/* * QEMU ARM CPU * * Copyright (c) 2012 SUSE LINUX Products GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * */ #include "qemu/osdep.h" #include "target/arm/idau.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "qapi/visitor.h" #include "cpu.h" #include "internals.h" #include "qemu-common.h" #include "exec/exec-all.h" #include "hw/qdev-properties.h" #if !defined(CONFIG_USER_ONLY) #include "hw/loader.h" #endif #include "hw/arm/arm.h" #include "sysemu/sysemu.h" #include "sysemu/hw_accel.h" #include "kvm_arm.h" #include "disas/capstone.h" #include "fpu/softfloat.h" static void arm_cpu_set_pc(CPUState *cs, vaddr value) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (is_a64(env)) { env->pc = value; env->thumb = 0; } else { env->regs[15] = value & ~1; env->thumb = value & 1; } } static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; /* * It's OK to look at env for the current mode here, because it's * never possible for an AArch64 TB to chain to an AArch32 TB. */ if (is_a64(env)) { env->pc = tb->pc; } else { env->regs[15] = tb->pc; } } static bool arm_cpu_has_work(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); return (cpu->power_state != PSCI_OFF) && cs->interrupt_request & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_EXITTB); } void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void *opaque) { ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); entry->hook = hook; entry->opaque = opaque; QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); } void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void *opaque) { ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); entry->hook = hook; entry->opaque = opaque; QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); } static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) { /* Reset a single ARMCPRegInfo register */ ARMCPRegInfo *ri = value; ARMCPU *cpu = opaque; if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { return; } if (ri->resetfn) { ri->resetfn(&cpu->env, ri); return; } /* A zero offset is never possible as it would be regs[0] * so we use it to indicate that reset is being handled elsewhere. * This is basically only used for fields in non-core coprocessors * (like the pxa2xx ones). */ if (!ri->fieldoffset) { return; } if (cpreg_field_is_64bit(ri)) { CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; } else { CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; } } static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) { /* Purely an assertion check: we've already done reset once, * so now check that running the reset for the cpreg doesn't * change its value. This traps bugs where two different cpregs * both try to reset the same state field but to different values. */ ARMCPRegInfo *ri = value; ARMCPU *cpu = opaque; uint64_t oldvalue, newvalue; if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { return; } oldvalue = read_raw_cp_reg(&cpu->env, ri); cp_reg_reset(key, value, opaque); newvalue = read_raw_cp_reg(&cpu->env, ri); assert(oldvalue == newvalue); } /* CPUClass::reset() */ static void arm_cpu_reset(CPUState *s) { ARMCPU *cpu = ARM_CPU(s); ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); CPUARMState *env = &cpu->env; acc->parent_reset(s); memset(env, 0, offsetof(CPUARMState, end_reset_fields)); g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON; s->halted = cpu->start_powered_off; if (arm_feature(env, ARM_FEATURE_IWMMXT)) { env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; } if (arm_feature(env, ARM_FEATURE_AARCH64)) { /* 64 bit CPUs always start in 64 bit mode */ env->aarch64 = 1; #if defined(CONFIG_USER_ONLY) env->pstate = PSTATE_MODE_EL0t; /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; /* Enable all PAC keys. */ env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB); /* Enable all PAC instructions */ env->cp15.hcr_el2 |= HCR_API; env->cp15.scr_el3 |= SCR_API; /* and to the FP/Neon instructions */ env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); /* and to the SVE instructions */ env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3); env->cp15.cptr_el[3] |= CPTR_EZ; /* with maximum vector length */ env->vfp.zcr_el[1] = cpu->sve_max_vq - 1; env->vfp.zcr_el[2] = env->vfp.zcr_el[1]; env->vfp.zcr_el[3] = env->vfp.zcr_el[1]; /* * Enable TBI0 and TBI1. While the real kernel only enables TBI0, * turning on both here will produce smaller code and otherwise * make no difference to the user-level emulation. */ env->cp15.tcr_el[1].raw_tcr = (3ULL << 37); #else /* Reset into the highest available EL */ if (arm_feature(env, ARM_FEATURE_EL3)) { env->pstate = PSTATE_MODE_EL3h; } else if (arm_feature(env, ARM_FEATURE_EL2)) { env->pstate = PSTATE_MODE_EL2h; } else { env->pstate = PSTATE_MODE_EL1h; } env->pc = cpu->rvbar; #endif } else { #if defined(CONFIG_USER_ONLY) /* Userspace expects access to cp10 and cp11 for FP/Neon */ env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); #endif } #if defined(CONFIG_USER_ONLY) env->uncached_cpsr = ARM_CPU_MODE_USR; /* For user mode we must enable access to coprocessors */ env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; if (arm_feature(env, ARM_FEATURE_IWMMXT)) { env->cp15.c15_cpar = 3; } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { env->cp15.c15_cpar = 1; } #else /* * If the highest available EL is EL2, AArch32 will start in Hyp * mode; otherwise it starts in SVC. Note that if we start in * AArch64 then these values in the uncached_cpsr will be ignored. */ if (arm_feature(env, ARM_FEATURE_EL2) && !arm_feature(env, ARM_FEATURE_EL3)) { env->uncached_cpsr = ARM_CPU_MODE_HYP; } else { env->uncached_cpsr = ARM_CPU_MODE_SVC; } env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; if (arm_feature(env, ARM_FEATURE_M)) { uint32_t initial_msp; /* Loaded from 0x0 */ uint32_t initial_pc; /* Loaded from 0x4 */ uint8_t *rom; uint32_t vecbase; if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { env->v7m.secure = true; } else { /* This bit resets to 0 if security is supported, but 1 if * it is not. The bit is not present in v7M, but we set it * here so we can avoid having to make checks on it conditional * on ARM_FEATURE_V8 (we don't let the guest see the bit). */ env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; } /* In v7M the reset value of this bit is IMPDEF, but ARM recommends * that it resets to 1, so QEMU always does that rather than making * it dependent on CPU model. In v8M it is RES1. */ env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; if (arm_feature(env, ARM_FEATURE_V8)) { /* in v8M the NONBASETHRDENA bit [0] is RES1 */ env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; } if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; } /* Unlike A/R profile, M profile defines the reset LR value */ env->regs[14] = 0xffffffff; env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; /* Load the initial SP and PC from offset 0 and 4 in the vector table */ vecbase = env->v7m.vecbase[env->v7m.secure]; rom = rom_ptr(vecbase, 8); if (rom) { /* Address zero is covered by ROM which hasn't yet been * copied into physical memory. */ initial_msp = ldl_p(rom); initial_pc = ldl_p(rom + 4); } else { /* Address zero not covered by a ROM blob, or the ROM blob * is in non-modifiable memory and this is a second reset after * it got copied into memory. In the latter case, rom_ptr * will return a NULL pointer and we should use ldl_phys instead. */ initial_msp = ldl_phys(s->as, vecbase); initial_pc = ldl_phys(s->as, vecbase + 4); } env->regs[13] = initial_msp & 0xFFFFFFFC; env->regs[15] = initial_pc & ~1; env->thumb = initial_pc & 1; } /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently * executing as AArch32 then check if highvecs are enabled and * adjust the PC accordingly. */ if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { env->regs[15] = 0xFFFF0000; } /* M profile requires that reset clears the exclusive monitor; * A profile does not, but clearing it makes more sense than having it * set with an exclusive access on address zero. */ arm_clear_exclusive(env); env->vfp.xregs[ARM_VFP_FPEXC] = 0; #endif if (arm_feature(env, ARM_FEATURE_PMSA)) { if (cpu->pmsav7_dregion > 0) { if (arm_feature(env, ARM_FEATURE_V8)) { memset(env->pmsav8.rbar[M_REG_NS], 0, sizeof(*env->pmsav8.rbar[M_REG_NS]) * cpu->pmsav7_dregion); memset(env->pmsav8.rlar[M_REG_NS], 0, sizeof(*env->pmsav8.rlar[M_REG_NS]) * cpu->pmsav7_dregion); if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { memset(env->pmsav8.rbar[M_REG_S], 0, sizeof(*env->pmsav8.rbar[M_REG_S]) * cpu->pmsav7_dregion); memset(env->pmsav8.rlar[M_REG_S], 0, sizeof(*env->pmsav8.rlar[M_REG_S]) * cpu->pmsav7_dregion); } } else if (arm_feature(env, ARM_FEATURE_V7)) { memset(env->pmsav7.drbar, 0, sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); memset(env->pmsav7.drsr, 0, sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); memset(env->pmsav7.dracr, 0, sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); } } env->pmsav7.rnr[M_REG_NS] = 0; env->pmsav7.rnr[M_REG_S] = 0; env->pmsav8.mair0[M_REG_NS] = 0; env->pmsav8.mair0[M_REG_S] = 0; env->pmsav8.mair1[M_REG_NS] = 0; env->pmsav8.mair1[M_REG_S] = 0; } if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { if (cpu->sau_sregion > 0) { memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); } env->sau.rnr = 0; /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what * the Cortex-M33 does. */ env->sau.ctrl = 0; } set_flush_to_zero(1, &env->vfp.standard_fp_status); set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); set_default_nan_mode(1, &env->vfp.standard_fp_status); set_float_detect_tininess(float_tininess_before_rounding, &env->vfp.fp_status); set_float_detect_tininess(float_tininess_before_rounding, &env->vfp.standard_fp_status); set_float_detect_tininess(float_tininess_before_rounding, &env->vfp.fp_status_f16); #ifndef CONFIG_USER_ONLY if (kvm_enabled()) { kvm_arm_reset_vcpu(cpu); } #endif hw_breakpoint_update_all(cpu); hw_watchpoint_update_all(cpu); } bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { CPUClass *cc = CPU_GET_CLASS(cs); CPUARMState *env = cs->env_ptr; uint32_t cur_el = arm_current_el(env); bool secure = arm_is_secure(env); uint32_t target_el; uint32_t excp_idx; bool ret = false; if (interrupt_request & CPU_INTERRUPT_FIQ) { excp_idx = EXCP_FIQ; target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); if (arm_excp_unmasked(cs, excp_idx, target_el)) { cs->exception_index = excp_idx; env->exception.target_el = target_el; cc->do_interrupt(cs); ret = true; } } if (interrupt_request & CPU_INTERRUPT_HARD) { excp_idx = EXCP_IRQ; target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); if (arm_excp_unmasked(cs, excp_idx, target_el)) { cs->exception_index = excp_idx; env->exception.target_el = target_el; cc->do_interrupt(cs); ret = true; } } if (interrupt_request & CPU_INTERRUPT_VIRQ) { excp_idx = EXCP_VIRQ; target_el = 1; if (arm_excp_unmasked(cs, excp_idx, target_el)) { cs->exception_index = excp_idx; env->exception.target_el = target_el; cc->do_interrupt(cs); ret = true; } } if (interrupt_request & CPU_INTERRUPT_VFIQ) { excp_idx = EXCP_VFIQ; target_el = 1; if (arm_excp_unmasked(cs, excp_idx, target_el)) { cs->exception_index = excp_idx; env->exception.target_el = target_el; cc->do_interrupt(cs); ret = true; } } return ret; } #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { CPUClass *cc = CPU_GET_CLASS(cs); ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; bool ret = false; /* ARMv7-M interrupt masking works differently than -A or -R. * There is no FIQ/IRQ distinction. Instead of I and F bits * masking FIQ and IRQ interrupts, an exception is taken only * if it is higher priority than the current execution priority * (which depends on state like BASEPRI, FAULTMASK and the * currently active exception). */ if (interrupt_request & CPU_INTERRUPT_HARD && (armv7m_nvic_can_take_pending_exception(env->nvic))) { cs->exception_index = EXCP_IRQ; cc->do_interrupt(cs); ret = true; } return ret; } #endif void arm_cpu_update_virq(ARMCPU *cpu) { /* * Update the interrupt level for VIRQ, which is the logical OR of * the HCR_EL2.VI bit and the input line level from the GIC. */ CPUARMState *env = &cpu->env; CPUState *cs = CPU(cpu); bool new_state = (env->cp15.hcr_el2 & HCR_VI) || (env->irq_line_state & CPU_INTERRUPT_VIRQ); if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { if (new_state) { cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); } } } void arm_cpu_update_vfiq(ARMCPU *cpu) { /* * Update the interrupt level for VFIQ, which is the logical OR of * the HCR_EL2.VF bit and the input line level from the GIC. */ CPUARMState *env = &cpu->env; CPUState *cs = CPU(cpu); bool new_state = (env->cp15.hcr_el2 & HCR_VF) || (env->irq_line_state & CPU_INTERRUPT_VFIQ); if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { if (new_state) { cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); } } } #ifndef CONFIG_USER_ONLY static void arm_cpu_set_irq(void *opaque, int irq, int level) { ARMCPU *cpu = opaque; CPUARMState *env = &cpu->env; CPUState *cs = CPU(cpu); static const int mask[] = { [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ }; if (level) { env->irq_line_state |= mask[irq]; } else { env->irq_line_state &= ~mask[irq]; } switch (irq) { case ARM_CPU_VIRQ: assert(arm_feature(env, ARM_FEATURE_EL2)); arm_cpu_update_virq(cpu); break; case ARM_CPU_VFIQ: assert(arm_feature(env, ARM_FEATURE_EL2)); arm_cpu_update_vfiq(cpu); break; case ARM_CPU_IRQ: case ARM_CPU_FIQ: if (level) { cpu_interrupt(cs, mask[irq]); } else { cpu_reset_interrupt(cs, mask[irq]); } break; default: g_assert_not_reached(); } } static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) { #ifdef CONFIG_KVM ARMCPU *cpu = opaque; CPUARMState *env = &cpu->env; CPUState *cs = CPU(cpu); int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT; uint32_t linestate_bit; switch (irq) { case ARM_CPU_IRQ: kvm_irq |= KVM_ARM_IRQ_CPU_IRQ; linestate_bit = CPU_INTERRUPT_HARD; break; case ARM_CPU_FIQ: kvm_irq |= KVM_ARM_IRQ_CPU_FIQ; linestate_bit = CPU_INTERRUPT_FIQ; break; default: g_assert_not_reached(); } if (level) { env->irq_line_state |= linestate_bit; } else { env->irq_line_state &= ~linestate_bit; } kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT; kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0); #endif } static bool arm_cpu_virtio_is_big_endian(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; cpu_synchronize_state(cs); return arm_cpu_data_is_big_endian(env); } #endif static inline void set_feature(CPUARMState *env, int feature) { env->features |= 1ULL << feature; } static inline void unset_feature(CPUARMState *env, int feature) { env->features &= ~(1ULL << feature); } static int print_insn_thumb1(bfd_vma pc, disassemble_info *info) { return print_insn_arm(pc | 1, info); } static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) { ARMCPU *ac = ARM_CPU(cpu); CPUARMState *env = &ac->env; bool sctlr_b; if (is_a64(env)) { /* We might not be compiled with the A64 disassembler * because it needs a C++ compiler. Leave print_insn * unset in this case to use the caller default behaviour. */ #if defined(CONFIG_ARM_A64_DIS) info->print_insn = print_insn_arm_a64; #endif info->cap_arch = CS_ARCH_ARM64; info->cap_insn_unit = 4; info->cap_insn_split = 4; } else { int cap_mode; if (env->thumb) { info->print_insn = print_insn_thumb1; info->cap_insn_unit = 2; info->cap_insn_split = 4; cap_mode = CS_MODE_THUMB; } else { info->print_insn = print_insn_arm; info->cap_insn_unit = 4; info->cap_insn_split = 4; cap_mode = CS_MODE_ARM; } if (arm_feature(env, ARM_FEATURE_V8)) { cap_mode |= CS_MODE_V8; } if (arm_feature(env, ARM_FEATURE_M)) { cap_mode |= CS_MODE_MCLASS; } info->cap_arch = CS_ARCH_ARM; info->cap_mode = cap_mode; } sctlr_b = arm_sctlr_b(env); if (bswap_code(sctlr_b)) { #ifdef TARGET_WORDS_BIGENDIAN info->endian = BFD_ENDIAN_LITTLE; #else info->endian = BFD_ENDIAN_BIG; #endif } info->flags &= ~INSN_ARM_BE32; #ifndef CONFIG_USER_ONLY if (sctlr_b) { info->flags |= INSN_ARM_BE32; } #endif } uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) { uint32_t Aff1 = idx / clustersz; uint32_t Aff0 = idx % clustersz; return (Aff1 << ARM_AFF1_SHIFT) | Aff0; } static void cpreg_hashtable_data_destroy(gpointer data) { /* * Destroy function for cpu->cp_regs hashtable data entries. * We must free the name string because it was g_strdup()ed in * add_cpreg_to_hashtable(). It's OK to cast away the 'const' * from r->name because we know we definitely allocated it. */ ARMCPRegInfo *r = data; g_free((void *)r->name); g_free(r); } static void arm_cpu_initfn(Object *obj) { CPUState *cs = CPU(obj); ARMCPU *cpu = ARM_CPU(obj); cs->env_ptr = &cpu->env; cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, cpreg_hashtable_data_destroy); QLIST_INIT(&cpu->pre_el_change_hooks); QLIST_INIT(&cpu->el_change_hooks); #ifndef CONFIG_USER_ONLY /* Our inbound IRQ and FIQ lines */ if (kvm_enabled()) { /* VIRQ and VFIQ are unused with KVM but we add them to maintain * the same interface as non-KVM CPUs. */ qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); } else { qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); } qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, ARRAY_SIZE(cpu->gt_timer_outputs)); qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, "gicv3-maintenance-interrupt", 1); qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, "pmu-interrupt", 1); #endif /* DTB consumers generally don't in fact care what the 'compatible' * string is, so always provide some string and trust that a hypothetical * picky DTB consumer will also provide a helpful error message. */ cpu->dtb_compatible = "qemu,unknown"; cpu->psci_version = 1; /* By default assume PSCI v0.1 */ cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; if (tcg_enabled()) { cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ } } static Property arm_cpu_reset_cbar_property = DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); static Property arm_cpu_reset_hivecs_property = DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); static Property arm_cpu_rvbar_property = DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); static Property arm_cpu_has_el2_property = DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); static Property arm_cpu_has_el3_property = DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); static Property arm_cpu_cfgend_property = DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); /* use property name "pmu" to match other archs and virt tools */ static Property arm_cpu_has_pmu_property = DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true); static Property arm_cpu_has_mpu_property = DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, * because the CPU initfn will have already set cpu->pmsav7_dregion to * the right value for that particular CPU type, and we don't want * to override that with an incorrect constant value. */ static Property arm_cpu_pmsav7_dregion_property = DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, pmsav7_dregion, qdev_prop_uint32, uint32_t); static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); visit_type_uint32(v, name, &cpu->init_svtor, errp); } static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); visit_type_uint32(v, name, &cpu->init_svtor, errp); } void arm_cpu_post_init(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); /* M profile implies PMSA. We have to do this here rather than * in realize with the other feature-implication checks because * we look at the PMSA bit to see if we should add some properties. */ if (arm_feature(&cpu->env, ARM_FEATURE_M)) { set_feature(&cpu->env, ARM_FEATURE_PMSA); } if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property, &error_abort); } if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property, &error_abort); } if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property, &error_abort); } if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { /* Add the has_el3 state CPU property only if EL3 is allowed. This will * prevent "has_el3" from existing on CPUs which cannot support EL3. */ qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property, &error_abort); #ifndef CONFIG_USER_ONLY object_property_add_link(obj, "secure-memory", TYPE_MEMORY_REGION, (Object **)&cpu->secure_memory, qdev_prop_allow_set_link_before_realize, OBJ_PROP_LINK_STRONG, &error_abort); #endif } if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property, &error_abort); } if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property, &error_abort); } if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property, &error_abort); if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_pmsav7_dregion_property, &error_abort); } } if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, qdev_prop_allow_set_link_before_realize, OBJ_PROP_LINK_STRONG, &error_abort); /* * M profile: initial value of the Secure VTOR. We can't just use * a simple DEFINE_PROP_UINT32 for this because we want to permit * the property to be set after realize. */ object_property_add(obj, "init-svtor", "uint32", arm_get_init_svtor, arm_set_init_svtor, NULL, NULL, &error_abort); } qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property, &error_abort); } static void arm_cpu_finalizefn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); ARMELChangeHook *hook, *next; g_hash_table_destroy(cpu->cp_regs); QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { QLIST_REMOVE(hook, node); g_free(hook); } QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { QLIST_REMOVE(hook, node); g_free(hook); } #ifndef CONFIG_USER_ONLY if (cpu->pmu_timer) { timer_del(cpu->pmu_timer); timer_deinit(cpu->pmu_timer); timer_free(cpu->pmu_timer); } #endif } static void arm_cpu_realizefn(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); ARMCPU *cpu = ARM_CPU(dev); ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); CPUARMState *env = &cpu->env; int pagebits; Error *local_err = NULL; bool no_aa32 = false; /* If we needed to query the host kernel for the CPU features * then it's possible that might have failed in the initfn, but * this is the first point where we can report it. */ if (cpu->host_cpu_probe_failed) { if (!kvm_enabled()) { error_setg(errp, "The 'host' CPU type can only be used with KVM"); } else { error_setg(errp, "Failed to retrieve host CPU features"); } return; } #ifndef CONFIG_USER_ONLY /* The NVIC and M-profile CPU are two halves of a single piece of * hardware; trying to use one without the other is a command line * error and will result in segfaults if not caught here. */ if (arm_feature(env, ARM_FEATURE_M)) { if (!env->nvic) { error_setg(errp, "This board cannot be used with Cortex-M CPUs"); return; } } else { if (env->nvic) { error_setg(errp, "This board can only be used with Cortex-M CPUs"); return; } } cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, arm_gt_ptimer_cb, cpu); cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, arm_gt_vtimer_cb, cpu); cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, arm_gt_htimer_cb, cpu); cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, arm_gt_stimer_cb, cpu); #endif cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } /* Some features automatically imply others: */ if (arm_feature(env, ARM_FEATURE_V8)) { if (arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_V7); } else { set_feature(env, ARM_FEATURE_V7VE); } } /* * There exist AArch64 cpus without AArch32 support. When KVM * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. */ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); } if (arm_feature(env, ARM_FEATURE_V7VE)) { /* v7 Virtualization Extensions. In real hardware this implies * EL2 and also the presence of the Security Extensions. * For QEMU, for backwards-compatibility we implement some * CPUs or CPU configs which have no actual EL2 or EL3 but do * include the various other features that V7VE implies. * Presence of EL2 itself is ARM_FEATURE_EL2, and of the * Security Extensions is ARM_FEATURE_EL3. */ assert(no_aa32 || cpu_isar_feature(arm_div, cpu)); set_feature(env, ARM_FEATURE_LPAE); set_feature(env, ARM_FEATURE_V7); } if (arm_feature(env, ARM_FEATURE_V7)) { set_feature(env, ARM_FEATURE_VAPA); set_feature(env, ARM_FEATURE_THUMB2); set_feature(env, ARM_FEATURE_MPIDR); if (!arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_V6K); } else { set_feature(env, ARM_FEATURE_V6); } /* Always define VBAR for V7 CPUs even if it doesn't exist in * non-EL3 configs. This is needed by some legacy boards. */ set_feature(env, ARM_FEATURE_VBAR); } if (arm_feature(env, ARM_FEATURE_V6K)) { set_feature(env, ARM_FEATURE_V6); set_feature(env, ARM_FEATURE_MVFR); } if (arm_feature(env, ARM_FEATURE_V6)) { set_feature(env, ARM_FEATURE_V5); if (!arm_feature(env, ARM_FEATURE_M)) { assert(no_aa32 || cpu_isar_feature(jazelle, cpu)); set_feature(env, ARM_FEATURE_AUXCR); } } if (arm_feature(env, ARM_FEATURE_V5)) { set_feature(env, ARM_FEATURE_V4T); } if (arm_feature(env, ARM_FEATURE_VFP4)) { set_feature(env, ARM_FEATURE_VFP3); } if (arm_feature(env, ARM_FEATURE_VFP3)) { set_feature(env, ARM_FEATURE_VFP); } if (arm_feature(env, ARM_FEATURE_LPAE)) { set_feature(env, ARM_FEATURE_V7MP); set_feature(env, ARM_FEATURE_PXN); } if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { set_feature(env, ARM_FEATURE_CBAR); } if (arm_feature(env, ARM_FEATURE_THUMB2) && !arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_THUMB_DSP); } if (arm_feature(env, ARM_FEATURE_V7) && !arm_feature(env, ARM_FEATURE_M) && !arm_feature(env, ARM_FEATURE_PMSA)) { /* v7VMSA drops support for the old ARMv5 tiny pages, so we * can use 4K pages. */ pagebits = 12; } else { /* For CPUs which might have tiny 1K pages, or which have an * MPU and might have small region sizes, stick with 1K pages. */ pagebits = 10; } if (!set_preferred_target_page_bits(pagebits)) { /* This can only ever happen for hotplugging a CPU, or if * the board code incorrectly creates a CPU which it has * promised via minimum_page_size that it will not. */ error_setg(errp, "This CPU requires a smaller page size than the " "system is using"); return; } /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. * We don't support setting cluster ID ([16..23]) (known as Aff2 * in later ARM ARM versions), or any of the higher affinity level fields, * so these bits always RAZ. */ if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, ARM_DEFAULT_CPUS_PER_CLUSTER); } if (cpu->reset_hivecs) { cpu->reset_sctlr |= (1 << 13); } if (cpu->cfgend) { if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { cpu->reset_sctlr |= SCTLR_EE; } else { cpu->reset_sctlr |= SCTLR_B; } } if (!cpu->has_el3) { /* If the has_el3 CPU property is disabled then we need to disable the * feature. */ unset_feature(env, ARM_FEATURE_EL3); /* Disable the security extension feature bits in the processor feature * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. */ cpu->id_pfr1 &= ~0xf0; cpu->isar.id_aa64pfr0 &= ~0xf000; } if (!cpu->has_el2) { unset_feature(env, ARM_FEATURE_EL2); } if (!cpu->has_pmu) { unset_feature(env, ARM_FEATURE_PMU); } if (arm_feature(env, ARM_FEATURE_PMU)) { pmu_init(cpu); if (!kvm_enabled()) { arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); } #ifndef CONFIG_USER_ONLY cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, cpu); #endif } else { cpu->id_aa64dfr0 &= ~0xf00; cpu->pmceid0 = 0; cpu->pmceid1 = 0; } if (!arm_feature(env, ARM_FEATURE_EL2)) { /* Disable the hypervisor feature bits in the processor feature * registers if we don't have EL2. These are id_pfr1[15:12] and * id_aa64pfr0_el1[11:8]. */ cpu->isar.id_aa64pfr0 &= ~0xf00; cpu->id_pfr1 &= ~0xf000; } /* MPU can be configured out of a PMSA CPU either by setting has-mpu * to false or by setting pmsav7-dregion to 0. */ if (!cpu->has_mpu) { cpu->pmsav7_dregion = 0; } if (cpu->pmsav7_dregion == 0) { cpu->has_mpu = false; } if (arm_feature(env, ARM_FEATURE_PMSA) && arm_feature(env, ARM_FEATURE_V7)) { uint32_t nr = cpu->pmsav7_dregion; if (nr > 0xff) { error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); return; } if (nr) { if (arm_feature(env, ARM_FEATURE_V8)) { /* PMSAv8 */ env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); } } else { env->pmsav7.drbar = g_new0(uint32_t, nr); env->pmsav7.drsr = g_new0(uint32_t, nr); env->pmsav7.dracr = g_new0(uint32_t, nr); } } } if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { uint32_t nr = cpu->sau_sregion; if (nr > 0xff) { error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); return; } if (nr) { env->sau.rbar = g_new0(uint32_t, nr); env->sau.rlar = g_new0(uint32_t, nr); } } if (arm_feature(env, ARM_FEATURE_EL3)) { set_feature(env, ARM_FEATURE_VBAR); } register_cp_regs_for_features(cpu); arm_cpu_register_gdb_regs_for_features(cpu); init_cpreg_list(cpu); #ifndef CONFIG_USER_ONLY if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) { cs->num_ases = 2; if (!cpu->secure_memory) { cpu->secure_memory = cs->memory; } cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", cpu->secure_memory); } else { cs->num_ases = 1; } cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); /* No core_count specified, default to smp_cpus. */ if (cpu->core_count == -1) { cpu->core_count = smp_cpus; } #endif qemu_init_vcpu(cs); cpu_reset(cs); acc->parent_realize(dev, errp); } static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) { ObjectClass *oc; char *typename; char **cpuname; const char *cpunamestr; cpuname = g_strsplit(cpu_model, ",", 1); cpunamestr = cpuname[0]; #ifdef CONFIG_USER_ONLY /* For backwards compatibility usermode emulation allows "-cpu any", * which has the same semantics as "-cpu max". */ if (!strcmp(cpunamestr, "any")) { cpunamestr = "max"; } #endif typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); oc = object_class_by_name(typename); g_strfreev(cpuname); g_free(typename); if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || object_class_is_abstract(oc)) { return NULL; } return oc; } /* CPU models. These are not needed for the AArch64 linux-user build. */ #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) static void arm926_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,arm926"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_VFP); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); cpu->midr = 0x41069265; cpu->reset_fpsid = 0x41011090; cpu->ctr = 0x1dd20d2; cpu->reset_sctlr = 0x00090078; /* * ARMv5 does not have the ID_ISAR registers, but we can still * set the field to indicate Jazelle support within QEMU. */ cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1); } static void arm946_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,arm946"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_PMSA); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); cpu->midr = 0x41059461; cpu->ctr = 0x0f004006; cpu->reset_sctlr = 0x00000078; } static void arm1026_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,arm1026"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_VFP); set_feature(&cpu->env, ARM_FEATURE_AUXCR); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); cpu->midr = 0x4106a262; cpu->reset_fpsid = 0x410110a0; cpu->ctr = 0x1dd20d2; cpu->reset_sctlr = 0x00090078; cpu->reset_auxcr = 1; /* * ARMv5 does not have the ID_ISAR registers, but we can still * set the field to indicate Jazelle support within QEMU. */ cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1); { /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */ ARMCPRegInfo ifar = { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns), .resetvalue = 0 }; define_one_arm_cp_reg(cpu, &ifar); } } static void arm1136_r2_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an * older core than plain "arm1136". In particular this does not * have the v6K features. * These ID register values are correct for 1136 but may be wrong * for 1136_r2 (in particular r0p2 does not actually implement most * of the ID registers). */ cpu->dtb_compatible = "arm,arm1136"; set_feature(&cpu->env, ARM_FEATURE_V6); set_feature(&cpu->env, ARM_FEATURE_VFP); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); cpu->midr = 0x4107b362; cpu->reset_fpsid = 0x410120b4; cpu->isar.mvfr0 = 0x11111111; cpu->isar.mvfr1 = 0x00000000; cpu->ctr = 0x1dd20d2; cpu->reset_sctlr = 0x00050078; cpu->id_pfr0 = 0x111; cpu->id_pfr1 = 0x1; cpu->id_dfr0 = 0x2; cpu->id_afr0 = 0x3; cpu->id_mmfr0 = 0x01130003; cpu->id_mmfr1 = 0x10030302; cpu->id_mmfr2 = 0x01222110; cpu->isar.id_isar0 = 0x00140011; cpu->isar.id_isar1 = 0x12002111; cpu->isar.id_isar2 = 0x11231111; cpu->isar.id_isar3 = 0x01102131; cpu->isar.id_isar4 = 0x141; cpu->reset_auxcr = 7; } static void arm1136_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,arm1136"; set_feature(&cpu->env, ARM_FEATURE_V6K); set_feature(&cpu->env, ARM_FEATURE_V6); set_feature(&cpu->env, ARM_FEATURE_VFP); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); cpu->midr = 0x4117b363; cpu->reset_fpsid = 0x410120b4; cpu->isar.mvfr0 = 0x11111111; cpu->isar.mvfr1 = 0x00000000; cpu->ctr = 0x1dd20d2; cpu->reset_sctlr = 0x00050078; cpu->id_pfr0 = 0x111; cpu->id_pfr1 = 0x1; cpu->id_dfr0 = 0x2; cpu->id_afr0 = 0x3; cpu->id_mmfr0 = 0x01130003; cpu->id_mmfr1 = 0x10030302; cpu->id_mmfr2 = 0x01222110; cpu->isar.id_isar0 = 0x00140011; cpu->isar.id_isar1 = 0x12002111; cpu->isar.id_isar2 = 0x11231111; cpu->isar.id_isar3 = 0x01102131; cpu->isar.id_isar4 = 0x141; cpu->reset_auxcr = 7; } static void arm1176_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,arm1176"; set_feature(&cpu->env, ARM_FEATURE_V6K); set_feature(&cpu->env, ARM_FEATURE_VFP); set_feature(&cpu->env, ARM_FEATURE_VAPA); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); set_feature(&cpu->env, ARM_FEATURE_EL3); cpu->midr = 0x410fb767; cpu->reset_fpsid = 0x410120b5; cpu->isar.mvfr0 = 0x11111111; cpu->isar.mvfr1 = 0x00000000; cpu->ctr = 0x1dd20d2; cpu->reset_sctlr = 0x00050078; cpu->id_pfr0 = 0x111; cpu->id_pfr1 = 0x11; cpu->id_dfr0 = 0x33; cpu->id_afr0 = 0; cpu->id_mmfr0 = 0x01130003; cpu->id_mmfr1 = 0x10030302; cpu->id_mmfr2 = 0x01222100; cpu->isar.id_isar0 = 0x0140011; cpu->isar.id_isar1 = 0x12002111; cpu->isar.id_isar2 = 0x11231121; cpu->isar.id_isar3 = 0x01102131; cpu->isar.id_isar4 = 0x01141; cpu->reset_auxcr = 7; } static void arm11mpcore_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,arm11mpcore"; set_feature(&cpu->env, ARM_FEATURE_V6K); set_feature(&cpu->env, ARM_FEATURE_VFP); set_feature(&cpu->env, ARM_FEATURE_VAPA); set_feature(&cpu->env, ARM_FEATURE_MPIDR); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); cpu->midr = 0x410fb022; cpu->reset_fpsid = 0x410120b4; cpu->isar.mvfr0 = 0x11111111; cpu->isar.mvfr1 = 0x00000000; cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */ cpu->id_pfr0 = 0x111; cpu->id_pfr1 = 0x1; cpu->id_dfr0 = 0; cpu->id_afr0 = 0x2; cpu->id_mmfr0 = 0x01100103; cpu->id_mmfr1 = 0x10020302; cpu->id_mmfr2 = 0x01222000; cpu->isar.id_isar0 = 0x00100011; cpu->isar.id_isar1 = 0x12002111; cpu->isar.id_isar2 = 0x11221011; cpu->isar.id_isar3 = 0x01102131; cpu->isar.id_isar4 = 0x141; cpu->reset_auxcr = 1; } static void cortex_m0_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); set_feature(&cpu->env, ARM_FEATURE_V6); set_feature(&cpu->env, ARM_FEATURE_M); cpu->midr = 0x410cc200; } static void cortex_m3_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); set_feature(&cpu->env, ARM_FEATURE_V7); set_feature(&cpu->env, ARM_FEATURE_M); set_feature(&cpu->env, ARM_FEATURE_M_MAIN); cpu->midr = 0x410fc231; cpu->pmsav7_dregion = 8; cpu->id_pfr0 = 0x00000030; cpu->id_pfr1 = 0x00000200; cpu->id_dfr0 = 0x00100000; cpu->id_afr0 = 0x00000000; cpu->id_mmfr0 = 0x00000030; cpu->id_mmfr1 = 0x00000000; cpu->id_mmfr2 = 0x00000000; cpu->id_mmfr3 = 0x00000000; cpu->isar.id_isar0 = 0x01141110; cpu->isar.id_isar1 = 0x02111000; cpu->isar.id_isar2 = 0x21112231; cpu->isar.id_isar3 = 0x01111110; cpu->isar.id_isar4 = 0x01310102; cpu->isar.id_isar5 = 0x00000000; cpu->isar.id_isar6 = 0x00000000; } static void cortex_m4_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); set_feature(&cpu->env, ARM_FEATURE_V7); set_feature(&cpu->env, ARM_FEATURE_M); set_feature(&cpu->env, ARM_FEATURE_M_MAIN); set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); cpu->midr = 0x410fc240; /* r0p0 */ cpu->pmsav7_dregion = 8; cpu->id_pfr0 = 0x00000030; cpu->id_pfr1 = 0x00000200; cpu->id_dfr0 = 0x00100000; cpu->id_afr0 = 0x00000000; cpu->id_mmfr0 = 0x00000030; cpu->id_mmfr1 = 0x00000000; cpu->id_mmfr2 = 0x00000000; cpu->id_mmfr3 = 0x00000000; cpu->isar.id_isar0 = 0x01141110; cpu->isar.id_isar1 = 0x02111000; cpu->isar.id_isar2 = 0x21112231; cpu->isar.id_isar3 = 0x01111110; cpu->isar.id_isar4 = 0x01310102; cpu->isar.id_isar5 = 0x00000000; cpu->isar.id_isar6 = 0x00000000; } static void cortex_m33_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_M); set_feature(&cpu->env, ARM_FEATURE_M_MAIN); set_feature(&cpu->env, ARM_FEATURE_M_SECURITY); set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); cpu->midr = 0x410fd213; /* r0p3 */ cpu->pmsav7_dregion = 16; cpu->sau_sregion = 8; cpu->id_pfr0 = 0x00000030; cpu->id_pfr1 = 0x00000210; cpu->id_dfr0 = 0x00200000; cpu->id_afr0 = 0x00000000; cpu->id_mmfr0 = 0x00101F40; cpu->id_mmfr1 = 0x00000000; cpu->id_mmfr2 = 0x01000000; cpu->id_mmfr3 = 0x00000000; cpu->isar.id_isar0 = 0x01101110; cpu->isar.id_isar1 = 0x02212000; cpu->isar.id_isar2 = 0x20232232; cpu->isar.id_isar3 = 0x01111131; cpu->isar.id_isar4 = 0x01310132; cpu->isar.id_isar5 = 0x00000000; cpu->isar.id_isar6 = 0x00000000; cpu->clidr = 0x00000000; cpu->ctr = 0x8000c000; } static void arm_v7m_class_init(ObjectClass *oc, void *data) { ARMCPUClass *acc = ARM_CPU_CLASS(oc); CPUClass *cc = CPU_CLASS(oc); acc->info = data; #ifndef CONFIG_USER_ONLY cc->do_interrupt = arm_v7m_cpu_do_interrupt; #endif cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt; } static const ARMCPRegInfo cortexr5_cp_reginfo[] = { /* Dummy the TCM region regs for the moment */ { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST }, { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST }, { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, REGINFO_SENTINEL }; static void cortex_r5_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); set_feature(&cpu->env, ARM_FEATURE_V7); set_feature(&cpu->env, ARM_FEATURE_V7MP); set_feature(&cpu->env, ARM_FEATURE_PMSA); cpu->midr = 0x411fc153; /* r1p3 */ cpu->id_pfr0 = 0x0131; cpu->id_pfr1 = 0x001; cpu->id_dfr0 = 0x010400; cpu->id_afr0 = 0x0; cpu->id_mmfr0 = 0x0210030; cpu->id_mmfr1 = 0x00000000; cpu->id_mmfr2 = 0x01200000; cpu->id_mmfr3 = 0x0211; cpu->isar.id_isar0 = 0x02101111; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232141; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x0010142; cpu->isar.id_isar5 = 0x0; cpu->isar.id_isar6 = 0x0; cpu->mp_is_up = true; cpu->pmsav7_dregion = 16; define_arm_cp_regs(cpu, cortexr5_cp_reginfo); } static void cortex_r5f_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cortex_r5_initfn(obj); set_feature(&cpu->env, ARM_FEATURE_VFP3); } static const ARMCPRegInfo cortexa8_cp_reginfo[] = { { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; static void cortex_a8_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a8"; set_feature(&cpu->env, ARM_FEATURE_V7); set_feature(&cpu->env, ARM_FEATURE_VFP3); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); set_feature(&cpu->env, ARM_FEATURE_EL3); cpu->midr = 0x410fc080; cpu->reset_fpsid = 0x410330c0; cpu->isar.mvfr0 = 0x11110222; cpu->isar.mvfr1 = 0x00011111; cpu->ctr = 0x82048004; cpu->reset_sctlr = 0x00c50078; cpu->id_pfr0 = 0x1031; cpu->id_pfr1 = 0x11; cpu->id_dfr0 = 0x400; cpu->id_afr0 = 0; cpu->id_mmfr0 = 0x31100003; cpu->id_mmfr1 = 0x20000000; cpu->id_mmfr2 = 0x01202000; cpu->id_mmfr3 = 0x11; cpu->isar.id_isar0 = 0x00101111; cpu->isar.id_isar1 = 0x12112111; cpu->isar.id_isar2 = 0x21232031; cpu->isar.id_isar3 = 0x11112131; cpu->isar.id_isar4 = 0x00111142; cpu->dbgdidr = 0x15141000; cpu->clidr = (1 << 27) | (2 << 24) | 3; cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ cpu->reset_auxcr = 2; define_arm_cp_regs(cpu, cortexa8_cp_reginfo); } static const ARMCPRegInfo cortexa9_cp_reginfo[] = { /* power_control should be set to maximum latency. Again, * default to 0 and set by private hook */ { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, /* TLB lockdown control */ { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, REGINFO_SENTINEL }; static void cortex_a9_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a9"; set_feature(&cpu->env, ARM_FEATURE_V7); set_feature(&cpu->env, ARM_FEATURE_VFP3); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); set_feature(&cpu->env, ARM_FEATURE_EL3); /* Note that A9 supports the MP extensions even for * A9UP and single-core A9MP (which are both different * and valid configurations; we don't model A9UP). */ set_feature(&cpu->env, ARM_FEATURE_V7MP); set_feature(&cpu->env, ARM_FEATURE_CBAR); cpu->midr = 0x410fc090; cpu->reset_fpsid = 0x41033090; cpu->isar.mvfr0 = 0x11110222; cpu->isar.mvfr1 = 0x01111111; cpu->ctr = 0x80038003; cpu->reset_sctlr = 0x00c50078; cpu->id_pfr0 = 0x1031; cpu->id_pfr1 = 0x11; cpu->id_dfr0 = 0x000; cpu->id_afr0 = 0; cpu->id_mmfr0 = 0x00100103; cpu->id_mmfr1 = 0x20000000; cpu->id_mmfr2 = 0x01230000; cpu->id_mmfr3 = 0x00002111; cpu->isar.id_isar0 = 0x00101111; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232041; cpu->isar.id_isar3 = 0x11112131; cpu->isar.id_isar4 = 0x00111142; cpu->dbgdidr = 0x35141000; cpu->clidr = (1 << 27) | (1 << 24) | 3; cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ define_arm_cp_regs(cpu, cortexa9_cp_reginfo); } #ifndef CONFIG_USER_ONLY static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) { /* Linux wants the number of processors from here. * Might as well set the interrupt-controller bit too. */ return ((smp_cpus - 1) << 24) | (1 << 23); } #endif static const ARMCPRegInfo cortexa15_cp_reginfo[] = { #ifndef CONFIG_USER_ONLY { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, .writefn = arm_cp_write_ignore, }, #endif { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; static void cortex_a7_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a7"; set_feature(&cpu->env, ARM_FEATURE_V7VE); set_feature(&cpu->env, ARM_FEATURE_VFP4); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; cpu->midr = 0x410fc075; cpu->reset_fpsid = 0x41023075; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x11111111; cpu->ctr = 0x84448003; cpu->reset_sctlr = 0x00c50078; cpu->id_pfr0 = 0x00001131; cpu->id_pfr1 = 0x00011011; cpu->id_dfr0 = 0x02010555; cpu->id_afr0 = 0x00000000; cpu->id_mmfr0 = 0x10101105; cpu->id_mmfr1 = 0x40000000; cpu->id_mmfr2 = 0x01240000; cpu->id_mmfr3 = 0x02102211; /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but * table 4-41 gives 0x02101110, which includes the arm div insns. */ cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232041; cpu->isar.id_isar3 = 0x11112131; cpu->isar.id_isar4 = 0x10011142; cpu->dbgdidr = 0x3515f005; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ } static void cortex_a15_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,cortex-a15"; set_feature(&cpu->env, ARM_FEATURE_V7VE); set_feature(&cpu->env, ARM_FEATURE_VFP4); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; cpu->midr = 0x412fc0f1; cpu->reset_fpsid = 0x410430f0; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x11111111; cpu->ctr = 0x8444c004; cpu->reset_sctlr = 0x00c50078; cpu->id_pfr0 = 0x00001131; cpu->id_pfr1 = 0x00011011; cpu->id_dfr0 = 0x02010555; cpu->id_afr0 = 0x00000000; cpu->id_mmfr0 = 0x10201105; cpu->id_mmfr1 = 0x20000000; cpu->id_mmfr2 = 0x01240000; cpu->id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232041; cpu->isar.id_isar3 = 0x11112131; cpu->isar.id_isar4 = 0x10011142; cpu->dbgdidr = 0x3515f021; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ define_arm_cp_regs(cpu, cortexa15_cp_reginfo); } static void ti925t_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); set_feature(&cpu->env, ARM_FEATURE_V4T); set_feature(&cpu->env, ARM_FEATURE_OMAPCP); cpu->midr = ARM_CPUID_TI925T; cpu->ctr = 0x5109149; cpu->reset_sctlr = 0x00000070; } static void sa1100_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "intel,sa1100"; set_feature(&cpu->env, ARM_FEATURE_STRONGARM); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); cpu->midr = 0x4401A11B; cpu->reset_sctlr = 0x00000070; } static void sa1110_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); set_feature(&cpu->env, ARM_FEATURE_STRONGARM); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); cpu->midr = 0x6901B119; cpu->reset_sctlr = 0x00000070; } static void pxa250_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); cpu->midr = 0x69052100; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } static void pxa255_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); cpu->midr = 0x69052d00; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } static void pxa260_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); cpu->midr = 0x69052903; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } static void pxa261_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); cpu->midr = 0x69052d05; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } static void pxa262_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); cpu->midr = 0x69052d06; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } static void pxa270a0_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); set_feature(&cpu->env, ARM_FEATURE_IWMMXT); cpu->midr = 0x69054110; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } static void pxa270a1_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); set_feature(&cpu->env, ARM_FEATURE_IWMMXT); cpu->midr = 0x69054111; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } static void pxa270b0_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); set_feature(&cpu->env, ARM_FEATURE_IWMMXT); cpu->midr = 0x69054112; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } static void pxa270b1_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); set_feature(&cpu->env, ARM_FEATURE_IWMMXT); cpu->midr = 0x69054113; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } static void pxa270c0_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); set_feature(&cpu->env, ARM_FEATURE_IWMMXT); cpu->midr = 0x69054114; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } static void pxa270c5_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "marvell,xscale"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_XSCALE); set_feature(&cpu->env, ARM_FEATURE_IWMMXT); cpu->midr = 0x69054117; cpu->ctr = 0xd172172; cpu->reset_sctlr = 0x00000078; } #ifndef TARGET_AARCH64 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); * otherwise, a CPU with as many features enabled as our emulation supports. * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c; * this only needs to handle 32 bits. */ static void arm_max_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); if (kvm_enabled()) { kvm_arm_set_cpu_features_from_host(cpu); } else { cortex_a15_initfn(obj); #ifdef CONFIG_USER_ONLY /* We don't set these in system emulation mode for the moment, * since we don't correctly set (all of) the ID registers to * advertise them. */ set_feature(&cpu->env, ARM_FEATURE_V8); { uint32_t t; t = cpu->isar.id_isar5; t = FIELD_DP32(t, ID_ISAR5, AES, 2); t = FIELD_DP32(t, ID_ISAR5, SHA1, 1); t = FIELD_DP32(t, ID_ISAR5, SHA2, 1); t = FIELD_DP32(t, ID_ISAR5, CRC32, 1); t = FIELD_DP32(t, ID_ISAR5, RDM, 1); t = FIELD_DP32(t, ID_ISAR5, VCMA, 1); cpu->isar.id_isar5 = t; t = cpu->isar.id_isar6; t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1); t = FIELD_DP32(t, ID_ISAR6, DP, 1); t = FIELD_DP32(t, ID_ISAR6, FHM, 1); cpu->isar.id_isar6 = t; t = cpu->id_mmfr4; t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */ cpu->id_mmfr4 = t; } #endif } } #endif #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ struct ARMCPUInfo { const char *name; void (*initfn)(Object *obj); void (*class_init)(ObjectClass *oc, void *data); }; static const ARMCPUInfo arm_cpus[] = { #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) { .name = "arm926", .initfn = arm926_initfn }, { .name = "arm946", .initfn = arm946_initfn }, { .name = "arm1026", .initfn = arm1026_initfn }, /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an * older core than plain "arm1136". In particular this does not * have the v6K features. */ { .name = "arm1136-r2", .initfn = arm1136_r2_initfn }, { .name = "arm1136", .initfn = arm1136_initfn }, { .name = "arm1176", .initfn = arm1176_initfn }, { .name = "arm11mpcore", .initfn = arm11mpcore_initfn }, { .name = "cortex-m0", .initfn = cortex_m0_initfn, .class_init = arm_v7m_class_init }, { .name = "cortex-m3", .initfn = cortex_m3_initfn, .class_init = arm_v7m_class_init }, { .name = "cortex-m4", .initfn = cortex_m4_initfn, .class_init = arm_v7m_class_init }, { .name = "cortex-m33", .initfn = cortex_m33_initfn, .class_init = arm_v7m_class_init }, { .name = "cortex-r5", .initfn = cortex_r5_initfn }, { .name = "cortex-r5f", .initfn = cortex_r5f_initfn }, { .name = "cortex-a7", .initfn = cortex_a7_initfn }, { .name = "cortex-a8", .initfn = cortex_a8_initfn }, { .name = "cortex-a9", .initfn = cortex_a9_initfn }, { .name = "cortex-a15", .initfn = cortex_a15_initfn }, { .name = "ti925t", .initfn = ti925t_initfn }, { .name = "sa1100", .initfn = sa1100_initfn }, { .name = "sa1110", .initfn = sa1110_initfn }, { .name = "pxa250", .initfn = pxa250_initfn }, { .name = "pxa255", .initfn = pxa255_initfn }, { .name = "pxa260", .initfn = pxa260_initfn }, { .name = "pxa261", .initfn = pxa261_initfn }, { .name = "pxa262", .initfn = pxa262_initfn }, /* "pxa270" is an alias for "pxa270-a0" */ { .name = "pxa270", .initfn = pxa270a0_initfn }, { .name = "pxa270-a0", .initfn = pxa270a0_initfn }, { .name = "pxa270-a1", .initfn = pxa270a1_initfn }, { .name = "pxa270-b0", .initfn = pxa270b0_initfn }, { .name = "pxa270-b1", .initfn = pxa270b1_initfn }, { .name = "pxa270-c0", .initfn = pxa270c0_initfn }, { .name = "pxa270-c5", .initfn = pxa270c5_initfn }, #ifndef TARGET_AARCH64 { .name = "max", .initfn = arm_max_initfn }, #endif #ifdef CONFIG_USER_ONLY { .name = "any", .initfn = arm_max_initfn }, #endif #endif { .name = NULL } }; static Property arm_cpu_properties[] = { DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false), DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0), DEFINE_PROP_UINT64("mp-affinity", ARMCPU, mp_affinity, ARM64_AFFINITY_INVALID), DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), DEFINE_PROP_END_OF_LIST() }; #ifdef CONFIG_USER_ONLY static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw, int mmu_idx) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; env->exception.vaddress = address; if (rw == 2) { cs->exception_index = EXCP_PREFETCH_ABORT; } else { cs->exception_index = EXCP_DATA_ABORT; } return 1; } #endif static gchar *arm_gdb_arch_name(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (arm_feature(env, ARM_FEATURE_IWMMXT)) { return g_strdup("iwmmxt"); } return g_strdup("arm"); } static void arm_cpu_class_init(ObjectClass *oc, void *data) { ARMCPUClass *acc = ARM_CPU_CLASS(oc); CPUClass *cc = CPU_CLASS(acc); DeviceClass *dc = DEVICE_CLASS(oc); device_class_set_parent_realize(dc, arm_cpu_realizefn, &acc->parent_realize); dc->props = arm_cpu_properties; acc->parent_reset = cc->reset; cc->reset = arm_cpu_reset; cc->class_by_name = arm_cpu_class_by_name; cc->has_work = arm_cpu_has_work; cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; cc->dump_state = arm_cpu_dump_state; cc->set_pc = arm_cpu_set_pc; cc->synchronize_from_tb = arm_cpu_synchronize_from_tb; cc->gdb_read_register = arm_cpu_gdb_read_register; cc->gdb_write_register = arm_cpu_gdb_write_register; #ifdef CONFIG_USER_ONLY cc->handle_mmu_fault = arm_cpu_handle_mmu_fault; #else cc->do_interrupt = arm_cpu_do_interrupt; cc->do_unaligned_access = arm_cpu_do_unaligned_access; cc->do_transaction_failed = arm_cpu_do_transaction_failed; cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; cc->asidx_from_attrs = arm_asidx_from_attrs; cc->vmsd = &vmstate_arm_cpu; cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; cc->write_elf64_note = arm_cpu_write_elf64_note; cc->write_elf32_note = arm_cpu_write_elf32_note; #endif cc->gdb_num_core_regs = 26; cc->gdb_core_xml_file = "arm-core.xml"; cc->gdb_arch_name = arm_gdb_arch_name; cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; cc->gdb_stop_before_watchpoint = true; cc->debug_excp_handler = arm_debug_excp_handler; cc->debug_check_watchpoint = arm_debug_check_watchpoint; #if !defined(CONFIG_USER_ONLY) cc->adjust_watchpoint_address = arm_adjust_watchpoint_address; #endif cc->disas_set_info = arm_disas_set_info; #ifdef CONFIG_TCG cc->tcg_initialize = arm_translate_init; #endif } #ifdef CONFIG_KVM static void arm_host_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); kvm_arm_set_cpu_features_from_host(cpu); arm_cpu_post_init(obj); } static const TypeInfo host_arm_cpu_type_info = { .name = TYPE_ARM_HOST_CPU, #ifdef TARGET_AARCH64 .parent = TYPE_AARCH64_CPU, #else .parent = TYPE_ARM_CPU, #endif .instance_init = arm_host_initfn, }; #endif static void arm_cpu_instance_init(Object *obj) { ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); acc->info->initfn(obj); arm_cpu_post_init(obj); } static void cpu_register_class_init(ObjectClass *oc, void *data) { ARMCPUClass *acc = ARM_CPU_CLASS(oc); acc->info = data; } static void cpu_register(const ARMCPUInfo *info) { TypeInfo type_info = { .parent = TYPE_ARM_CPU, .instance_size = sizeof(ARMCPU), .instance_init = arm_cpu_instance_init, .class_size = sizeof(ARMCPUClass), .class_init = info->class_init ?: cpu_register_class_init, .class_data = (void *)info, }; type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); type_register(&type_info); g_free((void *)type_info.name); } static const TypeInfo arm_cpu_type_info = { .name = TYPE_ARM_CPU, .parent = TYPE_CPU, .instance_size = sizeof(ARMCPU), .instance_init = arm_cpu_initfn, .instance_finalize = arm_cpu_finalizefn, .abstract = true, .class_size = sizeof(ARMCPUClass), .class_init = arm_cpu_class_init, }; static const TypeInfo idau_interface_type_info = { .name = TYPE_IDAU_INTERFACE, .parent = TYPE_INTERFACE, .class_size = sizeof(IDAUInterfaceClass), }; static void arm_cpu_register_types(void) { const ARMCPUInfo *info = arm_cpus; type_register_static(&arm_cpu_type_info); type_register_static(&idau_interface_type_info); while (info->name) { cpu_register(info); info++; } #ifdef CONFIG_KVM type_register_static(&host_arm_cpu_type_info); #endif } type_init(arm_cpu_register_types)