GET(_env, _regname, _secure) \ ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ do { \ if (_secure) { \ (_env)->cp15._regname##_s = (_val); \ } else { \ (_env)->cp15._regname##_ns = (_val); \ } \ } while (0) /* Macros for automatically accessing a specific CP register bank depending on * the current secure state of the system. These macros are not intended for * supporting instruction translation reads/writes as these are dependent * solely on the SCR.NS bit and not the mode. */ #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ A32_BANKED_REG_GET((_env), _regname, \ (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ A32_BANKED_REG_SET((_env), _regname, \ (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ (_val)) void arm_cpu_list(void); uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, uint32_t cur_el, bool secure); /* Interface between CPU and Interrupt controller. */ #ifndef CONFIG_USER_ONLY bool armv7m_nvic_can_take_pending_exception(void *opaque); #else static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) { return true; } #endif /** * armv7m_nvic_set_pending: mark the specified exception as pending * @opaque: the NVIC * @irq: the exception number to mark pending * @secure: false for non-banked exceptions or for the nonsecure * version of a banked exception, true for the secure version of a banked * exception. * * Marks the specified exception as pending. Note that we will assert() * if @secure is true and @irq does not specify one of the fixed set * of architecturally banked exceptions. */ void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); /** * armv7m_nvic_set_pending_derived: mark this derived exception as pending * @opaque: the NVIC * @irq: the exception number to mark pending * @secure: false for non-banked exceptions or for the nonsecure * version of a banked exception, true for the secure version of a banked * exception. * * Similar to armv7m_nvic_set_pending(), but specifically for derived * exceptions (exceptions generated in the course of trying to take * a different exception). */ void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); /** * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending * @opaque: the NVIC * @irq: the exception number to mark pending * @secure: false for non-banked exceptions or for the nonsecure * version of a banked exception, true for the secure version of a banked * exception. * * Similar to armv7m_nvic_set_pending(), but specifically for exceptions * generated in the course of lazy stacking of FP registers. */ void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); /** * armv7m_nvic_get_pending_irq_info: return highest priority pending * exception, and whether it targets Secure state * @opaque: the NVIC * @pirq: set to pending exception number * @ptargets_secure: set to whether pending exception targets Secure * * This function writes the number of the highest priority pending * exception (the one which would be made active by * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure * to true if the current highest priority pending exception should * be taken to Secure state, false for NS. */ void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, bool *ptargets_secure); /** * armv7m_nvic_acknowledge_irq: make highest priority pending exception active * @opaque: the NVIC * * Move the current highest priority pending exception from the pending * state to the active state, and update v7m.exception to indicate that * it is the exception currently being handled. */ void armv7m_nvic_acknowledge_irq(void *opaque); /** * armv7m_nvic_complete_irq: complete specified interrupt or exception * @opaque: the NVIC * @irq: the exception number to complete * @secure: true if this exception was secure * * Returns: -1 if the irq was not active * 1 if completing this irq brought us back to base (no active irqs) * 0 if there is still an irq active after this one was completed * (Ignoring -1, this is the same as the RETTOBASE value before completion.) */ int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); /** * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) * @opaque: the NVIC * @irq: the exception number to mark pending * @secure: false for non-banked exceptions or for the nonsecure * version of a banked exception, true for the secure version of a banked * exception. * * Return whether an exception is "ready", i.e. whether the exception is * enabled and is configured at a priority which would allow it to * interrupt the current execution priority. This controls whether the * RDY bit for it in the FPCCR is set. */ bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); /** * armv7m_nvic_raw_execution_priority: return the raw execution priority * @opaque: the NVIC * * Returns: the raw execution priority as defined by the v8M architecture. * This is the execution priority minus the effects of AIRCR.PRIS, * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. * (v8M ARM ARM I_PKLD.) */ int armv7m_nvic_raw_execution_priority(void *opaque); /** * armv7m_nvic_neg_prio_requested: return true if the requested execution * priority is negative for the specified security state. * @opaque: the NVIC * @secure: the security state to test * This corresponds to the pseudocode IsReqExecPriNeg(). */ #ifndef CONFIG_USER_ONLY bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); #else static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) { return false; } #endif /* Interface for defining coprocessor registers. * Registers are defined in tables of arm_cp_reginfo structs * which are passed to define_arm_cp_regs(). */ /* When looking up a coprocessor register we look for it * via an integer which encodes all of: * coprocessor number * Crn, Crm, opc1, opc2 fields * 32 or 64 bit register (ie is it accessed via MRC/MCR * or via MRRC/MCRR?) * non-secure/secure bank (AArch32 only) * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. * (In this case crn and opc2 should be zero.) * For AArch64, there is no 32/64 bit size distinction; * instead all registers have a 2 bit op0, 3 bit op1 and op2, * and 4 bit CRn and CRm. The encoding patterns are chosen * to be easy to convert to and from the KVM encodings, and also * so that the hashtable can contain both AArch32 and AArch64 * registers (to allow for interprocessing where we might run * 32 bit code on a 64 bit core). */ /* This bit is private to our hashtable cpreg; in KVM register * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 * in the upper bits of the 64 bit ID. */ #define CP_REG_AA64_SHIFT 28 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) /* To enable banking of coprocessor registers depending on ns-bit we * add a bit to distinguish between secure and non-secure cpregs in the * hashtable. */ #define CP_REG_NS_SHIFT 29 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ (CP_REG_AA64_MASK | \ ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) /* Convert a full 64 bit KVM register ID to the truncated 32 bit * version used as a key for the coprocessor register hashtable */ static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) { uint32_t cpregid = kvmid; if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { cpregid |= CP_REG_AA64_MASK; } else { if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { cpregid |= (1 << 15); } /* KVM is always non-secure so add the NS flag on AArch32 register * entries. */ cpregid |= 1 << CP_REG_NS_SHIFT; } return cpregid; } /* Convert a truncated 32 bit hashtable key into the full * 64 bit KVM register ID. */ static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) { uint64_t kvmid; if (cpregid & CP_REG_AA64_MASK) { kvmid = cpregid & ~CP_REG_AA64_MASK; kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; } else { kvmid = cpregid & ~(1 << 15); if (cpregid & (1 << 15)) { kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; } else { kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; } } return kvmid; } /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a * special-behaviour cp reg and bits [11..8] indicate what behaviour * it has. Otherwise it is a simple cp reg, where CONST indicates that * TCG can assume the value to be constant (ie load at translate time) * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END * indicates that the TB should not be ended after a write to this register * (the default is that the TB ends after cp writes). OVERRIDE permits * a register definition to override a previous definition for the * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the * old must have the OVERRIDE bit set. * ALIAS indicates that this register is an alias view of some underlying * state which is also visible via another register, and that the other * register is handling migration and reset; registers marked ALIAS will not be * migrated but may have their state set by syncing of register state from KVM. * NO_RAW indicates that this register has no underlying state and does not * support raw access for state saving/loading; it will not be used for either * migration or KVM state synchronization. (Typically this is for "registers" * which are actually used as instructions for cache maintenance and so on.) * IO indicates that this register does I/O and therefore its accesses * need to be marked with gen_io_start() and also end the TB. In particular, * registers which implement clocks or timers require this. * RAISES_EXC is for when the read or write hook might raise an exception; * the generated code will synchronize the CPU state before calling the hook * so that it is safe for the hook to call raise_exception(). * NEWEL is for writes to registers that might change the exception * level - typically on older ARM chips. For those cases we need to * re-read the new el when recomputing the translation flags. */ #define ARM_CP_SPECIAL 0x0001 #define ARM_CP_CONST 0x0002 #define ARM_CP_64BIT 0x0004 #define ARM_CP_SUPPRESS_TB_END 0x0008 #define ARM_CP_OVERRIDE 0x0010 #define ARM_CP_ALIAS 0x0020 #define ARM_CP_IO 0x0040 #define ARM_CP_NO_RAW 0x0080 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) #define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600) #define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700) #define ARM_LAST_SPECIAL ARM_CP_DC_GZVA #define ARM_CP_FPU 0x1000 #define ARM_CP_SVE 0x2000 #define ARM_CP_NO_GDB 0x4000 #define ARM_CP_RAISES_EXC 0x8000 #define ARM_CP_NEWEL 0x10000 /* Used only as a terminator for ARMCPRegInfo lists */ #define ARM_CP_SENTINEL 0xfffff /* Mask of only the flag bits in a type field */ #define ARM_CP_FLAG_MASK 0x1f0ff /* Valid values for ARMCPRegInfo state field, indicating which of * the AArch32 and AArch64 execution states this register is visible in. * If the reginfo doesn't explicitly specify then it is AArch32 only. * If the reginfo is declared to be visible in both states then a second * reginfo is synthesised for the AArch32 view of the AArch64 register, * such that the AArch32 view is the lower 32 bits of the AArch64 one. * Note that we rely on the values of these enums as we iterate through * the various states in some places. */ enum { ARM_CP_STATE_AA32 = 0, ARM_CP_STATE_AA64 = 1, ARM_CP_STATE_BOTH = 2, }; /* ARM CP register secure state flags. These flags identify security state * attributes for a given CP register entry. * The existence of both or neither secure and non-secure flags indicates that * the register has both a secure and non-secure hash entry. A single one of * these flags causes the register to only be hashed for the specified * security state. * Although definitions may have any combination of the S/NS bits, each * registered entry will only have one to identify whether the entry is secure * or non-secure. */ enum { ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ }; /* Return true if cptype is a valid type field. This is used to try to * catch errors where the sentinel has been accidentally left off the end * of a list of registers. */ static inline bool cptype_valid(int cptype) { return ((cptype & ~ARM_CP_FLAG_MASK) == 0) || ((cptype & ARM_CP_SPECIAL) && ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); } /* Access rights: * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 * (ie any of the privileged modes in Secure state, or Monitor mode). * If a register is accessible in one privilege level it's always accessible * in higher privilege levels too. Since "Secure PL1" also follows this rule * (ie anything visible in PL2 is visible in S-PL1, some things are only * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the * terminology a little and call this PL3. * In AArch64 things are somewhat simpler as the PLx bits line up exactly * with the ELx exception levels. * * If access permissions for a register are more complex than can be * described with these bits, then use a laxer set of restrictions, and * do the more restrictive/complex check inside a helper function. */ #define PL3_R 0x80 #define PL3_W 0x40 #define PL2_R (0x20 | PL3_R) #define PL2_W (0x10 | PL3_W) #define PL1_R (0x08 | PL2_R) #define PL1_W (0x04 | PL2_W) #define PL0_R (0x02 | PL1_R) #define PL0_W (0x01 | PL1_W) /* * For user-mode some registers are accessible to EL0 via a kernel * trap-and-emulate ABI. In this case we define the read permissions * as actually being PL0_R. However some bits of any given register * may still be masked. */ #ifdef CONFIG_USER_ONLY #define PL0U_R PL0_R #else #define PL0U_R PL1_R #endif #define PL3_RW (PL3_R | PL3_W) #define PL2_RW (PL2_R | PL2_W) #define PL1_RW (PL1_R | PL1_W) #define PL0_RW (PL0_R | PL0_W) /* Return the highest implemented Exception Level */ static inline int arm_highest_el(CPUARMState *env) { if (arm_feature(env, ARM_FEATURE_EL3)) { return 3; } if (arm_feature(env, ARM_FEATURE_EL2)) { return 2; } return 1; } /* Return true if a v7M CPU is in Handler mode */ static inline bool arm_v7m_is_handler_mode(CPUARMState *env) { return env->v7m.exception != 0; } /* Return the current Exception Level (as per ARMv8; note that this differs * from the ARMv7 Privilege Level). */ static inline int arm_current_el(CPUARMState *env) { if (arm_feature(env, ARM_FEATURE_M)) { return arm_v7m_is_handler_mode(env) || !(env->v7m.control[env->v7m.secure] & 1); } if (is_a64(env)) { return extract32(env->pstate, 2, 2); } switch (env->uncached_cpsr & 0x1f) { case ARM_CPU_MODE_USR: return 0; case ARM_CPU_MODE_HYP: return 2; case ARM_CPU_MODE_MON: return 3; default: if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { /* If EL3 is 32-bit then all secure privileged modes run in * EL3 */ return 3; } return 1; } } typedef struct ARMCPRegInfo ARMCPRegInfo; typedef enum CPAccessResult { /* Access is permitted */ CP_ACCESS_OK = 0, /* Access fails due to a configurable trap or enable which would * result in a categorized exception syndrome giving information about * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or * PL1 if in EL0, otherwise to the current EL). */ CP_ACCESS_TRAP = 1, /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). * Note that this is not a catch-all case -- the set of cases which may * result in this failure is specifically defined by the architecture. */ CP_ACCESS_TRAP_UNCATEGORIZED = 2, /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ CP_ACCESS_TRAP_EL2 = 3, CP_ACCESS_TRAP_EL3 = 4, /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, /* Access fails and results in an exception syndrome for an FP access, * trapped directly to EL2 or EL3 */ CP_ACCESS_TRAP_FP_EL2 = 7, CP_ACCESS_TRAP_FP_EL3 = 8, } CPAccessResult; /* Access functions for coprocessor registers. These cannot fail and * may not raise exceptions. */ typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, uint64_t value); /* Access permission check functions for coprocessor registers. */ typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque, bool isread); /* Hook function for register reset */ typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); #define CP_ANY 0xff /* Definition of an ARM coprocessor register */ struct ARMCPRegInfo { /* Name of register (useful mainly for debugging, need not be unique) */ const char *name; /* Location of register: coprocessor number and (crn,crm,opc1,opc2) * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a * 'wildcard' field -- any value of that field in the MRC/MCR insn * will be decoded to this register. The register read and write * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 * used by the program, so it is possible to register a wildcard and * then behave differently on read/write if necessary. * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 * must both be zero. * For AArch64-visible registers, opc0 is also used. * Since there are no "coprocessors" in AArch64, cp is purely used as a * way to distinguish (for KVM's benefit) guest-visible system registers * from demuxed ones provided to preserve the "no side effects on * KVM register read/write from QEMU" semantics. cp==0x13 is guest * visible (to match KVM's encoding); cp==0 will be converted to * cp==0x13 when the ARMCPRegInfo is registered, for convenience. */ uint8_t cp; uint8_t crn; uint8_t crm; uint8_t opc0; uint8_t opc1; uint8_t opc2; /* Execution state in which this register is visible: ARM_CP_STATE_* */ int state; /* Register type: ARM_CP_* bits/values */ int type; /* Access rights: PL*_[RW] */ int access; /* Security state: ARM_CP_SECSTATE_* bits/values */ int secure; /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when * this register was defined: can be used to hand data through to the * register read/write functions, since they are passed the ARMCPRegInfo*. */ void *opaque; /* Value of this register, if it is ARM_CP_CONST. Otherwise, if * fieldoffset is non-zero, the reset value of the register. */ uint64_t resetvalue; /* Offset of the field in CPUARMState for this register. * * This is not needed if either: * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs * 2. both readfn and writefn are specified */ ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ /* Offsets of the secure and non-secure fields in CPUARMState for the * register if it is banked. These fields are only used during the static * registration of a register. During hashing the bank associated * with a given security state is copied to fieldoffset which is used from * there on out. * * It is expected that register definitions use either fieldoffset or * bank_fieldoffsets in the definition but not both. It is also expected * that both bank offsets are set when defining a banked register. This * use indicates that a register is banked. */ ptrdiff_t bank_fieldoffsets[2]; /* Function for making any access checks for this register in addition to * those specified by the 'access' permissions bits. If NULL, no extra * checks required. The access check is performed at runtime, not at * translate time. */ CPAccessFn *accessfn; /* Function for handling reads of this register. If NULL, then reads * will be done by loading from the offset into CPUARMState specified * by fieldoffset. */ CPReadFn *readfn; /* Function for handling writes of this register. If NULL, then writes * will be done by writing to the offset into CPUARMState specified * by fieldoffset. */ CPWriteFn *writefn; /* Function for doing a "raw" read; used when we need to copy * coprocessor state to the kernel for KVM or out for * migration. This only needs to be provided if there is also a * readfn and it has side effects (for instance clear-on-read bits). */ CPReadFn *raw_readfn; /* Function for doing a "raw" write; used when we need to copy KVM * kernel coprocessor state into userspace, or for inbound * migration. This only needs to be provided if there is also a * writefn and it masks out "unwritable" bits or has write-one-to-clear * or similar behaviour. */ CPWriteFn *raw_writefn; /* Function for resetting the register. If NULL, then reset will be done * by writing resetvalue to the field specified in fieldoffset. If * fieldoffset is 0 then no reset will be done. */ CPResetFn *resetfn; /* * "Original" writefn and readfn. * For ARMv8.1-VHE register aliases, we overwrite the read/write * accessor functions of various EL1/EL0 to perform the runtime * check for which sysreg should actually be modified, and then * forwards the operation. Before overwriting the accessors, * the original function is copied here, so that accesses that * really do go to the EL1/EL0 version proceed normally. * (The corresponding EL2 register is linked via opaque.) */ CPReadFn *orig_readfn; CPWriteFn *orig_writefn; }; /* Macros which are lvalues for the field in CPUARMState for the * ARMCPRegInfo *ri. */ #define CPREG_FIELD32(env, ri) \ (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) #define CPREG_FIELD64(env, ri) \ (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } void define_arm_cp_regs_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *regs, void *opaque); void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *regs, void *opaque); static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) { define_arm_cp_regs_with_opaque(cpu, regs, 0); } static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) { define_one_arm_cp_reg_with_opaque(cpu, regs, 0); } const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); /* * Definition of an ARM co-processor register as viewed from * userspace. This is used for presenting sanitised versions of * registers to userspace when emulating the Linux AArch64 CPU * ID/feature ABI (advertised as HWCAP_CPUID). */ typedef struct ARMCPRegUserSpaceInfo { /* Name of register */ const char *name; /* Is the name actually a glob pattern */ bool is_glob; /* Only some bits are exported to user space */ uint64_t exported_bits; /* Fixed bits are applied after the mask */ uint64_t fixed_bits; } ARMCPRegUserSpaceInfo; #define REGUSERINFO_SENTINEL { .name = NULL } void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); /* CPWriteFn that can be used to implement writes-ignored behaviour */ void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value); /* CPReadFn that can be used for read-as-zero behaviour */ uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); /* CPResetFn that does nothing, for use if no reset is required even * if fieldoffset is non zero. */ void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); /* Return true if this reginfo struct's field in the cpu state struct * is 64 bits wide. */ static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) { return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); } static inline bool cp_access_ok(int current_el, const ARMCPRegInfo *ri, int isread) { return (ri->access >> ((current_el * 2) + isread)) & 1; } /* Raw read of a coprocessor register (as needed for migration, etc) */ uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); /** * write_list_to_cpustate * @cpu: ARMCPU * * For each register listed in the ARMCPU cpreg_indexes list, write * its value from the cpreg_values list into the ARMCPUState structure. * This updates TCG's working data structures from KVM data or * from incoming migration state. * * Returns: true if all register values were updated correctly, * false if some register was unknown or could not be written. * Note that we do not stop early on failure -- we will attempt * writing all registers in the list. */ bool write_list_to_cpustate(ARMCPU *cpu); /** * write_cpustate_to_list: * @cpu: ARMCPU * @kvm_sync: true if this is for syncing back to KVM * * For each register listed in the ARMCPU cpreg_indexes list, write * its value from the ARMCPUState structure into the cpreg_values list. * This is used to copy info from TCG's working data structures into * KVM or for outbound migration. * * @kvm_sync is true if we are doing this in order to sync the * register state back to KVM. In this case we will only update * values in the list if the previous list->cpustate sync actually * successfully wrote the CPU state. Otherwise we will keep the value * that is in the list. * * Returns: true if all register values were read correctly, * false if some register was unknown or could not be read. * Note that we do not stop early on failure -- we will attempt * reading all registers in the list. */ bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); #define ARM_CPUID_TI915T 0x54029152 #define ARM_CPUID_TI925T 0x54029252 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) #define CPU_RESOLVING_TYPE TYPE_ARM_CPU #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU #define cpu_list arm_cpu_list /* ARM has the following "translation regimes" (as the ARM ARM calls them): * * If EL3 is 64-bit: * + NonSecure EL1 & 0 stage 1 * + NonSecure EL1 & 0 stage 2 * + NonSecure EL2 * + NonSecure EL2 & 0 (ARMv8.1-VHE) * + Secure EL1 & 0 * + Secure EL3 * If EL3 is 32-bit: * + NonSecure PL1 & 0 stage 1 * + NonSecure PL1 & 0 stage 2 * + NonSecure PL2 * + Secure PL0 * + Secure PL1 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) * * For QEMU, an mmu_idx is not quite the same as a translation regime because: * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, * because they may differ in access permissions even if the VA->PA map is * the same * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 * translation, which means that we have one mmu_idx that deals with two * concatenated translation regimes [this sort of combined s1+2 TLB is * architecturally permitted] * 3. we don't need to allocate an mmu_idx to translations that we won't be * handling via the TLB. The only way to do a stage 1 translation without * the immediate stage 2 translation is via the ATS or AT system insns, * which can be slow-pathed and always do a page table walk. * The only use of stage 2 translations is either as part of an s1+2 * lookup or when loading the descriptors during a stage 1 page table walk, * and in both those cases we don't use the TLB. * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" * translation regimes, because they map reasonably well to each other * and they can't both be active at the same time. * 5. we want to be able to use the TLB for accesses done as part of a * stage1 page table walk, rather than having to walk the stage2 page * table over and over. * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access * Never (PAN) bit within PSTATE. * * This gives us the following list of cases: * * NS EL0 EL1&0 stage 1+2 (aka NS PL0) * NS EL1 EL1&0 stage 1+2 (aka NS PL1) * NS EL1 EL1&0 stage 1+2 +PAN * NS EL0 EL2&0 * NS EL2 EL2&0 * NS EL2 EL2&0 +PAN * NS EL2 (aka NS PL2) * S EL0 EL1&0 (aka S PL0) * S EL1 EL1&0 (not used if EL3 is 32 bit) * S EL1 EL1&0 +PAN * S EL3 (aka S PL1) * * for a total of 11 different mmu_idx. * * R profile CPUs have an MPU, but can use the same set of MMU indexes * as A profile. They only need to distinguish NS EL0 and NS EL1 (and * NS EL2 if we ever model a Cortex-R52). * * M profile CPUs are rather different as they do not have a true MMU. * They have the following different MMU indexes: * User * Privileged * User, execution priority negative (ie the MPU HFNMIENA bit may apply) * Privileged, execution priority negative (ditto) * If the CPU supports the v8M Security Extension then there are also: * Secure User * Secure Privileged * Secure User, execution priority negative * Secure Privileged, execution priority negative * * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code * are not quite the same -- different CPU types (most notably M profile * vs A/R profile) would like to use MMU indexes with different semantics, * but since we don't ever need to use all of those in a single CPU we * can avoid having to set NB_MMU_MODES to "total number of A profile MMU * modes + total number of M profile MMU modes". The lower bits of * ARMMMUIdx are the core TLB mmu index, and the higher bits are always * the same for any particular CPU. * Variables of type ARMMUIdx are always full values, and the core * index values are in variables of type 'int'. * * Our enumeration includes at the end some entries which are not "true" * mmu_idx values in that they don't have corresponding TLBs and are only * valid for doing slow path page table walks. * * The constant names here are patterned after the general style of the names * of the AT/ATS operations. * The values used are carefully arranged to make mmu_idx => EL lookup easy. * For M profile we arrange them to have a bit for priv, a bit for negpri * and a bit for secure. */ #define ARM_MMU_IDX_A 0x10 /* A profile */ #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ #define ARM_MMU_IDX_M 0x40 /* M profile */ /* Meanings of the bits for A profile mmu idx values */ #define ARM_MMU_IDX_A_NS 0x8 /* Meanings of the bits for M profile mmu idx values */ #define ARM_MMU_IDX_M_PRIV 0x1 #define ARM_MMU_IDX_M_NEGPRI 0x2 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ #define ARM_MMU_IDX_TYPE_MASK \ (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) #define ARM_MMU_IDX_COREIDX_MASK 0xf typedef enum ARMMMUIdx { /* * A-profile. */ ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A, ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A, ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A, ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A, ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A, ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A, ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A, ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A, ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS, ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS, ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS, ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS, ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS, ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS, ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS, /* * These are not allocated TLBs and are used only for AT system * instructions or for the first stage of an S12 page table walk. */ ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB, ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB, ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB, /* * Not allocated a TLB: used only for second stage of an S12 page * table walk, or for descriptor loads during first stage of an S1 * page table walk. Note that if we ever want to have a TLB for this * then various TLB flush insns which currently are no-ops or flush * only stage 1 MMU indexes will need to change to flush stage 2. */ ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB, ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB, /* * M-profile. */ ARMMMUIdx_MUser = ARM_MMU_IDX_M, ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, } ARMMMUIdx; /* * Bit macros for the core-mmu-index values for each index, * for use when calling tlb_flush_by_mmuidx() and friends. */ #define TO_CORE_BIT(NAME) \ ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) typedef enum ARMMMUIdxBit { TO_CORE_BIT(E10_0), TO_CORE_BIT(E20_0), TO_CORE_BIT(E10_1), TO_CORE_BIT(E10_1_PAN), TO_CORE_BIT(E2), TO_CORE_BIT(E20_2), TO_CORE_BIT(E20_2_PAN), TO_CORE_BIT(SE10_0), TO_CORE_BIT(SE20_0), TO_CORE_BIT(SE10_1), TO_CORE_BIT(SE20_2), TO_CORE_BIT(SE10_1_PAN), TO_CORE_BIT(SE20_2_PAN), TO_CORE_BIT(SE2), TO_CORE_BIT(SE3), TO_CORE_BIT(MUser), TO_CORE_BIT(MPriv), TO_CORE_BIT(MUserNegPri), TO_CORE_BIT(MPrivNegPri), TO_CORE_BIT(MSUser), TO_CORE_BIT(MSPriv), TO_CORE_BIT(MSUserNegPri), TO_CORE_BIT(MSPrivNegPri), } ARMMMUIdxBit; #undef TO_CORE_BIT #define MMU_USER_IDX 0 /* Indexes used when registering address spaces with cpu_address_space_init */ typedef enum ARMASIdx { ARMASIdx_NS = 0, ARMASIdx_S = 1, ARMASIdx_TagNS = 2, ARMASIdx_TagS = 3, } ARMASIdx; /* Return the Exception Level targeted by debug exceptions. */ static inline int arm_debug_target_el(CPUARMState *env) { bool secure = arm_is_secure(env); bool route_to_el2 = false; if (arm_is_el2_enabled(env)) { route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || env->cp15.mdcr_el2 & MDCR_TDE; } if (route_to_el2) { return 2; } else if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && secure) { return 3; } else { return 1; } } static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) { /* If all the CLIDR.Ctypem bits are 0 there are no caches, and * CSSELR is RAZ/WI. */ return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; } /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ static inline bool aa64_generate_debug_exceptions(CPUARMState *env) { int cur_el = arm_current_el(env); int debug_el; if (cur_el == 3) { return false; } /* MDCR_EL3.SDD disables debug events from Secure state */ if (arm_is_secure_below_el3(env) && extract32(env->cp15.mdcr_el3, 16, 1)) { return false; } /* * Same EL to same EL debug exceptions need MDSCR_KDE enabled * while not masking the (D)ebug bit in DAIF. */ debug_el = arm_debug_target_el(env); if (cur_el == debug_el) { return extract32(env->cp15.mdscr_el1, 13, 1) && !(env->daif & PSTATE_D); } /* Otherwise the debug target needs to be a higher EL */ return debug_el > cur_el; } static inline bool aa32_generate_debug_exceptions(CPUARMState *env) { int el = arm_current_el(env); if (el == 0 && arm_el_is_aa64(env, 1)) { return aa64_generate_debug_exceptions(env); } if (arm_is_secure(env)) { int spd; if (el == 0 && (env->cp15.sder & 1)) { /* SDER.SUIDEN means debug exceptions from Secure EL0 * are always enabled. Otherwise they are controlled by * SDCR.SPD like those from other Secure ELs. */ return true; } spd = extract32(env->cp15.mdcr_el3, 14, 2); switch (spd) { case 1: /* SPD == 0b01 is reserved, but behaves as 0b00. */ case 0: /* For 0b00 we return true if external secure invasive debug * is enabled. On real hardware this is controlled by external * signals to the core. QEMU always permits debug, and behaves * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. */ return true; case 2: return false; case 3: return true; } } return el != 2; } /* Return true if debugging exceptions are currently enabled. * This corresponds to what in ARM ARM pseudocode would be * if UsingAArch32() then * return AArch32.GenerateDebugExceptions() * else * return AArch64.GenerateDebugExceptions() * We choose to push the if() down into this function for clarity, * since the pseudocode has it at all callsites except for the one in * CheckSoftwareStep(), where it is elided because both branches would * always return the same value. */ static inline bool arm_generate_debug_exceptions(CPUARMState *env) { if (env->aarch64) { return aa64_generate_debug_exceptions(env); } else { return aa32_generate_debug_exceptions(env); } } /* Is single-stepping active? (Note that the "is EL_D AArch64?" check * implicitly means this always returns false in pre-v8 CPUs.) */ static inline bool arm_singlestep_active(CPUARMState *env) { return extract32(env->cp15.mdscr_el1, 0, 1) && arm_el_is_aa64(env, arm_debug_target_el(env)) && arm_generate_debug_exceptions(env); } static inline bool arm_sctlr_b(CPUARMState *env) { return /* We need not implement SCTLR.ITD in user-mode emulation, so * let linux-user ignore the fact that it conflicts with SCTLR_B. * This lets people run BE32 binaries with "-cpu any". */ #ifndef CONFIG_USER_ONLY !arm_feature(env, ARM_FEATURE_V7) && #endif (env->cp15.sctlr_el[1] & SCTLR_B) != 0; } uint64_t arm_sctlr(CPUARMState *env, int el); static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, bool sctlr_b) { #ifdef CONFIG_USER_ONLY /* * In system mode, BE32 is modelled in line with the * architecture (as word-invariant big-endianness), where loads * and stores are done little endian but from addresses which * are adjusted by XORing with the appropriate constant. So the * endianness to use for the raw data access is not affected by * SCTLR.B. * In user mode, however, we model BE32 as byte-invariant * big-endianness (because user-only code cannot tell the * difference), and so we need to use a data access endianness * that depends on SCTLR.B. */ if (sctlr_b) { return true; } #endif /* In 32bit endianness is determined by looking at CPSR's E bit */ return env->uncached_cpsr & CPSR_E; } static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) { return sctlr & (el ? SCTLR_EE : SCTLR_E0E); } /* Return true if the processor is in big-endian mode. */ static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) { if (!is_a64(env)) { return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); } else { int cur_el = arm_current_el(env); uint64_t sctlr = arm_sctlr(env, cur_el); return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); } } typedef CPUARMState CPUArchState; typedef ARMCPU ArchCPU; #include "exec/cpu-all.h" /* * We have more than 32-bits worth of state per TB, so we split the data * between tb->flags and tb->cs_base, which is otherwise unused for ARM. * We collect these two parts in CPUARMTBFlags where they are named * flags and flags2 respectively. * * The flags that are shared between all execution modes, TBFLAG_ANY, * are stored in flags. The flags that are specific to a given mode * are stores in flags2. Since cs_base is sized on the configured * address size, flags2 always has 64-bits for A64, and a minimum of * 32-bits for A32 and M32. * * The bits for 32-bit A-profile and M-profile partially overlap: * * 31 23 11 10 0 * +-------------+----------+----------------+ * | | | TBFLAG_A32 | * | TBFLAG_AM32 | +-----+----------+ * | | |TBFLAG_M32| * +-------------+----------------+----------+ * 31 23 6 5 0 * * Unless otherwise noted, these bits are cached in env->hflags. */ FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1) FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1) FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */ FIELD(TBFLAG_ANY, BE_DATA, 3, 1) FIELD(TBFLAG_ANY, MMUIDX, 4, 4) /* Target EL if we take a floating-point-disabled exception */ FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2) /* For A-profile only, target EL for debug exceptions. */ FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2) /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */ FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1) FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1) /* * Bit usage when in AArch32 state, both A- and M-profile. */ FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */ FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */ /* * Bit usage when in AArch32 state, for A-profile only. */ FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */ FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */ /* * We store the bottom two bits of the CPAR as TB flags and handle * checks on the other bits at runtime. This shares the same bits as * VECSTRIDE, which is OK as no XScale CPU has VFP. * Not cached, because VECLEN+VECSTRIDE are not cached. */ FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2) FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */ FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1) /* * Indicates whether cp register reads and writes by guest code should access * the secure or nonsecure bank of banked registers; note that this is not * the same thing as the current security state of the processor! */ FIELD(TBFLAG_A32, NS, 10, 1) /* * Bit usage when in AArch32 state, for M-profile only. */ /* Handler (ie not Thread) mode */ FIELD(TBFLAG_M32, HANDLER, 0, 1) /* Whether we should generate stack-limit checks */ FIELD(TBFLAG_M32, STACKCHECK, 1, 1) /* Set if FPCCR.LSPACT is set */ FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */ /* Set if we must create a new FP context */ FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */ /* Set if FPCCR.S does not match current security state */ FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */ /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */ FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */ /* * Bit usage when in AArch64 state */ FIELD(TBFLAG_A64, TBII, 0, 2) FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) FIELD(TBFLAG_A64, BT, 9, 1) FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ FIELD(TBFLAG_A64, TBID, 12, 2) FIELD(TBFLAG_A64, UNPRIV, 14, 1) FIELD(TBFLAG_A64, ATA, 15, 1) FIELD(TBFLAG_A64, TCMA, 16, 2) FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) /* * Helpers for using the above. */ #define DP_TBFLAG_ANY(DST, WHICH, VAL) \ (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL)) #define DP_TBFLAG_A64(DST, WHICH, VAL) \ (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL)) #define DP_TBFLAG_A32(DST, WHICH, VAL) \ (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL)) #define DP_TBFLAG_M32(DST, WHICH, VAL) \ (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL)) #define DP_TBFLAG_AM32(DST, WHICH, VAL) \ (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL)) #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH) #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH) #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH) #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH) #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH) /** * cpu_mmu_index: * @env: The cpu environment * @ifetch: True for code access, false for data access. * * Return the core mmu index for the current translation regime. * This function is used by generic TCG code paths. */ static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) { return EX_TBFLAG_ANY(env->hflags, MMUIDX); } static inline bool bswap_code(bool sctlr_b) { #ifdef CONFIG_USER_ONLY /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 * would also end up as a mixed-endian mode with BE code, LE data. */ return #ifdef TARGET_WORDS_BIGENDIAN 1 ^ #endif sctlr_b; #else /* All code access in ARM is little endian, and there are no loaders * doing swaps that need to be reversed */ return 0; #endif } #ifdef CONFIG_USER_ONLY static inline bool arm_cpu_bswap_data(CPUARMState *env) { return #ifdef TARGET_WORDS_BIGENDIAN 1 ^ #endif arm_cpu_data_is_big_endian(env); } #endif void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, target_ulong *cs_base, uint32_t *flags); enum { QEMU_PSCI_CONDUIT_DISABLED = 0, QEMU_PSCI_CONDUIT_SMC = 1, QEMU_PSCI_CONDUIT_HVC = 2, }; #ifndef CONFIG_USER_ONLY /* Return the address space index to use for a memory access */ static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) { return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; } /* Return the AddressSpace to use for a memory access * (which depends on whether the access is S or NS, and whether * the board gave us a separate AddressSpace for S accesses). */ static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) { return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); } #endif /** * arm_register_pre_el_change_hook: * Register a hook function which will be called immediately before this * CPU changes exception level or mode. The hook function will be * passed a pointer to the ARMCPU and the opaque data pointer passed * to this function when the hook was registered. * * Note that if a pre-change hook is called, any registered post-change hooks * are guaranteed to subsequently be called. */ void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void *opaque); /** * arm_register_el_change_hook: * Register a hook function which will be called immediately after this * CPU changes exception level or mode. The hook function will be * passed a pointer to the ARMCPU and the opaque data pointer passed * to this function when the hook was registered. * * Note that any registered hooks registered here are guaranteed to be called * if pre-change hooks have been. */ void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void *opaque); /** * arm_rebuild_hflags: * Rebuild the cached TBFLAGS for arbitrary changed processor state. */ void arm_rebuild_hflags(CPUARMState *env); /** * aa32_vfp_dreg: * Return a pointer to the Dn register within env in 32-bit mode. */ static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) { return &env->vfp.zregs[regno >> 1].d[regno & 1]; } /** * aa32_vfp_qreg: * Return a pointer to the Qn register within env in 32-bit mode. */ static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) { return &env->vfp.zregs[regno].d[0]; } /** * aa64_vfp_qreg: * Return a pointer to the Qn register within env in 64-bit mode. */ static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) { return &env->vfp.zregs[regno].d[0]; } /* Shared between translate-sve.c and sve_helper.c. */ extern const uint64_t pred_esz_masks[4]; /* Helper for the macros below, validating the argument type. */ static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x) { return x; } /* * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB. * Using these should be a bit more self-documenting than using the * generic target bits directly. */ #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0) #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1) /* * AArch64 usage of the PAGE_TARGET_* bits for linux-user. */ #define PAGE_BTI PAGE_TARGET_1 #define PAGE_MTE PAGE_TARGET_2 #ifdef TARGET_TAGGED_ADDRESSES /** * cpu_untagged_addr: * @cs: CPU context * @x: tagged address * * Remove any address tag from @x. This is explicitly related to the * linux syscall TIF_TAGGED_ADDR setting, not TBI in general. * * There should be a better place to put this, but we need this in * include/exec/cpu_ldst.h, and not some place linux-user specific. */ static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x) { ARMCPU *cpu = ARM_CPU(cs); if (cpu->env.tagged_addr_enable) { /* * TBI is enabled for userspace but not kernelspace addresses. * Only clear the tag if bit 55 is clear. */ x &= sextract64(x, 0, 56); } return x; } #endif /* * Naming convention for isar_feature functions: * Functions which test 32-bit ID registers should have _aa32_ in * their name. Functions which test 64-bit ID registers should have * _aa64_ in their name. These must only be used in code where we * know for certain that the CPU has AArch32 or AArch64 respectively * or where the correct answer for a CPU which doesn't implement that * CPU state is "false" (eg when generating A32 or A64 code, if adding * system registers that are specific to that CPU state, for "should * we let this system register bit be set" tests where the 32-bit * flavour of the register doesn't have the bit, and so on). * Functions which simply ask "does this feature exist at all" have * _any_ in their name, and always return the logical OR of the _aa64_ * and the _aa32_ function. */ /* * 32-bit feature tests via id registers. */ static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; } static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; } static inline bool isar_feature_aa32_lob(const ARMISARegisters *id) { /* (M-profile) low-overhead loops and branch future */ return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3; } static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; } static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; } static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; } static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; } static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; } static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; } static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; } static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; } static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; } static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; } static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; } static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; } static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; } static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0; } static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id) { return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0; } static inline bool isar_feature_aa32_ras(const ARMISARegisters *id) { return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0; } static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id) { return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0; } static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id) { /* * Return true if M-profile state handling insns * (VSCCLRM, CLRM, FPCTX access insns) are implemented */ return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3; } static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) { /* Sadly this is encoded differently for A-profile and M-profile */ if (isar_feature_aa32_mprofile(id)) { return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0; } else { return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3; } } static inline bool isar_feature_aa32_mve(const ARMISARegisters *id) { /* * Return true if MVE is supported (either integer or floating point). * We must check for M-profile as the MVFR1 field means something * else for A-profile. */ return isar_feature_aa32_mprofile(id) && FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0; } static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id) { /* * Return true if MVE is supported (either integer or floating point). * We must check for M-profile as the MVFR1 field means something * else for A-profile. */ return isar_feature_aa32_mprofile(id) && FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2; } static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) { /* * Return true if either VFP or SIMD is implemented. * In this case, a minimum of VFP w/ D0-D15. */ return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; } static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) { /* Return true if D16-D31 are implemented */ return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; } static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) { return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; } static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) { /* Return true if CPU supports single precision floating point, VFPv2 */ return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; } static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) { /* Return true if CPU supports single precision floating point, VFPv3 */ return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; } static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) { /* Return true if CPU supports double precision floating point, VFPv2 */ return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; } static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) { /* Return true if CPU supports double precision floating point, VFPv3 */ return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; } static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) { return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); } /* * We always set the FP and SIMD FP16 fields to indicate identical * levels of support (assuming SIMD is implemented at all), so * we only need one set of accessors. */ static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) { return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; } static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) { return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; } /* * Note that this ID register field covers both VFP and Neon FMAC, * so should usually be tested in combination with some other * check that confirms the presence of whichever of VFP or Neon is * relevant, to avoid accidentally enabling a Neon feature on * a VFP-no-Neon core or vice-versa. */ static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) { return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; } static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) { return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; } static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) { return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; } static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) { return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; } static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) { return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; } static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id) { return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4; } static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) { return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; } static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) { return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; } static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id) { /* 0xf means "non-standard IMPDEF PMU" */ return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; } static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id) { /* 0xf means "non-standard IMPDEF PMU" */ return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; } static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) { return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; } static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) { return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; } static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) { return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; } static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) { return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; } static inline bool isar_feature_aa32_dit(const ARMISARegisters *id) { return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0; } static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id) { return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0; } /* * 64-bit feature tests via id registers. */ static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; } static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; } static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; } static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; } static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; } static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; } static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; } static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; } static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; } static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; } static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; } static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; } static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; } static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; } static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; } static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; } static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; } static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; } static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) { /* * Return true if any form of pauth is enabled, as this * predicate controls migration of the 128-bit keys. */ return (id->id_aa64isar1 & (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; } static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id) { /* * Return true if pauth is enabled with the architected QARMA algorithm. * QEMU will always set APA+GPA to the same value. */ return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0; } static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2; } static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0; } static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; } static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; } static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; } static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; } static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; } static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0; } static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) { /* We always set the AdvSIMD and FP fields identically. */ return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; } static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) { /* We always set the AdvSIMD and FP fields identically wrt FP16. */ return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; } static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; } static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2; } static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; } static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0; } static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; } static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; } static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; } static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; } static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; } static inline bool isar_feature_aa64_st(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0; } static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; } static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; } static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; } static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; } static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; } static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; } static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; } static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0; } static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id) { return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1; } static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id) { unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2); return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id)); } static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2; } static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id) { unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2); return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id)); } static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; } static inline bool isar_feature_aa64_lva(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0; } static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; } static inline bool isar_feature_aa64_dit(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0; } static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0; } static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0; } static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0; } static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2; } static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0; } static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0; } static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0; } static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0; } static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0; } static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0; } static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id) { return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0; } /* * Feature tests for "does this exist in either 32-bit or 64-bit?" */ static inline bool isar_feature_any_fp16(const ARMISARegisters *id) { return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); } static inline bool isar_feature_any_predinv(const ARMISARegisters *id) { return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); } static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id) { return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id); } static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id) { return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id); } static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) { return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); } static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) { return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); } /* * Forward to the above feature tests given an ARMCPU pointer. */ #define cpu_isar_feature(name, cpu) \ ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) #endif