/* * QEMU ARM CPU * * Copyright (c) 2012 SUSE LINUX Products GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * */ #include "qemu/osdep.h" #include "qemu/qemu-print.h" #include "qemu/timer.h" #include "qemu/log.h" #include "exec/page-vary.h" #include "target/arm/idau.h" #include "qemu/module.h" #include "qapi/error.h" #include "cpu.h" #ifdef CONFIG_TCG #include "hw/core/tcg-cpu-ops.h" #endif /* CONFIG_TCG */ #include "internals.h" #include "cpu-features.h" #include "exec/exec-all.h" #include "hw/qdev-properties.h" #if !defined(CONFIG_USER_ONLY) #include "hw/loader.h" #include "hw/boards.h" #ifdef CONFIG_TCG #include "hw/intc/armv7m_nvic.h" #endif /* CONFIG_TCG */ #endif /* !CONFIG_USER_ONLY */ #include "sysemu/tcg.h" #include "sysemu/qtest.h" #include "sysemu/hw_accel.h" #include "kvm_arm.h" #include "disas/capstone.h" #include "fpu/softfloat.h" #include "cpregs.h" #include "target/arm/cpu-qom.h" #include "target/arm/gtimer.h" static void arm_cpu_set_pc(CPUState *cs, vaddr value) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (is_a64(env)) { env->pc = value; env->thumb = false; } else { env->regs[15] = value & ~1; env->thumb = value & 1; } } static vaddr arm_cpu_get_pc(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (is_a64(env)) { return env->pc; } else { return env->regs[15]; } } #ifdef CONFIG_TCG void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb) { /* The program counter is always up to date with CF_PCREL. */ if (!(tb_cflags(tb) & CF_PCREL)) { CPUARMState *env = cpu_env(cs); /* * It's OK to look at env for the current mode here, because it's * never possible for an AArch64 TB to chain to an AArch32 TB. */ if (is_a64(env)) { env->pc = tb->pc; } else { env->regs[15] = tb->pc; } } } void arm_restore_state_to_opc(CPUState *cs, const TranslationBlock *tb, const uint64_t *data) { CPUARMState *env = cpu_env(cs); if (is_a64(env)) { if (tb_cflags(tb) & CF_PCREL) { env->pc = (env->pc & TARGET_PAGE_MASK) | data[0]; } else { env->pc = data[0]; } env->condexec_bits = 0; env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; } else { if (tb_cflags(tb) & CF_PCREL) { env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0]; } else { env->regs[15] = data[0]; } env->condexec_bits = data[1]; env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; } } #endif /* CONFIG_TCG */ static bool arm_cpu_has_work(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); return (cpu->power_state != PSCI_OFF) && cs->interrupt_request & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR | CPU_INTERRUPT_EXITTB); } static int arm_cpu_mmu_index(CPUState *cs, bool ifetch) { return arm_env_mmu_index(cpu_env(cs)); } void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void *opaque) { ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); entry->hook = hook; entry->opaque = opaque; QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); } void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void *opaque) { ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); entry->hook = hook; entry->opaque = opaque; QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); } static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) { /* Reset a single ARMCPRegInfo register */ ARMCPRegInfo *ri = value; ARMCPU *cpu = opaque; if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) { return; } if (ri->resetfn) { ri->resetfn(&cpu->env, ri); return; } /* A zero offset is never possible as it would be regs[0] * so we use it to indicate that reset is being handled elsewhere. * This is basically only used for fields in non-core coprocessors * (like the pxa2xx ones). */ if (!ri->fieldoffset) { return; } if (cpreg_field_is_64bit(ri)) { CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; } else { CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; } } static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) { /* Purely an assertion check: we've already done reset once, * so now check that running the reset for the cpreg doesn't * change its value. This traps bugs where two different cpregs * both try to reset the same state field but to different values. */ ARMCPRegInfo *ri = value; ARMCPU *cpu = opaque; uint64_t oldvalue, newvalue; if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { return; } oldvalue = read_raw_cp_reg(&cpu->env, ri); cp_reg_reset(key, value, opaque); newvalue = read_raw_cp_reg(&cpu->env, ri); assert(oldvalue == newvalue); } static void arm_cpu_reset_hold(Object *obj) { CPUState *s = CPU(obj); ARMCPU *cpu = ARM_CPU(s); ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); CPUARMState *env = &cpu->env; if (acc->parent_phases.hold) { acc->parent_phases.hold(obj); } memset(env, 0, offsetof(CPUARMState, end_reset_fields)); g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON; if (arm_feature(env, ARM_FEATURE_IWMMXT)) { env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; } if (arm_feature(env, ARM_FEATURE_AARCH64)) { /* 64 bit CPUs always start in 64 bit mode */ env->aarch64 = true; #if defined(CONFIG_USER_ONLY) env->pstate = PSTATE_MODE_EL0t; /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; /* Enable all PAC keys. */ env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB); /* Trap on btype=3 for PACIxSP. */ env->cp15.sctlr_el[1] |= SCTLR_BT0; /* Trap on implementation defined registers. */ if (cpu_isar_feature(aa64_tidcp1, cpu)) { env->cp15.sctlr_el[1] |= SCTLR_TIDCP; } /* and to the FP/Neon instructions */ env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, CPACR_EL1, FPEN, 3); /* and to the SVE instructions, with default vector length */ if (cpu_isar_feature(aa64_sve, cpu)) { env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, CPACR_EL1, ZEN, 3); env->vfp.zcr_el[1] = cpu->sve_default_vq - 1; } /* and for SME instructions, with default vector length, and TPIDR2 */ if (cpu_isar_feature(aa64_sme, cpu)) { env->cp15.sctlr_el[1] |= SCTLR_EnTP2; env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, CPACR_EL1, SMEN, 3); env->vfp.smcr_el[1] = cpu->sme_default_vq - 1; if (cpu_isar_feature(aa64_sme_fa64, cpu)) { env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1], SMCR, FA64, 1); } } /* * Enable 48-bit address space (TODO: take reserved_va into account). * Enable TBI0 but not TBI1. * Note that this must match useronly_clean_ptr. */ env->cp15.tcr_el[1] = 5 | (1ULL << 37); /* Enable MTE */ if (cpu_isar_feature(aa64_mte, cpu)) { /* Enable tag access, but leave TCF0 as No Effect (0). */ env->cp15.sctlr_el[1] |= SCTLR_ATA0; /* * Exclude all tags, so that tag 0 is always used. * This corresponds to Linux current->thread.gcr_incl = 0. * * Set RRND, so that helper_irg() will generate a seed later. * Here in cpu_reset(), the crypto subsystem has not yet been * initialized. */ env->cp15.gcr_el1 = 0x1ffff; } /* * Disable access to SCXTNUM_EL0 from CSV2_1p2. * This is not yet exposed from the Linux kernel in any way. */ env->cp15.sctlr_el[1] |= SCTLR_TSCXT; /* Disable access to Debug Communication Channel (DCC). */ env->cp15.mdscr_el1 |= 1 << 12; /* Enable FEAT_MOPS */ env->cp15.sctlr_el[1] |= SCTLR_MSCEN; #else /* Reset into the highest available EL */ if (arm_feature(env, ARM_FEATURE_EL3)) { env->pstate = PSTATE_MODE_EL3h; } else if (arm_feature(env, ARM_FEATURE_EL2)) { env->pstate = PSTATE_MODE_EL2h; } else { env->pstate = PSTATE_MODE_EL1h; } /* Sample rvbar at reset. */ env->cp15.rvbar = cpu->rvbar_prop; env->pc = env->cp15.rvbar; #endif } else { #if defined(CONFIG_USER_ONLY) /* Userspace expects access to cp10 and cp11 for FP/Neon */ env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, CPACR, CP10, 3); env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, CPACR, CP11, 3); #endif if (arm_feature(env, ARM_FEATURE_V8)) { env->cp15.rvbar = cpu->rvbar_prop; env->regs[15] = cpu->rvbar_prop; } } #if defined(CONFIG_USER_ONLY) env->uncached_cpsr = ARM_CPU_MODE_USR; /* For user mode we must enable access to coprocessors */ env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; if (arm_feature(env, ARM_FEATURE_IWMMXT)) { env->cp15.c15_cpar = 3; } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { env->cp15.c15_cpar = 1; } #else /* * If the highest available EL is EL2, AArch32 will start in Hyp * mode; otherwise it starts in SVC. Note that if we start in * AArch64 then these values in the uncached_cpsr will be ignored. */ if (arm_feature(env, ARM_FEATURE_EL2) && !arm_feature(env, ARM_FEATURE_EL3)) { env->uncached_cpsr = ARM_CPU_MODE_HYP; } else { env->uncached_cpsr = ARM_CPU_MODE_SVC; } env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently * executing as AArch32 then check if highvecs are enabled and * adjust the PC accordingly. */ if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { env->regs[15] = 0xFFFF0000; } env->vfp.xregs[ARM_VFP_FPEXC] = 0; #endif if (arm_feature(env, ARM_FEATURE_M)) { #ifndef CONFIG_USER_ONLY uint32_t initial_msp; /* Loaded from 0x0 */ uint32_t initial_pc; /* Loaded from 0x4 */ uint8_t *rom; uint32_t vecbase; #endif if (cpu_isar_feature(aa32_lob, cpu)) { /* * LTPSIZE is constant 4 if MVE not implemented, and resets * to an UNKNOWN value if MVE is implemented. We choose to * always reset to 4. */ env->v7m.ltpsize = 4; /* The LTPSIZE field in FPDSCR is constant and reads as 4. */ env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT; env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT; } if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { env->v7m.secure = true; } else { /* This bit resets to 0 if security is supported, but 1 if * it is not. The bit is not present in v7M, but we set it * here so we can avoid having to make checks on it conditional * on ARM_FEATURE_V8 (we don't let the guest see the bit). */ env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; /* * Set NSACR to indicate "NS access permitted to everything"; * this avoids having to have all the tests of it being * conditional on ARM_FEATURE_M_SECURITY. Note also that from * v8.1M the guest-visible value of NSACR in a CPU without the * Security Extension is 0xcff. */ env->v7m.nsacr = 0xcff; } /* In v7M the reset value of this bit is IMPDEF, but ARM recommends * that it resets to 1, so QEMU always does that rather than making * it dependent on CPU model. In v8M it is RES1. */ env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; if (arm_feature(env, ARM_FEATURE_V8)) { /* in v8M the NONBASETHRDENA bit [0] is RES1 */ env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; } if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; } if (cpu_isar_feature(aa32_vfp_simd, cpu)) { env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; } #ifndef CONFIG_USER_ONLY /* Unlike A/R profile, M profile defines the reset LR value */ env->regs[14] = 0xffffffff; env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80; /* Load the initial SP and PC from offset 0 and 4 in the vector table */ vecbase = env->v7m.vecbase[env->v7m.secure]; rom = rom_ptr_for_as(s->as, vecbase, 8); if (rom) { /* Address zero is covered by ROM which hasn't yet been * copied into physical memory. */ initial_msp = ldl_p(rom); initial_pc = ldl_p(rom + 4); } else { /* Address zero not covered by a ROM blob, or the ROM blob * is in non-modifiable memory and this is a second reset after * it got copied into memory. In the latter case, rom_ptr * will return a NULL pointer and we should use ldl_phys instead. */ initial_msp = ldl_phys(s->as, vecbase); initial_pc = ldl_phys(s->as, vecbase + 4); } qemu_log_mask(CPU_LOG_INT, "Loaded reset SP 0x%x PC 0x%x from vector table\n", initial_msp, initial_pc); env->regs[13] = initial_msp & 0xFFFFFFFC; env->regs[15] = initial_pc & ~1; env->thumb = initial_pc & 1; #else /* * For user mode we run non-secure and with access to the FPU. * The FPU context is active (ie does not need further setup) * and is owned by non-secure. */ env->v7m.secure = false; env->v7m.nsacr = 0xcff; env->v7m.cpacr[M_REG_NS] = 0xf0ffff; env->v7m.fpccr[M_REG_S] &= ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK); env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; #endif } /* M profile requires that reset clears the exclusive monitor; * A profile does not, but clearing it makes more sense than having it * set with an exclusive access on address zero. */ arm_clear_exclusive(env); if (arm_feature(env, ARM_FEATURE_PMSA)) { if (cpu->pmsav7_dregion > 0) { if (arm_feature(env, ARM_FEATURE_V8)) { memset(env->pmsav8.rbar[M_REG_NS], 0, sizeof(*env->pmsav8.rbar[M_REG_NS]) * cpu->pmsav7_dregion); memset(env->pmsav8.rlar[M_REG_NS], 0, sizeof(*env->pmsav8.rlar[M_REG_NS]) * cpu->pmsav7_dregion); if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { memset(env->pmsav8.rbar[M_REG_S], 0, sizeof(*env->pmsav8.rbar[M_REG_S]) * cpu->pmsav7_dregion); memset(env->pmsav8.rlar[M_REG_S], 0, sizeof(*env->pmsav8.rlar[M_REG_S]) * cpu->pmsav7_dregion); } } else if (arm_feature(env, ARM_FEATURE_V7)) { memset(env->pmsav7.drbar, 0, sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); memset(env->pmsav7.drsr, 0, sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); memset(env->pmsav7.dracr, 0, sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); } } if (cpu->pmsav8r_hdregion > 0) { memset(env->pmsav8.hprbar, 0, sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion); memset(env->pmsav8.hprlar, 0, sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion); } env->pmsav7.rnr[M_REG_NS] = 0; env->pmsav7.rnr[M_REG_S] = 0; env->pmsav8.mair0[M_REG_NS] = 0; env->pmsav8.mair0[M_REG_S] = 0; env->pmsav8.mair1[M_REG_NS] = 0; env->pmsav8.mair1[M_REG_S] = 0; } if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { if (cpu->sau_sregion > 0) { memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); } env->sau.rnr = 0; /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what * the Cortex-M33 does. */ env->sau.ctrl = 0; } set_flush_to_zero(1, &env->vfp.standard_fp_status); set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); set_default_nan_mode(1, &env->vfp.standard_fp_status); set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); set_float_detect_tininess(float_tininess_before_rounding, &env->vfp.fp_status); set_float_detect_tininess(float_tininess_before_rounding, &env->vfp.standard_fp_status); set_float_detect_tininess(float_tininess_before_rounding, &env->vfp.fp_status_f16); set_float_detect_tininess(float_tininess_before_rounding, &env->vfp.standard_fp_status_f16); #ifndef CONFIG_USER_ONLY if (kvm_enabled()) { kvm_arm_reset_vcpu(cpu); } #endif if (tcg_enabled()) { hw_breakpoint_update_all(cpu); hw_watchpoint_update_all(cpu); arm_rebuild_hflags(env); } } void arm_emulate_firmware_reset(CPUState *cpustate, int target_el) { ARMCPU *cpu = ARM_CPU(cpustate); CPUARMState *env = &cpu->env; bool have_el3 = arm_feature(env, ARM_FEATURE_EL3); bool have_el2 = arm_feature(env, ARM_FEATURE_EL2); /* * Check we have the EL we're aiming for. If that is the * highest implemented EL, then cpu_reset has already done * all the work. */ switch (target_el) { case 3: assert(have_el3); return; case 2: assert(have_el2); if (!have_el3) { return; } break; case 1: if (!have_el3 && !have_el2) { return; } break; default: g_assert_not_reached(); } if (have_el3) { /* * Set the EL3 state so code can run at EL2. This should match * the requirements set by Linux in its booting spec. */ if (env->aarch64) { env->cp15.scr_el3 |= SCR_RW; if (cpu_isar_feature(aa64_pauth, cpu)) { env->cp15.scr_el3 |= SCR_API | SCR_APK; } if (cpu_isar_feature(aa64_mte, cpu)) { env->cp15.scr_el3 |= SCR_ATA; } if (cpu_isar_feature(aa64_sve, cpu)) { env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK; env->vfp.zcr_el[3] = 0xf; } if (cpu_isar_feature(aa64_sme, cpu)) { env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK; env->cp15.scr_el3 |= SCR_ENTP2; env->vfp.smcr_el[3] = 0xf; } if (cpu_isar_feature(aa64_hcx, cpu)) { env->cp15.scr_el3 |= SCR_HXEN; } if (cpu_isar_feature(aa64_fgt, cpu)) { env->cp15.scr_el3 |= SCR_FGTEN; } } if (target_el == 2) { /* If the guest is at EL2 then Linux expects the HVC insn to work */ env->cp15.scr_el3 |= SCR_HCE; } /* Put CPU into non-secure state */ env->cp15.scr_el3 |= SCR_NS; /* Set NSACR.{CP11,CP10} so NS can access the FPU */ env->cp15.nsacr |= 3 << 10; } if (have_el2 && target_el < 2) { /* Set EL2 state so code can run at EL1. */ if (env->aarch64) { env->cp15.hcr_el2 |= HCR_RW; } } /* Set the CPU to the desired state */ if (env->aarch64) { env->pstate = aarch64_pstate_mode(target_el, true); } else { static const uint32_t mode_for_el[] = { 0, ARM_CPU_MODE_SVC, ARM_CPU_MODE_HYP, ARM_CPU_MODE_SVC, }; cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw); } } #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, unsigned int target_el, unsigned int cur_el, bool secure, uint64_t hcr_el2) { CPUARMState *env = cpu_env(cs); bool pstate_unmasked; bool unmasked = false; /* * Don't take exceptions if they target a lower EL. * This check should catch any exceptions that would not be taken * but left pending. */ if (cur_el > target_el) { return false; } switch (excp_idx) { case EXCP_FIQ: pstate_unmasked = !(env->daif & PSTATE_F); break; case EXCP_IRQ: pstate_unmasked = !(env->daif & PSTATE_I); break; case EXCP_VFIQ: if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { /* VFIQs are only taken when hypervized. */ return false; } return !(env->daif & PSTATE_F); case EXCP_VIRQ: if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { /* VIRQs are only taken when hypervized. */ return false; } return !(env->daif & PSTATE_I); case EXCP_VSERR: if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) { /* VIRQs are only taken when hypervized. */ return false; } return !(env->daif & PSTATE_A); default: g_assert_not_reached(); } /* * Use the target EL, current execution state and SCR/HCR settings to * determine whether the corresponding CPSR bit is used to mask the * interrupt. */ if ((target_el > cur_el) && (target_el != 1)) { /* Exceptions targeting a higher EL may not be maskable */ if (arm_feature(env, ARM_FEATURE_AARCH64)) { switch (target_el) { case 2: /* * According to ARM DDI 0487H.a, an interrupt can be masked * when HCR_E2H and HCR_TGE are both set regardless of the * current Security state. Note that we need to revisit this * part again once we need to support NMI. */ if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { unmasked = true; } break; case 3: /* Interrupt cannot be masked when the target EL is 3 */ unmasked = true; break; default: g_assert_not_reached(); } } else { /* * The old 32-bit-only environment has a more complicated * masking setup. HCR and SCR bits not only affect interrupt * routing but also change the behaviour of masking. */ bool hcr, scr; switch (excp_idx) { case EXCP_FIQ: /* * If FIQs are routed to EL3 or EL2 then there are cases where * we override the CPSR.F in determining if the exception is * masked or not. If neither of these are set then we fall back * to the CPSR.F setting otherwise we further assess the state * below. */ hcr = hcr_el2 & HCR_FMO; scr = (env->cp15.scr_el3 & SCR_FIQ); /* * When EL3 is 32-bit, the SCR.FW bit controls whether the * CPSR.F bit masks FIQ interrupts when taken in non-secure * state. If SCR.FW is set then FIQs can be masked by CPSR.F * when non-secure but only when FIQs are only routed to EL3. */ scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); break; case EXCP_IRQ: /* * When EL3 execution state is 32-bit, if HCR.IMO is set then * we may override the CPSR.I masking when in non-secure state. * The SCR.IRQ setting has already been taken into consideration * when setting the target EL, so it does not have a further * affect here. */ hcr = hcr_el2 & HCR_IMO; scr = false; break; default: g_assert_not_reached(); } if ((scr || hcr) && !secure) { unmasked = true; } } } /* * The PSTATE bits only mask the interrupt if we have not overridden the * ability above. */ return unmasked || pstate_unmasked; } static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { CPUClass *cc = CPU_GET_CLASS(cs); CPUARMState *env = cpu_env(cs); uint32_t cur_el = arm_current_el(env); bool secure = arm_is_secure(env); uint64_t hcr_el2 = arm_hcr_el2_eff(env); uint32_t target_el; uint32_t excp_idx; /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ if (interrupt_request & CPU_INTERRUPT_FIQ) { excp_idx = EXCP_FIQ; target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); if (arm_excp_unmasked(cs, excp_idx, target_el, cur_el, secure, hcr_el2)) { goto found; } } if (interrupt_request & CPU_INTERRUPT_HARD) { excp_idx = EXCP_IRQ; target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); if (arm_excp_unmasked(cs, excp_idx, target_el, cur_el, secure, hcr_el2)) { goto found; } } if (interrupt_request & CPU_INTERRUPT_VIRQ) { excp_idx = EXCP_VIRQ; target_el = 1; if (arm_excp_unmasked(cs, excp_idx, target_el, cur_el, secure, hcr_el2)) { goto found; } } if (interrupt_request & CPU_INTERRUPT_VFIQ) { excp_idx = EXCP_VFIQ; target_el = 1; if (arm_excp_unmasked(cs, excp_idx, target_el, cur_el, secure, hcr_el2)) { goto found; } } if (interrupt_request & CPU_INTERRUPT_VSERR) { excp_idx = EXCP_VSERR; target_el = 1; if (arm_excp_unmasked(cs, excp_idx, target_el, cur_el, secure, hcr_el2)) { /* Taking a virtual abort clears HCR_EL2.VSE */ env->cp15.hcr_el2 &= ~HCR_VSE; cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); goto found; } } return false; found: cs->exception_index = excp_idx; env->exception.target_el = target_el; cc->tcg_ops->do_interrupt(cs); return true; } #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ void arm_cpu_update_virq(ARMCPU *cpu) { /* * Update the interrupt level for VIRQ, which is the logical OR of * the HCR_EL2.VI bit and the input line level from the GIC. */ CPUARMState *env = &cpu->env; CPUState *cs = CPU(cpu); bool new_state = (env->cp15.hcr_el2 & HCR_VI) || (env->irq_line_state & CPU_INTERRUPT_VIRQ); if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { if (new_state) { cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); } } } void arm_cpu_update_vfiq(ARMCPU *cpu) { /* * Update the interrupt level for VFIQ, which is the logical OR of * the HCR_EL2.VF bit and the input line level from the GIC. */ CPUARMState *env = &cpu->env; CPUState *cs = CPU(cpu); bool new_state = (env->cp15.hcr_el2 & HCR_VF) || (env->irq_line_state & CPU_INTERRUPT_VFIQ); if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { if (new_state) { cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); } } } void arm_cpu_update_vserr(ARMCPU *cpu) { /* * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit. */ CPUARMState *env = &cpu->env; CPUState *cs = CPU(cpu); bool new_state = env->cp15.hcr_el2 & HCR_VSE; if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) { if (new_state) { cpu_interrupt(cs, CPU_INTERRUPT_VSERR); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); } } } #ifndef CONFIG_USER_ONLY static void arm_cpu_set_irq(void *opaque, int irq, int level) { ARMCPU *cpu = opaque; CPUARMState *env = &cpu->env; CPUState *cs = CPU(cpu); static const int mask[] = { [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ }; if (!arm_feature(env, ARM_FEATURE_EL2) && (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) { /* * The GIC might tell us about VIRQ and VFIQ state, but if we don't * have EL2 support we don't care. (Unless the guest is doing something * silly this will only be calls saying "level is still 0".) */ return; } if (level) { env->irq_line_state |= mask[irq]; } else { env->irq_line_state &= ~mask[irq]; } switch (irq) { case ARM_CPU_VIRQ: arm_cpu_update_virq(cpu); break; case ARM_CPU_VFIQ: arm_cpu_update_vfiq(cpu); break; case ARM_CPU_IRQ: case ARM_CPU_FIQ: if (level) { cpu_interrupt(cs, mask[irq]); } else { cpu_reset_interrupt(cs, mask[irq]); } break; default: g_assert_not_reached(); } } static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) { #ifdef CONFIG_KVM ARMCPU *cpu = opaque; CPUARMState *env = &cpu->env; CPUState *cs = CPU(cpu); uint32_t linestate_bit; int irq_id; switch (irq) { case ARM_CPU_IRQ: irq_id = KVM_ARM_IRQ_CPU_IRQ; linestate_bit = CPU_INTERRUPT_HARD; break; case ARM_CPU_FIQ: irq_id = KVM_ARM_IRQ_CPU_FIQ; linestate_bit = CPU_INTERRUPT_FIQ; break; default: g_assert_not_reached(); } if (level) { env->irq_line_state |= linestate_bit; } else { env->irq_line_state &= ~linestate_bit; } kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); #endif } static bool arm_cpu_virtio_is_big_endian(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; cpu_synchronize_state(cs); return arm_cpu_data_is_big_endian(env); } #endif static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) { ARMCPU *ac = ARM_CPU(cpu); CPUARMState *env = &ac->env; bool sctlr_b; if (is_a64(env)) { info->cap_arch = CS_ARCH_ARM64; info->cap_insn_unit = 4; info->cap_insn_split = 4; } else { int cap_mode; if (env->thumb) { info->cap_insn_unit = 2; info->cap_insn_split = 4; cap_mode = CS_MODE_THUMB; } else { info->cap_insn_unit = 4; info->cap_insn_split = 4; cap_mode = CS_MODE_ARM; } if (arm_feature(env, ARM_FEATURE_V8)) { cap_mode |= CS_MODE_V8; } if (arm_feature(env, ARM_FEATURE_M)) { cap_mode |= CS_MODE_MCLASS; } info->cap_arch = CS_ARCH_ARM; info->cap_mode = cap_mode; } sctlr_b = arm_sctlr_b(env); if (bswap_code(sctlr_b)) { #if TARGET_BIG_ENDIAN info->endian = BFD_ENDIAN_LITTLE; #else info->endian = BFD_ENDIAN_BIG; #endif } info->flags &= ~INSN_ARM_BE32; #ifndef CONFIG_USER_ONLY if (sctlr_b) { info->flags |= INSN_ARM_BE32; } #endif } #ifdef TARGET_AARCH64 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint32_t psr = pstate_read(env); int i, j; int el = arm_current_el(env); uint64_t hcr = arm_hcr_el2_eff(env); const char *ns_status; bool sve; qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); for (i = 0; i < 32; i++) { if (i == 31) { qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); } else { qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], (i + 2) % 3 ? " " : "\n"); } } if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; } else { ns_status = ""; } qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", psr, psr & PSTATE_N ? 'N' : '-', psr & PSTATE_Z ? 'Z' : '-', psr & PSTATE_C ? 'C' : '-', psr & PSTATE_V ? 'V' : '-', ns_status, el, psr & PSTATE_SP ? 'h' : 't'); if (cpu_isar_feature(aa64_sme, cpu)) { qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c", env->svcr, (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'), (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-')); } if (cpu_isar_feature(aa64_bti, cpu)) { qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); } qemu_fprintf(f, "%s%s%s", (hcr & HCR_NV) ? " NV" : "", (hcr & HCR_NV1) ? " NV1" : "", (hcr & HCR_NV2) ? " NV2" : ""); if (!(flags & CPU_DUMP_FPU)) { qemu_fprintf(f, "\n"); return; } if (fp_exception_el(env, el) != 0) { qemu_fprintf(f, " FPU disabled\n"); return; } qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", vfp_get_fpcr(env), vfp_get_fpsr(env)); if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) { sve = sme_exception_el(env, el) == 0; } else if (cpu_isar_feature(aa64_sve, cpu)) { sve = sve_exception_el(env, el) == 0; } else { sve = false; } if (sve) { int zcr_len = sve_vqm1_for_el(env, el); for (i = 0; i <= FFR_PRED_NUM; i++) { bool eol; if (i == FFR_PRED_NUM) { qemu_fprintf(f, "FFR="); /* It's last, so end the line. */ eol = true; } else { qemu_fprintf(f, "P%02d=", i); switch (zcr_len) { case 0: eol = i % 8 == 7; break; case 1: eol = i % 6 == 5; break; case 2: case 3: eol = i % 3 == 2; break; default: /* More than one quadword per predicate. */ eol = true; break; } } for (j = zcr_len / 4; j >= 0; j--) { int digits; if (j * 4 + 4 <= zcr_len + 1) { digits = 16; } else { digits = (zcr_len % 4 + 1) * 4; } qemu_fprintf(f, "%0*" PRIx64 "%s", digits, env->vfp.pregs[i].p[j], j ? ":" : eol ? "\n" : " "); } } if (zcr_len == 0) { /* * With vl=16, there are only 37 columns per register, * so output two registers per line. */ for (i = 0; i < 32; i++) { qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", i, env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); } } else { for (i = 0; i < 32; i++) { qemu_fprintf(f, "Z%02d=", i); for (j = zcr_len; j >= 0; j--) { qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", env->vfp.zregs[i].d[j * 2 + 1], env->vfp.zregs[i].d[j * 2 + 0], j ? ":" : "\n"); } } } } else { for (i = 0; i < 32; i++) { uint64_t *q = aa64_vfp_qreg(env, i); qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", i, q[1], q[0], (i & 1 ? "\n" : " ")); } } if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, ZA) && sme_exception_el(env, el) == 0) { int zcr_len = sve_vqm1_for_el_sm(env, el, true); int svl = (zcr_len + 1) * 16; int svl_lg10 = svl < 100 ? 2 : 3; for (i = 0; i < svl; i++) { qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i); for (j = zcr_len; j >= 0; --j) { qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c", env->zarray[i].d[2 * j + 1], env->zarray[i].d[2 * j], j ? ':' : '\n'); } } } } #else static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) { g_assert_not_reached(); } #endif static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; int i; if (is_a64(env)) { aarch64_cpu_dump_state(cs, f, flags); return; } for (i = 0; i < 16; i++) { qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); if ((i % 4) == 3) { qemu_fprintf(f, "\n"); } else { qemu_fprintf(f, " "); } } if (arm_feature(env, ARM_FEATURE_M)) { uint32_t xpsr = xpsr_read(env); const char *mode; const char *ns_status = ""; if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { ns_status = env->v7m.secure ? "S " : "NS "; } if (xpsr & XPSR_EXCP) { mode = "handler"; } else { if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { mode = "unpriv-thread"; } else { mode = "priv-thread"; } } qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", xpsr, xpsr & XPSR_N ? 'N' : '-', xpsr & XPSR_Z ? 'Z' : '-', xpsr & XPSR_C ? 'C' : '-', xpsr & XPSR_V ? 'V' : '-', xpsr & XPSR_T ? 'T' : 'A', ns_status, mode); } else { uint32_t psr = cpsr_read(env); const char *ns_status = ""; if (arm_feature(env, ARM_FEATURE_EL3) && (psr & CPSR_M) != ARM_CPU_MODE_MON) { ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; } qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", psr, psr & CPSR_N ? 'N' : '-', psr & CPSR_Z ? 'Z' : '-', psr & CPSR_C ? 'C' : '-', psr & CPSR_V ? 'V' : '-', psr & CPSR_T ? 'T' : 'A', ns_status, aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); } if (flags & CPU_DUMP_FPU) { int numvfpregs = 0; if (cpu_isar_feature(aa32_simd_r32, cpu)) { numvfpregs = 32; } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { numvfpregs = 16; } for (i = 0; i < numvfpregs; i++) { uint64_t v = *aa32_vfp_dreg(env, i); qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", i * 2, (uint32_t)v, i * 2 + 1, (uint32_t)(v >> 32), i, v); } qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); if (cpu_isar_feature(aa32_mve, cpu)) { qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr); } } } uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz) { uint32_t Aff1 = idx / clustersz; uint32_t Aff0 = idx % clustersz; return (Aff1 << ARM_AFF1_SHIFT) | Aff0; } uint64_t arm_cpu_mp_affinity(ARMCPU *cpu) { return cpu->mp_affinity; } static void arm_cpu_initfn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, g_free); QLIST_INIT(&cpu->pre_el_change_hooks); QLIST_INIT(&cpu->el_change_hooks); #ifdef CONFIG_USER_ONLY # ifdef TARGET_AARCH64 /* * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME. * These values were chosen to fit within the default signal frame. * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length, * and our corresponding cpu property. */ cpu->sve_default_vq = 4; cpu->sme_default_vq = 2; # endif #else /* Our inbound IRQ and FIQ lines */ if (kvm_enabled()) { /* VIRQ and VFIQ are unused with KVM but we add them to maintain * the same interface as non-KVM CPUs. */ qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); } else { qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); } qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, ARRAY_SIZE(cpu->gt_timer_outputs)); qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, "gicv3-maintenance-interrupt", 1); qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, "pmu-interrupt", 1); #endif /* DTB consumers generally don't in fact care what the 'compatible' * string is, so always provide some string and trust that a hypothetical * picky DTB consumer will also provide a helpful error message. */ cpu->dtb_compatible = "qemu,unknown"; cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */ cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; if (tcg_enabled() || hvf_enabled()) { /* TCG and HVF implement PSCI 1.1 */ cpu->psci_version = QEMU_PSCI_VERSION_1_1; } } static Property arm_cpu_gt_cntfrq_property = DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, NANOSECONDS_PER_SECOND / GTIMER_SCALE); static Property arm_cpu_reset_cbar_property = DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); static Property arm_cpu_reset_hivecs_property = DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); #ifndef CONFIG_USER_ONLY static Property arm_cpu_has_el2_property = DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); static Property arm_cpu_has_el3_property = DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); #endif static Property arm_cpu_cfgend_property = DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); static Property arm_cpu_has_vfp_property = DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); static Property arm_cpu_has_vfp_d32_property = DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true); static Property arm_cpu_has_neon_property = DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); static Property arm_cpu_has_dsp_property = DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); static Property arm_cpu_has_mpu_property = DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, * because the CPU initfn will have already set cpu->pmsav7_dregion to * the right value for that particular CPU type, and we don't want * to override that with an incorrect constant value. */ static Property arm_cpu_pmsav7_dregion_property = DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, pmsav7_dregion, qdev_prop_uint32, uint32_t); static bool arm_get_pmu(Object *obj, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); return cpu->has_pmu; } static void arm_set_pmu(Object *obj, bool value, Error **errp) { ARMCPU *cpu = ARM_CPU(obj); if (value) { if (kvm_enabled() && !kvm_arm_pmu_supported()) { error_setg(errp, "'pmu' feature not supported by KVM on this host"); return; } set_feature(&cpu->env, ARM_FEATURE_PMU); } else { unset_feature(&cpu->env, ARM_FEATURE_PMU); } cpu->has_pmu = value; } unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) { /* * The exact approach to calculating guest ticks is: * * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, * NANOSECONDS_PER_SECOND); * * We don't do that. Rather we intentionally use integer division * truncation below and in the caller for the conversion of host monotonic * time to guest ticks to provide the exact inverse for the semantics of * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so * it loses precision when representing frequencies where * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to * provide an exact inverse leads to scheduling timers with negative * periods, which in turn leads to sticky behaviour in the guest. * * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor * cannot become zero. */ return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; } static void arm_cpu_propagate_feature_implications(ARMCPU *cpu) { CPUARMState *env = &cpu->env; bool no_aa32 = false; /* * Some features automatically imply others: set the feature * bits explicitly for these cases. */ if (arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_PMSA); } if (arm_feature(env, ARM_FEATURE_V8)) { if (arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_V7); } else { set_feature(env, ARM_FEATURE_V7VE); } } /* * There exist AArch64 cpus without AArch32 support. When KVM * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. * As a general principle, we also do not make ID register * consistency checks anywhere unless using TCG, because only * for TCG would a consistency-check failure be a QEMU bug. */ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); } if (arm_feature(env, ARM_FEATURE_V7VE)) { /* * v7 Virtualization Extensions. In real hardware this implies * EL2 and also the presence of the Security Extensions. * For QEMU, for backwards-compatibility we implement some * CPUs or CPU configs which have no actual EL2 or EL3 but do * include the various other features that V7VE implies. * Presence of EL2 itself is ARM_FEATURE_EL2, and of the * Security Extensions is ARM_FEATURE_EL3. */ assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(aa32_arm_div, cpu)); set_feature(env, ARM_FEATURE_LPAE); set_feature(env, ARM_FEATURE_V7); } if (arm_feature(env, ARM_FEATURE_V7)) { set_feature(env, ARM_FEATURE_VAPA); set_feature(env, ARM_FEATURE_THUMB2); set_feature(env, ARM_FEATURE_MPIDR); if (!arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_V6K); } else { set_feature(env, ARM_FEATURE_V6); } /* * Always define VBAR for V7 CPUs even if it doesn't exist in * non-EL3 configs. This is needed by some legacy boards. */ set_feature(env, ARM_FEATURE_VBAR); } if (arm_feature(env, ARM_FEATURE_V6K)) { set_feature(env, ARM_FEATURE_V6); set_feature(env, ARM_FEATURE_MVFR); } if (arm_feature(env, ARM_FEATURE_V6)) { set_feature(env, ARM_FEATURE_V5); if (!arm_feature(env, ARM_FEATURE_M)) { assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(aa32_jazelle, cpu)); set_feature(env, ARM_FEATURE_AUXCR); } } if (arm_feature(env, ARM_FEATURE_V5)) { set_feature(env, ARM_FEATURE_V4T); } if (arm_feature(env, ARM_FEATURE_LPAE)) { set_feature(env, ARM_FEATURE_V7MP); } if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { set_feature(env, ARM_FEATURE_CBAR); } if (arm_feature(env, ARM_FEATURE_THUMB2) && !arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_THUMB_DSP); } } void arm_cpu_post_init(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); /* * Some features imply others. Figure this out now, because we * are going to look at the feature bits in deciding which * properties to add. */ arm_cpu_propagate_feature_implications(cpu); if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); } if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); } if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { object_property_add_uint64_ptr(obj, "rvbar", &cpu->rvbar_prop, OBJ_PROP_FLAG_READWRITE); } #ifndef CONFIG_USER_ONLY if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { /* Add the has_el3 state CPU property only if EL3 is allowed. This will * prevent "has_el3" from existing on CPUs which cannot support EL3. */ qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); object_property_add_link(obj, "secure-memory", TYPE_MEMORY_REGION, (Object **)&cpu->secure_memory, qdev_prop_allow_set_link_before_realize, OBJ_PROP_LINK_STRONG); } if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); } #endif if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { cpu->has_pmu = true; object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); } /* * Allow user to turn off VFP and Neon support, but only for TCG -- * KVM does not currently allow us to lie to the guest about its * ID/feature registers, so the guest always sees what the host has. */ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { if (cpu_isar_feature(aa64_fp_simd, cpu)) { cpu->has_vfp = true; cpu->has_vfp_d32 = true; if (tcg_enabled() || qtest_enabled()) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property); } } } else if (cpu_isar_feature(aa32_vfp, cpu)) { cpu->has_vfp = true; if (tcg_enabled() || qtest_enabled()) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property); } if (cpu_isar_feature(aa32_simd_r32, cpu)) { cpu->has_vfp_d32 = true; /* * The permitted values of the SIMDReg bits [3:0] on * Armv8-A are either 0b0000 and 0b0010. On such CPUs, * make sure that has_vfp_d32 can not be set to false. */ if ((tcg_enabled() || qtest_enabled()) && !(arm_feature(&cpu->env, ARM_FEATURE_V8) && !arm_feature(&cpu->env, ARM_FEATURE_M))) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_d32_property); } } } if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { cpu->has_neon = true; if (!kvm_enabled()) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); } } if (arm_feature(&cpu->env, ARM_FEATURE_M) && arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); } if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_pmsav7_dregion_property); } } if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, qdev_prop_allow_set_link_before_realize, OBJ_PROP_LINK_STRONG); /* * M profile: initial value of the Secure VTOR. We can't just use * a simple DEFINE_PROP_UINT32 for this because we want to permit * the property to be set after realize. */ object_property_add_uint32_ptr(obj, "init-svtor", &cpu->init_svtor, OBJ_PROP_FLAG_READWRITE); } if (arm_feature(&cpu->env, ARM_FEATURE_M)) { /* * Initial value of the NS VTOR (for cores without the Security * extension, this is the only VTOR) */ object_property_add_uint32_ptr(obj, "init-nsvtor", &cpu->init_nsvtor, OBJ_PROP_FLAG_READWRITE); } /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */ object_property_add_uint32_ptr(obj, "psci-conduit", &cpu->psci_conduit, OBJ_PROP_FLAG_READWRITE); qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); } if (kvm_enabled()) { kvm_arm_add_vcpu_properties(cpu); } #ifndef CONFIG_USER_ONLY if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && cpu_isar_feature(aa64_mte, cpu)) { object_property_add_link(obj, "tag-memory", TYPE_MEMORY_REGION, (Object **)&cpu->tag_memory, qdev_prop_allow_set_link_before_realize, OBJ_PROP_LINK_STRONG); if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { object_property_add_link(obj, "secure-tag-memory", TYPE_MEMORY_REGION, (Object **)&cpu->secure_tag_memory, qdev_prop_allow_set_link_before_realize, OBJ_PROP_LINK_STRONG); } } #endif } static void arm_cpu_finalizefn(Object *obj) { ARMCPU *cpu = ARM_CPU(obj); ARMELChangeHook *hook, *next; g_hash_table_destroy(cpu->cp_regs); QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { QLIST_REMOVE(hook, node); g_free(hook); } QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { QLIST_REMOVE(hook, node); g_free(hook); } #ifndef CONFIG_USER_ONLY if (cpu->pmu_timer) { timer_free(cpu->pmu_timer); } #endif } void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) { Error *local_err = NULL; #ifdef TARGET_AARCH64 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { arm_cpu_sve_finalize(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } /* * FEAT_SME is not architecturally dependent on FEAT_SVE (unless * FEAT_SME_FA64 is present). However our implementation currently * assumes it, so if the user asked for sve=off then turn off SME also. * (KVM doesn't currently support SME at all.) */ if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) { object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort); } arm_cpu_sme_finalize(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } arm_cpu_pauth_finalize(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } arm_cpu_lpa2_finalize(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } } #endif if (kvm_enabled()) { kvm_arm_steal_time_finalize(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } } } static void arm_cpu_realizefn(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); ARMCPU *cpu = ARM_CPU(dev); ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); CPUARMState *env = &cpu->env; Error *local_err = NULL; #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) /* Use pc-relative instructions in system-mode */ cs->tcg_cflags |= CF_PCREL; #endif /* If we needed to query the host kernel for the CPU features * then it's possible that might have failed in the initfn, but * this is the first point where we can report it. */ if (cpu->host_cpu_probe_failed) { if (!kvm_enabled() && !hvf_enabled()) { error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF"); } else { error_setg(errp, "Failed to retrieve host CPU features"); } return; } #ifndef CONFIG_USER_ONLY /* The NVIC and M-profile CPU are two halves of a single piece of * hardware; trying to use one without the other is a command line * error and will result in segfaults if not caught here. */ if (arm_feature(env, ARM_FEATURE_M)) { if (!env->nvic) { error_setg(errp, "This board cannot be used with Cortex-M CPUs"); return; } } else { if (env->nvic) { error_setg(errp, "This board can only be used with Cortex-M CPUs"); return; } } if (!tcg_enabled() && !qtest_enabled()) { /* * We assume that no accelerator except TCG (and the "not really an * accelerator" qtest) can handle these features, because Arm hardware * virtualization can't virtualize them. * * Catch all the cases which might cause us to create more than one * address space for the CPU (otherwise we will assert() later in * cpu_address_space_init()). */ if (arm_feature(env, ARM_FEATURE_M)) { error_setg(errp, "Cannot enable %s when using an M-profile guest CPU", current_accel_name()); return; } if (cpu->has_el3) { error_setg(errp, "Cannot enable %s when guest CPU has EL3 enabled", current_accel_name()); return; } if (cpu->tag_memory) { error_setg(errp, "Cannot enable %s when guest CPUs has MTE enabled", current_accel_name()); return; } } { uint64_t scale; if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { if (!cpu->gt_cntfrq_hz) { error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", cpu->gt_cntfrq_hz); return; } scale = gt_cntfrq_period_ns(cpu); } else { scale = GTIMER_SCALE; } cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, arm_gt_ptimer_cb, cpu); cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, arm_gt_vtimer_cb, cpu); cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, arm_gt_htimer_cb, cpu); cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, arm_gt_stimer_cb, cpu); cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, arm_gt_hvtimer_cb, cpu); } #endif cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } arm_cpu_finalize_features(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } #ifdef CONFIG_USER_ONLY /* * User mode relies on IC IVAU instructions to catch modification of * dual-mapped code. * * Clear CTR_EL0.DIC to ensure that software that honors these flags uses * IC IVAU even if the emulated processor does not normally require it. */ cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0); #endif if (arm_feature(env, ARM_FEATURE_AARCH64) && cpu->has_vfp != cpu->has_neon) { /* * This is an architectural requirement for AArch64; AArch32 is * more flexible and permits VFP-no-Neon and Neon-no-VFP. */ error_setg(errp, "AArch64 CPUs must have both VFP and Neon or neither"); return; } if (cpu->has_vfp_d32 != cpu->has_neon) { error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither"); return; } if (!cpu->has_vfp_d32) { uint32_t u; u = cpu->isar.mvfr0; u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */ cpu->isar.mvfr0 = u; } if (!cpu->has_vfp) { uint64_t t; uint32_t u; t = cpu->isar.id_aa64isar1; t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); cpu->isar.id_aa64isar1 = t; t = cpu->isar.id_aa64pfr0; t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); cpu->isar.id_aa64pfr0 = t; u = cpu->isar.id_isar6; u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); u = FIELD_DP32(u, ID_ISAR6, BF16, 0); cpu->isar.id_isar6 = u; u = cpu->isar.mvfr0; u = FIELD_DP32(u, MVFR0, FPSP, 0); u = FIELD_DP32(u, MVFR0, FPDP, 0); u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); u = FIELD_DP32(u, MVFR0, FPSQRT, 0); u = FIELD_DP32(u, MVFR0, FPROUND, 0); if (!arm_feature(env, ARM_FEATURE_M)) { u = FIELD_DP32(u, MVFR0, FPTRAP, 0); u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); } cpu->isar.mvfr0 = u; u = cpu->isar.mvfr1; u = FIELD_DP32(u, MVFR1, FPFTZ, 0); u = FIELD_DP32(u, MVFR1, FPDNAN, 0); u = FIELD_DP32(u, MVFR1, FPHP, 0); if (arm_feature(env, ARM_FEATURE_M)) { u = FIELD_DP32(u, MVFR1, FP16, 0); } cpu->isar.mvfr1 = u; u = cpu->isar.mvfr2; u = FIELD_DP32(u, MVFR2, FPMISC, 0); cpu->isar.mvfr2 = u; } if (!cpu->has_neon) { uint64_t t; uint32_t u; unset_feature(env, ARM_FEATURE_NEON); t = cpu->isar.id_aa64isar0; t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0); t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0); t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0); t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0); t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0); t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0); t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); cpu->isar.id_aa64isar0 = t; t = cpu->isar.id_aa64isar1; t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0); t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0); cpu->isar.id_aa64isar1 = t; t = cpu->isar.id_aa64pfr0; t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); cpu->isar.id_aa64pfr0 = t; u = cpu->isar.id_isar5; u = FIELD_DP32(u, ID_ISAR5, AES, 0); u = FIELD_DP32(u, ID_ISAR5, SHA1, 0); u = FIELD_DP32(u, ID_ISAR5, SHA2, 0); u = FIELD_DP32(u, ID_ISAR5, RDM, 0); u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); cpu->isar.id_isar5 = u; u = cpu->isar.id_isar6; u = FIELD_DP32(u, ID_ISAR6, DP, 0); u = FIELD_DP32(u, ID_ISAR6, FHM, 0); u = FIELD_DP32(u, ID_ISAR6, BF16, 0); u = FIELD_DP32(u, ID_ISAR6, I8MM, 0); cpu->isar.id_isar6 = u; if (!arm_feature(env, ARM_FEATURE_M)) { u = cpu->isar.mvfr1; u = FIELD_DP32(u, MVFR1, SIMDLS, 0); u = FIELD_DP32(u, MVFR1, SIMDINT, 0); u = FIELD_DP32(u, MVFR1, SIMDSP, 0); u = FIELD_DP32(u, MVFR1, SIMDHP, 0); cpu->isar.mvfr1 = u; u = cpu->isar.mvfr2; u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); cpu->isar.mvfr2 = u; } } if (!cpu->has_neon && !cpu->has_vfp) { uint64_t t; uint32_t u; t = cpu->isar.id_aa64isar0; t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); cpu->isar.id_aa64isar0 = t; t = cpu->isar.id_aa64isar1; t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); cpu->isar.id_aa64isar1 = t; u = cpu->isar.mvfr0; u = FIELD_DP32(u, MVFR0, SIMDREG, 0); cpu->isar.mvfr0 = u; /* Despite the name, this field covers both VFP and Neon */ u = cpu->isar.mvfr1; u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); cpu->isar.mvfr1 = u; } if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { uint32_t u; unset_feature(env, ARM_FEATURE_THUMB_DSP); u = cpu->isar.id_isar1; u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); cpu->isar.id_isar1 = u; u = cpu->isar.id_isar2; u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); cpu->isar.id_isar2 = u; u = cpu->isar.id_isar3; u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); cpu->isar.id_isar3 = u; } /* * We rely on no XScale CPU having VFP so we can use the same bits in the * TB flags field for VECSTRIDE and XSCALE_CPAR. */ assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) || !cpu_isar_feature(aa32_vfp_simd, cpu) || !arm_feature(env, ARM_FEATURE_XSCALE)); #ifndef CONFIG_USER_ONLY { int pagebits; if (arm_feature(env, ARM_FEATURE_V7) && !arm_feature(env, ARM_FEATURE_M) && !arm_feature(env, ARM_FEATURE_PMSA)) { /* * v7VMSA drops support for the old ARMv5 tiny pages, * so we can use 4K pages. */ pagebits = 12; } else { /* * For CPUs which might have tiny 1K pages, or which have an * MPU and might have small region sizes, stick with 1K pages. */ pagebits = 10; } if (!set_preferred_target_page_bits(pagebits)) { /* * This can only ever happen for hotplugging a CPU, or if * the board code incorrectly creates a CPU which it has * promised via minimum_page_size that it will not. */ error_setg(errp, "This CPU requires a smaller page size " "than the system is using"); return; } } #endif /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. * We don't support setting cluster ID ([16..23]) (known as Aff2 * in later ARM ARM versions), or any of the higher affinity level fields, * so these bits always RAZ. */ if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index, ARM_DEFAULT_CPUS_PER_CLUSTER); } if (cpu->reset_hivecs) { cpu->reset_sctlr |= (1 << 13); } if (cpu->cfgend) { if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { cpu->reset_sctlr |= SCTLR_EE; } else { cpu->reset_sctlr |= SCTLR_B; } } if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) { /* If the has_el3 CPU property is disabled then we need to disable the * feature. */ unset_feature(env, ARM_FEATURE_EL3); /* * Disable the security extension feature bits in the processor * feature registers as well. */ cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0); cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0); cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, EL3, 0); /* Disable the realm management extension, which requires EL3. */ cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, RME, 0); } if (!cpu->has_el2) { unset_feature(env, ARM_FEATURE_EL2); } if (!cpu->has_pmu) { unset_feature(env, ARM_FEATURE_PMU); } if (arm_feature(env, ARM_FEATURE_PMU)) { pmu_init(cpu); if (!kvm_enabled()) { arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); } #ifndef CONFIG_USER_ONLY cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, cpu); #endif } else { cpu->isar.id_aa64dfr0 = FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); cpu->pmceid0 = 0; cpu->pmceid1 = 0; } if (!arm_feature(env, ARM_FEATURE_EL2)) { /* * Disable the hypervisor feature bits in the processor feature * registers if we don't have EL2. */ cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, EL2, 0); cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, VIRTUALIZATION, 0); } if (cpu_isar_feature(aa64_mte, cpu)) { /* * The architectural range of GM blocksize is 2-6, however qemu * doesn't support blocksize of 2 (see HELPER(ldgm)). */ if (tcg_enabled()) { assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6); } #ifndef CONFIG_USER_ONLY /* * If we do not have tag-memory provided by the machine, * reduce MTE support to instructions enabled at EL0. * This matches Cortex-A710 BROADCASTMTE input being LOW. */ if (cpu->tag_memory == NULL) { cpu->isar.id_aa64pfr1 = FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1); } #endif } if (tcg_enabled()) { /* * Don't report some architectural features in the ID registers * where TCG does not yet implement it (not even a minimal * stub version). This avoids guests falling over when they * try to access the non-existent system registers for them. */ /* FEAT_SPE (Statistical Profiling Extension) */ cpu->isar.id_aa64dfr0 = FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0); /* FEAT_TRBE (Trace Buffer Extension) */ cpu->isar.id_aa64dfr0 = FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0); /* FEAT_TRF (Self-hosted Trace Extension) */ cpu->isar.id_aa64dfr0 = FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0); cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0); /* Trace Macrocell system register access */ cpu->isar.id_aa64dfr0 = FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0); cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0); /* Memory mapped trace */ cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0); /* FEAT_AMU (Activity Monitors Extension) */ cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0); cpu->isar.id_pfr0 = FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0); /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */ cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0); } /* MPU can be configured out of a PMSA CPU either by setting has-mpu * to false or by setting pmsav7-dregion to 0. */ if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) { cpu->has_mpu = false; cpu->pmsav7_dregion = 0; cpu->pmsav8r_hdregion = 0; } if (arm_feature(env, ARM_FEATURE_PMSA) && arm_feature(env, ARM_FEATURE_V7)) { uint32_t nr = cpu->pmsav7_dregion; if (nr > 0xff) { error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); return; } if (nr) { if (arm_feature(env, ARM_FEATURE_V8)) { /* PMSAv8 */ env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); } } else { env->pmsav7.drbar = g_new0(uint32_t, nr); env->pmsav7.drsr = g_new0(uint32_t, nr); env->pmsav7.dracr = g_new0(uint32_t, nr); } } if (cpu->pmsav8r_hdregion > 0xff) { error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32, cpu->pmsav8r_hdregion); return; } if (cpu->pmsav8r_hdregion) { env->pmsav8.hprbar = g_new0(uint32_t, cpu->pmsav8r_hdregion); env->pmsav8.hprlar = g_new0(uint32_t, cpu->pmsav8r_hdregion); } } if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { uint32_t nr = cpu->sau_sregion; if (nr > 0xff) { error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); return; } if (nr) { env->sau.rbar = g_new0(uint32_t, nr); env->sau.rlar = g_new0(uint32_t, nr); } } if (arm_feature(env, ARM_FEATURE_EL3)) { set_feature(env, ARM_FEATURE_VBAR); } #ifndef CONFIG_USER_ONLY if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) { arm_register_el_change_hook(cpu, >_rme_post_el_change, 0); } #endif register_cp_regs_for_features(cpu); arm_cpu_register_gdb_regs_for_features(cpu); init_cpreg_list(cpu); #ifndef CONFIG_USER_ONLY MachineState *ms = MACHINE(qdev_get_machine()); unsigned int smp_cpus = ms->smp.cpus; bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); /* * We must set cs->num_ases to the final value before * the first call to cpu_address_space_init. */ if (cpu->tag_memory != NULL) { cs->num_ases = 3 + has_secure; } else { cs->num_ases = 1 + has_secure; } if (has_secure) { if (!cpu->secure_memory) { cpu->secure_memory = cs->memory; } cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", cpu->secure_memory); } if (cpu->tag_memory != NULL) { cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", cpu->tag_memory); if (has_secure) { cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", cpu->secure_tag_memory); } } cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); /* No core_count specified, default to smp_cpus. */ if (cpu->core_count == -1) { cpu->core_count = smp_cpus; } #endif if (tcg_enabled()) { int dcz_blocklen = 4 << cpu->dcz_blocksize; /* * We only support DCZ blocklen that fits on one page. * * Architectually this is always true. However TARGET_PAGE_SIZE * is variable and, for compatibility with -machine virt-2.7, * is only 1KiB, as an artifact of legacy ARMv5 subpage support. * But even then, while the largest architectural DCZ blocklen * is 2KiB, no cpu actually uses such a large blocklen. */ assert(dcz_blocklen <= TARGET_PAGE_SIZE); /* * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say * both nibbles of each byte storing tag data may be written at once. * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. */ if (cpu_isar_feature(aa64_mte, cpu)) { assert(dcz_blocklen >= 2 * TAG_GRANULE); } } qemu_init_vcpu(cs); cpu_reset(cs); acc->parent_realize(dev, errp); } static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) { ObjectClass *oc; char *typename; char **cpuname; const char *cpunamestr; cpuname = g_strsplit(cpu_model, ",", 1); cpunamestr = cpuname[0]; #ifdef CONFIG_USER_ONLY /* For backwards compatibility usermode emulation allows "-cpu any", * which has the same semantics as "-cpu max". */ if (!strcmp(cpunamestr, "any")) { cpunamestr = "max"; } #endif typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); oc = object_class_by_name(typename); g_strfreev(cpuname); g_free(typename); return oc; } static Property arm_cpu_properties[] = { DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), DEFINE_PROP_UINT64("mp-affinity", ARMCPU, mp_affinity, ARM64_AFFINITY_INVALID), DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), DEFINE_PROP_END_OF_LIST() }; static const gchar *arm_gdb_arch_name(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (arm_feature(env, ARM_FEATURE_IWMMXT)) { return "iwmmxt"; } return "arm"; } #ifndef CONFIG_USER_ONLY #include "hw/core/sysemu-cpu-ops.h" static const struct SysemuCPUOps arm_sysemu_ops = { .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug, .asidx_from_attrs = arm_asidx_from_attrs, .write_elf32_note = arm_cpu_write_elf32_note, .write_elf64_note = arm_cpu_write_elf64_note, .virtio_is_big_endian = arm_cpu_virtio_is_big_endian, .legacy_vmsd = &vmstate_arm_cpu, }; #endif #ifdef CONFIG_TCG static const TCGCPUOps arm_tcg_ops = { .initialize = arm_translate_init, .synchronize_from_tb = arm_cpu_synchronize_from_tb, .debug_excp_handler = arm_debug_excp_handler, .restore_state_to_opc = arm_restore_state_to_opc, #ifdef CONFIG_USER_ONLY .record_sigsegv = arm_cpu_record_sigsegv, .record_sigbus = arm_cpu_record_sigbus, #else .tlb_fill = arm_cpu_tlb_fill, .cpu_exec_interrupt = arm_cpu_exec_interrupt, .do_interrupt = arm_cpu_do_interrupt, .do_transaction_failed = arm_cpu_do_transaction_failed, .do_unaligned_access = arm_cpu_do_unaligned_access, .adjust_watchpoint_address = arm_adjust_watchpoint_address, .debug_check_watchpoint = arm_debug_check_watchpoint, .debug_check_breakpoint = arm_debug_check_breakpoint, #endif /* !CONFIG_USER_ONLY */ }; #endif /* CONFIG_TCG */ static void arm_cpu_class_init(ObjectClass *oc, void *data) { ARMCPUClass *acc = ARM_CPU_CLASS(oc); CPUClass *cc = CPU_CLASS(acc); DeviceClass *dc = DEVICE_CLASS(oc); ResettableClass *rc = RESETTABLE_CLASS(oc); device_class_set_parent_realize(dc, arm_cpu_realizefn, &acc->parent_realize); device_class_set_props(dc, arm_cpu_properties); resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL, &acc->parent_phases); cc->class_by_name = arm_cpu_class_by_name; cc->has_work = arm_cpu_has_work; cc->mmu_index = arm_cpu_mmu_index; cc->dump_state = arm_cpu_dump_state; cc->set_pc = arm_cpu_set_pc; cc->get_pc = arm_cpu_get_pc; cc->gdb_read_register = arm_cpu_gdb_read_register; cc->gdb_write_register = arm_cpu_gdb_write_register; #ifndef CONFIG_USER_ONLY cc->sysemu_ops = &arm_sysemu_ops; #endif cc->gdb_arch_name = arm_gdb_arch_name; cc->gdb_stop_before_watchpoint = true; cc->disas_set_info = arm_disas_set_info; #ifdef CONFIG_TCG cc->tcg_ops = &arm_tcg_ops; #endif /* CONFIG_TCG */ } static void arm_cpu_instance_init(Object *obj) { ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); acc->info->initfn(obj); arm_cpu_post_init(obj); } static void cpu_register_class_init(ObjectClass *oc, void *data) { ARMCPUClass *acc = ARM_CPU_CLASS(oc); CPUClass *cc = CPU_CLASS(acc); acc->info = data; cc->gdb_core_xml_file = "arm-core.xml"; } void arm_cpu_register(const ARMCPUInfo *info) { TypeInfo type_info = { .parent = TYPE_ARM_CPU, .instance_init = arm_cpu_instance_init, .class_init = info->class_init ?: cpu_register_class_init, .class_data = (void *)info, }; type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); type_register(&type_info); g_free((void *)type_info.name); } static const TypeInfo arm_cpu_type_info = { .name = TYPE_ARM_CPU, .parent = TYPE_CPU, .instance_size = sizeof(ARMCPU), .instance_align = __alignof__(ARMCPU), .instance_init = arm_cpu_initfn, .instance_finalize = arm_cpu_finalizefn, .abstract = true, .class_size = sizeof(ARMCPUClass), .class_init = arm_cpu_class_init, }; static void arm_cpu_register_types(void) { type_register_static(&arm_cpu_type_info); } type_init(arm_cpu_register_types)