/* * QEMU ARM CP Register access and descriptions * * Copyright (c) 2022 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * */ #ifndef TARGET_ARM_CPREGS_H #define TARGET_ARM_CPREGS_H /* * ARMCPRegInfo type field bits: */ enum { /* * Register must be handled specially during translation. * The method is one of the values below: */ ARM_CP_SPECIAL_MASK = 0x000f, /* Special: no change to PE state: writes ignored, reads ignored. */ ARM_CP_NOP = 0x0001, /* Special: sysreg is WFI, for v5 and v6. */ ARM_CP_WFI = 0x0002, /* Special: sysreg is NZCV. */ ARM_CP_NZCV = 0x0003, /* Special: sysreg is CURRENTEL. */ ARM_CP_CURRENTEL = 0x0004, /* Special: sysreg is DC ZVA or similar. */ ARM_CP_DC_ZVA = 0x0005, ARM_CP_DC_GVA = 0x0006, ARM_CP_DC_GZVA = 0x0007, /* Flag: reads produce resetvalue; writes ignored. */ ARM_CP_CONST = 1 << 4, /* Flag: For ARM_CP_STATE_AA32, sysreg is 64-bit. */ ARM_CP_64BIT = 1 << 5, /* * Flag: TB should not be ended after a write to this register * (the default is that the TB ends after cp writes). */ ARM_CP_SUPPRESS_TB_END = 1 << 6, /* * Flag: Permit a register definition to override a previous definition * for the same (cp, is64, crn, crm, opc1, opc2) tuple: either the new * or the old must have the ARM_CP_OVERRIDE bit set. */ ARM_CP_OVERRIDE = 1 << 7, /* * Flag: Register is an alias view of some underlying state which is also * visible via another register, and that the other register is handling * migration and reset; registers marked ARM_CP_ALIAS will not be migrated * but may have their state set by syncing of register state from KVM. */ ARM_CP_ALIAS = 1 << 8, /* * Flag: Register does I/O and therefore its accesses need to be marked * with translator_io_start() and also end the TB. In particular, * registers which implement clocks or timers require this. */ ARM_CP_IO = 1 << 9, /* * Flag: Register has no underlying state and does not support raw access * for state saving/loading; it will not be used for either migration or * KVM state synchronization. Typically this is for "registers" which are * actually used as instructions for cache maintenance and so on. */ ARM_CP_NO_RAW = 1 << 10, /* * Flag: The read or write hook might raise an exception; the generated * code will synchronize the CPU state before calling the hook so that it * is safe for the hook to call raise_exception(). */ ARM_CP_RAISES_EXC = 1 << 11, /* * Flag: Writes to the sysreg might change the exception level - typically * on older ARM chips. For those cases we need to re-read the new el when * recomputing the translation flags. */ ARM_CP_NEWEL = 1 << 12, /* * Flag: Access check for this sysreg is identical to accessing FPU state * from an instruction: use translation fp_access_check(). */ ARM_CP_FPU = 1 << 13, /* * Flag: Access check for this sysreg is identical to accessing SVE state * from an instruction: use translation sve_access_check(). */ ARM_CP_SVE = 1 << 14, /* Flag: Do not expose in gdb sysreg xml. */ ARM_CP_NO_GDB = 1 << 15, /* * Flags: If EL3 but not EL2... * - UNDEF: discard the cpreg, * - KEEP: retain the cpreg as is, * - C_NZ: set const on the cpreg, but retain resetvalue, * - else: set const on the cpreg, zero resetvalue, aka RES0. * See rule RJFFP in section D1.1.3 of DDI0487H.a. */ ARM_CP_EL3_NO_EL2_UNDEF = 1 << 16, ARM_CP_EL3_NO_EL2_KEEP = 1 << 17, ARM_CP_EL3_NO_EL2_C_NZ = 1 << 18, /* * Flag: Access check for this sysreg is constrained by the * ARM pseudocode function CheckSMEAccess(). */ ARM_CP_SME = 1 << 19, /* * Flag: one of the four EL2 registers which redirect to the * equivalent EL1 register when FEAT_NV2 is enabled. */ ARM_CP_NV2_REDIRECT = 1 << 20, }; /* * Interface for defining coprocessor registers. * Registers are defined in tables of arm_cp_reginfo structs * which are passed to define_arm_cp_regs(). */ /* * When looking up a coprocessor register we look for it * via an integer which encodes all of: * coprocessor number * Crn, Crm, opc1, opc2 fields * 32 or 64 bit register (ie is it accessed via MRC/MCR * or via MRRC/MCRR?) * non-secure/secure bank (AArch32 only) * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. * (In this case crn and opc2 should be zero.) * For AArch64, there is no 32/64 bit size distinction; * instead all registers have a 2 bit op0, 3 bit op1 and op2, * and 4 bit CRn and CRm. The encoding patterns are chosen * to be easy to convert to and from the KVM encodings, and also * so that the hashtable can contain both AArch32 and AArch64 * registers (to allow for interprocessing where we might run * 32 bit code on a 64 bit core). */ /* * This bit is private to our hashtable cpreg; in KVM register * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 * in the upper bits of the 64 bit ID. */ #define CP_REG_AA64_SHIFT 28 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) /* * To enable banking of coprocessor registers depending on ns-bit we * add a bit to distinguish between secure and non-secure cpregs in the * hashtable. */ #define CP_REG_NS_SHIFT 29 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ (CP_REG_AA64_MASK | \ ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) /* * Convert a full 64 bit KVM register ID to the truncated 32 bit * version used as a key for the coprocessor register hashtable */ static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) { uint32_t cpregid = kvmid; if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { cpregid |= CP_REG_AA64_MASK; } else { if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { cpregid |= (1 << 15); } /* * KVM is always non-secure so add the NS flag on AArch32 register * entries. */ cpregid |= 1 << CP_REG_NS_SHIFT; } return cpregid; } /* * Convert a truncated 32 bit hashtable key into the full * 64 bit KVM register ID. */ static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) { uint64_t kvmid; if (cpregid & CP_REG_AA64_MASK) { kvmid = cpregid & ~CP_REG_AA64_MASK; kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; } else { kvmid = cpregid & ~(1 << 15); if (cpregid & (1 << 15)) { kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; } else { kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; } } return kvmid; } /* * Valid values for ARMCPRegInfo state field, indicating which of * the AArch32 and AArch64 execution states this register is visible in. * If the reginfo doesn't explicitly specify then it is AArch32 only. * If the reginfo is declared to be visible in both states then a second * reginfo is synthesised for the AArch32 view of the AArch64 register, * such that the AArch32 view is the lower 32 bits of the AArch64 one. * Note that we rely on the values of these enums as we iterate through * the various states in some places. */ typedef enum { ARM_CP_STATE_AA32 = 0, ARM_CP_STATE_AA64 = 1, ARM_CP_STATE_BOTH = 2, } CPState; /* * ARM CP register secure state flags. These flags identify security state * attributes for a given CP register entry. * The existence of both or neither secure and non-secure flags indicates that * the register has both a secure and non-secure hash entry. A single one of * these flags causes the register to only be hashed for the specified * security state. * Although definitions may have any combination of the S/NS bits, each * registered entry will only have one to identify whether the entry is secure * or non-secure. */ typedef enum { ARM_CP_SECSTATE_BOTH = 0, /* define one cpreg for each secstate */ ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ } CPSecureState; /* * Access rights: * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 * (ie any of the privileged modes in Secure state, or Monitor mode). * If a register is accessible in one privilege level it's always accessible * in higher privilege levels too. Since "Secure PL1" also follows this rule * (ie anything visible in PL2 is visible in S-PL1, some things are only * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the * terminology a little and call this PL3. * In AArch64 things are somewhat simpler as the PLx bits line up exactly * with the ELx exception levels. * * If access permissions for a register are more complex than can be * described with these bits, then use a laxer set of restrictions, and * do the more restrictive/complex check inside a helper function. */ typedef enum { PL3_R = 0x80, PL3_W = 0x40, PL2_R = 0x20 | PL3_R, PL2_W = 0x10 | PL3_W, PL1_R = 0x08 | PL2_R, PL1_W = 0x04 | PL2_W, PL0_R = 0x02 | PL1_R, PL0_W = 0x01 | PL1_W, /* * For user-mode some registers are accessible to EL0 via a kernel * trap-and-emulate ABI. In this case we define the read permissions * as actually being PL0_R. However some bits of any given register * may still be masked. */ #ifdef CONFIG_USER_ONLY PL0U_R = PL0_R, #else PL0U_R = PL1_R, #endif PL3_RW = PL3_R | PL3_W, PL2_RW = PL2_R | PL2_W, PL1_RW = PL1_R | PL1_W, PL0_RW = PL0_R | PL0_W, } CPAccessRights; typedef enum CPAccessResult { /* Access is permitted */ CP_ACCESS_OK = 0, /* * Combined with one of the following, the low 2 bits indicate the * target exception level. If 0, the exception is taken to the usual * target EL (EL1 or PL1 if in EL0, otherwise to the current EL). */ CP_ACCESS_EL_MASK = 3, /* * Access fails due to a configurable trap or enable which would * result in a categorized exception syndrome giving information about * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, * 0xc or 0x18). */ CP_ACCESS_TRAP = (1 << 2), CP_ACCESS_TRAP_EL2 = CP_ACCESS_TRAP | 2, CP_ACCESS_TRAP_EL3 = CP_ACCESS_TRAP | 3, /* * Access fails and results in an exception syndrome 0x0 ("uncategorized"). * Note that this is not a catch-all case -- the set of cases which may * result in this failure is specifically defined by the architecture. * This trap is always to the usual target EL, never directly to a * specified target EL. */ CP_ACCESS_TRAP_UNCATEGORIZED = (2 << 2), } CPAccessResult; /* Indexes into fgt_read[] */ #define FGTREG_HFGRTR 0 #define FGTREG_HDFGRTR 1 /* Indexes into fgt_write[] */ #define FGTREG_HFGWTR 0 #define FGTREG_HDFGWTR 1 /* Indexes into fgt_exec[] */ #define FGTREG_HFGITR 0 FIELD(HFGRTR_EL2, AFSR0_EL1, 0, 1) FIELD(HFGRTR_EL2, AFSR1_EL1, 1, 1) FIELD(HFGRTR_EL2, AIDR_EL1, 2, 1) FIELD(HFGRTR_EL2, AMAIR_EL1, 3, 1) FIELD(HFGRTR_EL2, APDAKEY, 4, 1) FIELD(HFGRTR_EL2, APDBKEY, 5, 1) FIELD(HFGRTR_EL2, APGAKEY, 6, 1) FIELD(HFGRTR_EL2, APIAKEY, 7, 1) FIELD(HFGRTR_EL2, APIBKEY, 8, 1) FIELD(HFGRTR_EL2, CCSIDR_EL1, 9, 1) FIELD(HFGRTR_EL2, CLIDR_EL1, 10, 1) FIELD(HFGRTR_EL2, CONTEXTIDR_EL1, 11, 1) FIELD(HFGRTR_EL2, CPACR_EL1, 12, 1) FIELD(HFGRTR_EL2, CSSELR_EL1, 13, 1) FIELD(HFGRTR_EL2, CTR_EL0, 14, 1) FIELD(HFGRTR_EL2, DCZID_EL0, 15, 1) FIELD(HFGRTR_EL2, ESR_EL1, 16, 1) FIELD(HFGRTR_EL2, FAR_EL1, 17, 1) FIELD(HFGRTR_EL2, ISR_EL1, 18, 1) FIELD(HFGRTR_EL2, LORC_EL1, 19, 1) FIELD(HFGRTR_EL2, LOREA_EL1, 20, 1) FIELD(HFGRTR_EL2, LORID_EL1, 21, 1) FIELD(HFGRTR_EL2, LORN_EL1, 22, 1) FIELD(HFGRTR_EL2, LORSA_EL1, 23, 1) FIELD(HFGRTR_EL2, MAIR_EL1, 24, 1) FIELD(HFGRTR_EL2, MIDR_EL1, 25, 1) FIELD(HFGRTR_EL2, MPIDR_EL1, 26, 1) FIELD(HFGRTR_EL2, PAR_EL1, 27, 1) FIELD(HFGRTR_EL2, REVIDR_EL1, 28, 1) FIELD(HFGRTR_EL2, SCTLR_EL1, 29, 1) FIELD(HFGRTR_EL2, SCXTNUM_EL1, 30, 1) FIELD(HFGRTR_EL2, SCXTNUM_EL0, 31, 1) FIELD(HFGRTR_EL2, TCR_EL1, 32, 1) FIELD(HFGRTR_EL2, TPIDR_EL1, 33, 1) FIELD(HFGRTR_EL2, TPIDRRO_EL0, 34, 1) FIELD(HFGRTR_EL2, TPIDR_EL0, 35, 1) FIELD(HFGRTR_EL2, TTBR0_EL1, 36, 1) FIELD(HFGRTR_EL2, TTBR1_EL1, 37, 1) FIELD(HFGRTR_EL2, VBAR_EL1, 38, 1) FIELD(HFGRTR_EL2, ICC_IGRPENN_EL1, 39, 1) FIELD(HFGRTR_EL2, ERRIDR_EL1, 40, 1) FIELD(HFGRTR_EL2, ERRSELR_EL1, 41, 1) FIELD(HFGRTR_EL2, ERXFR_EL1, 42, 1) FIELD(HFGRTR_EL2, ERXCTLR_EL1, 43, 1) FIELD(HFGRTR_EL2, ERXSTATUS_EL1, 44, 1) FIELD(HFGRTR_EL2, ERXMISCN_EL1, 45, 1) FIELD(HFGRTR_EL2, ERXPFGF_EL1, 46, 1) FIELD(HFGRTR_EL2, ERXPFGCTL_EL1, 47, 1) FIELD(HFGRTR_EL2, ERXPFGCDN_EL1, 48, 1) FIELD(HFGRTR_EL2, ERXADDR_EL1, 49, 1) FIELD(HFGRTR_EL2, NACCDATA_EL1, 50, 1) /* 51-53: RES0 */ FIELD(HFGRTR_EL2, NSMPRI_EL1, 54, 1) FIELD(HFGRTR_EL2, NTPIDR2_EL0, 55, 1) /* 56-63: RES0 */ /* These match HFGRTR but bits for RO registers are RES0 */ FIELD(HFGWTR_EL2, AFSR0_EL1, 0, 1) FIELD(HFGWTR_EL2, AFSR1_EL1, 1, 1) FIELD(HFGWTR_EL2, AMAIR_EL1, 3, 1) FIELD(HFGWTR_EL2, APDAKEY, 4, 1) FIELD(HFGWTR_EL2, APDBKEY, 5, 1) FIELD(HFGWTR_EL2, APGAKEY, 6, 1) FIELD(HFGWTR_EL2, APIAKEY, 7, 1) FIELD(HFGWTR_EL2, APIBKEY, 8, 1) FIELD(HFGWTR_EL2, CONTEXTIDR_EL1, 11, 1) FIELD(HFGWTR_EL2, CPACR_EL1, 12, 1) FIELD(HFGWTR_EL2, CSSELR_EL1, 13, 1) FIELD(HFGWTR_EL2, ESR_EL1, 16, 1) FIELD(HFGWTR_EL2, FAR_EL1, 17, 1) FIELD(HFGWTR_EL2, LORC_EL1, 19, 1) FIELD(HFGWTR_EL2, LOREA_EL1, 20, 1) FIELD(HFGWTR_EL2, LORN_EL1, 22, 1) FIELD(HFGWTR_EL2, LORSA_EL1, 23, 1) FIELD(HFGWTR_EL2, MAIR_EL1, 24, 1) FIELD(HFGWTR_EL2, PAR_EL1, 27, 1) FIELD(HFGWTR_EL2, SCTLR_EL1, 29, 1) FIELD(HFGWTR_EL2, SCXTNUM_EL1, 30, 1) FIELD(HFGWTR_EL2, SCXTNUM_EL0, 31, 1) FIELD(HFGWTR_EL2, TCR_EL1, 32, 1) FIELD(HFGWTR_EL2, TPIDR_EL1, 33, 1) FIELD(HFGWTR_EL2, TPIDRRO_EL0, 34, 1) FIELD(HFGWTR_EL2, TPIDR_EL0, 35, 1) FIELD(HFGWTR_EL2, TTBR0_EL1, 36, 1) FIELD(HFGWTR_EL2, TTBR1_EL1, 37, 1) FIELD(HFGWTR_EL2, VBAR_EL1, 38, 1) FIELD(HFGWTR_EL2, ICC_IGRPENN_EL1, 39, 1) FIELD(HFGWTR_EL2, ERRSELR_EL1, 41, 1) FIELD(HFGWTR_EL2, ERXCTLR_EL1, 43, 1) FIELD(HFGWTR_EL2, ERXSTATUS_EL1, 44, 1) FIELD(HFGWTR_EL2, ERXMISCN_EL1, 45, 1) FIELD(HFGWTR_EL2, ERXPFGCTL_EL1, 47, 1) FIELD(HFGWTR_EL2, ERXPFGCDN_EL1, 48, 1) FIELD(HFGWTR_EL2, ERXADDR_EL1, 49, 1) FIELD(HFGWTR_EL2, NACCDATA_EL1, 50, 1) FIELD(HFGWTR_EL2, NSMPRI_EL1, 54, 1) FIELD(HFGWTR_EL2, NTPIDR2_EL0, 55, 1) FIELD(HFGITR_EL2, ICIALLUIS, 0, 1) FIELD(HFGITR_EL2, ICIALLU, 1, 1) FIELD(HFGITR_EL2, ICIVAU, 2, 1) FIELD(HFGITR_EL2, DCIVAC, 3, 1) FIELD(HFGITR_EL2, DCISW, 4, 1) FIELD(HFGITR_EL2, DCCSW, 5, 1) FIELD(HFGITR_EL2, DCCISW, 6, 1) FIELD(HFGITR_EL2, DCCVAU, 7, 1) FIELD(HFGITR_EL2, DCCVAP, 8, 1) FIELD(HFGITR_EL2, DCCVADP, 9, 1) FIELD(HFGITR_EL2, DCCIVAC, 10, 1) FIELD(HFGITR_EL2, DCZVA, 11, 1) FIELD(HFGITR_EL2, ATS1E1R, 12, 1) FIELD(HFGITR_EL2, ATS1E1W, 13, 1) FIELD(HFGITR_EL2, ATS1E0R, 14, 1) FIELD(HFGITR_EL2, ATS1E0W, 15, 1) FIELD(HFGITR_EL2, ATS1E1RP, 16, 1) FIELD(HFGITR_EL2, ATS1E1WP, 17, 1) FIELD(HFGITR_EL2, TLBIVMALLE1OS, 18, 1) FIELD(HFGITR_EL2, TLBIVAE1OS, 19, 1) FIELD(HFGITR_EL2, TLBIASIDE1OS, 20, 1) FIELD(HFGITR_EL2, TLBIVAAE1OS, 21, 1) FIELD(HFGITR_EL2, TLBIVALE1OS, 22, 1) FIELD(HFGITR_EL2, TLBIVAALE1OS, 23, 1) FIELD(HFGITR_EL2, TLBIRVAE1OS, 24, 1) FIELD(HFGITR_EL2, TLBIRVAAE1OS, 25, 1) FIELD(HFGITR_EL2, TLBIRVALE1OS, 26, 1) FIELD(HFGITR_EL2, TLBIRVAALE1OS, 27, 1) FIELD(HFGITR_EL2, TLBIVMALLE1IS, 28, 1) FIELD(HFGITR_EL2, TLBIVAE1IS, 29, 1) FIELD(HFGITR_EL2, TLBIASIDE1IS, 30, 1) FIELD(HFGITR_EL2, TLBIVAAE1IS, 31, 1) FIELD(HFGITR_EL2, TLBIVALE1IS, 32, 1) FIELD(HFGITR_EL2, TLBIVAALE1IS, 33, 1) FIELD(HFGITR_EL2, TLBIRVAE1IS, 34, 1) FIELD(HFGITR_EL2, TLBIRVAAE1IS, 35, 1) FIELD(HFGITR_EL2, TLBIRVALE1IS, 36, 1) FIELD(HFGITR_EL2, TLBIRVAALE1IS, 37, 1) FIELD(HFGITR_EL2, TLBIRVAE1, 38, 1) FIELD(HFGITR_EL2, TLBIRVAAE1, 39, 1) FIELD(HFGITR_EL2, TLBIRVALE1, 40, 1) FIELD(HFGITR_EL2, TLBIRVAALE1, 41, 1) FIELD(HFGITR_EL2, TLBIVMALLE1, 42, 1) FIELD(HFGITR_EL2, TLBIVAE1, 43, 1) FIELD(HFGITR_EL2, TLBIASIDE1, 44, 1) FIELD(HFGITR_EL2, TLBIVAAE1, 45, 1) FIELD(HFGITR_EL2, TLBIVALE1, 46, 1) FIELD(HFGITR_EL2, TLBIVAALE1, 47, 1) FIELD(HFGITR_EL2, CFPRCTX, 48, 1) FIELD(HFGITR_EL2, DVPRCTX, 49, 1) FIELD(HFGITR_EL2, CPPRCTX, 50, 1) FIELD(HFGITR_EL2, ERET, 51, 1) FIELD(HFGITR_EL2, SVC_EL0, 52, 1) FIELD(HFGITR_EL2, SVC_EL1, 53, 1) FIELD(HFGITR_EL2, DCCVAC, 54, 1) FIELD(HFGITR_EL2, NBRBINJ, 55, 1) FIELD(HFGITR_EL2, NBRBIALL, 56, 1) FIELD(HDFGRTR_EL2, DBGBCRN_EL1, 0, 1) FIELD(HDFGRTR_EL2, DBGBVRN_EL1, 1, 1) FIELD(HDFGRTR_EL2, DBGWCRN_EL1, 2, 1) FIELD(HDFGRTR_EL2, DBGWVRN_EL1, 3, 1) FIELD(HDFGRTR_EL2, MDSCR_EL1, 4, 1) FIELD(HDFGRTR_EL2, DBGCLAIM, 5, 1) FIELD(HDFGRTR_EL2, DBGAUTHSTATUS_EL1, 6, 1) FIELD(HDFGRTR_EL2, DBGPRCR_EL1, 7, 1) /* 8: RES0: OSLAR_EL1 is WO */ FIELD(HDFGRTR_EL2, OSLSR_EL1, 9, 1) FIELD(HDFGRTR_EL2, OSECCR_EL1, 10, 1) FIELD(HDFGRTR_EL2, OSDLR_EL1, 11, 1) FIELD(HDFGRTR_EL2, PMEVCNTRN_EL0, 12, 1) FIELD(HDFGRTR_EL2, PMEVTYPERN_EL0, 13, 1) FIELD(HDFGRTR_EL2, PMCCFILTR_EL0, 14, 1) FIELD(HDFGRTR_EL2, PMCCNTR_EL0, 15, 1) FIELD(HDFGRTR_EL2, PMCNTEN, 16, 1) FIELD(HDFGRTR_EL2, PMINTEN, 17, 1) FIELD(HDFGRTR_EL2, PMOVS, 18, 1) FIELD(HDFGRTR_EL2, PMSELR_EL0, 19, 1) /* 20: RES0: PMSWINC_EL0 is WO */ /* 21: RES0: PMCR_EL0 is WO */ FIELD(HDFGRTR_EL2, PMMIR_EL1, 22, 1) FIELD(HDFGRTR_EL2, PMBLIMITR_EL1, 23, 1) FIELD(HDFGRTR_EL2, PMBPTR_EL1, 24, 1) FIELD(HDFGRTR_EL2, PMBSR_EL1, 25, 1) FIELD(HDFGRTR_EL2, PMSCR_EL1, 26, 1) FIELD(HDFGRTR_EL2, PMSEVFR_EL1, 27, 1) FIELD(HDFGRTR_EL2, PMSFCR_EL1, 28, 1) FIELD(HDFGRTR_EL2, PMSICR_EL1, 29, 1) FIELD(HDFGRTR_EL2, PMSIDR_EL1, 30, 1) FIELD(HDFGRTR_EL2, PMSIRR_EL1, 31, 1) FIELD(HDFGRTR_EL2, PMSLATFR_EL1, 32, 1) FIELD(HDFGRTR_EL2, TRC, 33, 1) FIELD(HDFGRTR_EL2, TRCAUTHSTATUS, 34, 1) FIELD(HDFGRTR_EL2, TRCAUXCTLR, 35, 1) FIELD(HDFGRTR_EL2, TRCCLAIM, 36, 1) FIELD(HDFGRTR_EL2, TRCCNTVRn, 37, 1) /* 38, 39: RES0 */ FIELD(HDFGRTR_EL2, TRCID, 40, 1) FIELD(HDFGRTR_EL2, TRCIMSPECN, 41, 1) /* 42: RES0: TRCOSLAR is WO */ FIELD(HDFGRTR_EL2, TRCOSLSR, 43, 1) FIELD(HDFGRTR_EL2, TRCPRGCTLR, 44, 1) FIELD(HDFGRTR_EL2, TRCSEQSTR, 45, 1) FIELD(HDFGRTR_EL2, TRCSSCSRN, 46, 1) FIELD(HDFGRTR_EL2, TRCSTATR, 47, 1) FIELD(HDFGRTR_EL2, TRCVICTLR, 48, 1) /* 49: RES0: TRFCR_EL1 is WO */ FIELD(HDFGRTR_EL2, TRBBASER_EL1, 50, 1) FIELD(HDFGRTR_EL2, TRBIDR_EL1, 51, 1) FIELD(HDFGRTR_EL2, TRBLIMITR_EL1, 52, 1) FIELD(HDFGRTR_EL2, TRBMAR_EL1, 53, 1) FIELD(HDFGRTR_EL2, TRBPTR_EL1, 54, 1) FIELD(HDFGRTR_EL2, TRBSR_EL1, 55, 1) FIELD(HDFGRTR_EL2, TRBTRG_EL1, 56, 1) FIELD(HDFGRTR_EL2, PMUSERENR_EL0, 57, 1) FIELD(HDFGRTR_EL2, PMCEIDN_EL0, 58, 1) FIELD(HDFGRTR_EL2, NBRBIDR, 59, 1) FIELD(HDFGRTR_EL2, NBRBCTL, 60, 1) FIELD(HDFGRTR_EL2, NBRBDATA, 61, 1) FIELD(HDFGRTR_EL2, NPMSNEVFR_EL1, 62, 1) FIELD(HDFGRTR_EL2, PMBIDR_EL1, 63, 1) /* * These match HDFGRTR_EL2, but bits for RO registers are RES0. * A few bits are for WO registers, where the HDFGRTR_EL2 bit is RES0. */ FIELD(HDFGWTR_EL2, DBGBCRN_EL1, 0, 1) FIELD(HDFGWTR_EL2, DBGBVRN_EL1, 1, 1) FIELD(HDFGWTR_EL2, DBGWCRN_EL1, 2, 1) FIELD(HDFGWTR_EL2, DBGWVRN_EL1, 3, 1) FIELD(HDFGWTR_EL2, MDSCR_EL1, 4, 1) FIELD(HDFGWTR_EL2, DBGCLAIM, 5, 1) FIELD(HDFGWTR_EL2, DBGPRCR_EL1, 7, 1) FIELD(HDFGWTR_EL2, OSLAR_EL1, 8, 1) FIELD(HDFGWTR_EL2, OSLSR_EL1, 9, 1) FIELD(HDFGWTR_EL2, OSECCR_EL1, 10, 1) FIELD(HDFGWTR_EL2, OSDLR_EL1, 11, 1) FIELD(HDFGWTR_EL2, PMEVCNTRN_EL0, 12, 1) FIELD(HDFGWTR_EL2, PMEVTYPERN_EL0, 13, 1) FIELD(HDFGWTR_EL2, PMCCFILTR_EL0, 14, 1) FIELD(HDFGWTR_EL2, PMCCNTR_EL0, 15, 1) FIELD(HDFGWTR_EL2, PMCNTEN, 16, 1) FIELD(HDFGWTR_EL2, PMINTEN, 17, 1) FIELD(HDFGWTR_EL2, PMOVS, 18, 1) FIELD(HDFGWTR_EL2, PMSELR_EL0, 19, 1) FIELD(HDFGWTR_EL2, PMSWINC_EL0, 20, 1) FIELD(HDFGWTR_EL2, PMCR_EL0, 21, 1) FIELD(HDFGWTR_EL2, PMBLIMITR_EL1, 23, 1) FIELD(HDFGWTR_EL2, PMBPTR_EL1, 24, 1) FIELD(HDFGWTR_EL2, PMBSR_EL1, 25, 1) FIELD(HDFGWTR_EL2, PMSCR_EL1, 26, 1) FIELD(HDFGWTR_EL2, PMSEVFR_EL1, 27, 1) FIELD(HDFGWTR_EL2, PMSFCR_EL1, 28, 1) FIELD(HDFGWTR_EL2, PMSICR_EL1, 29, 1) FIELD(HDFGWTR_EL2, PMSIRR_EL1, 31, 1) FIELD(HDFGWTR_EL2, PMSLATFR_EL1, 32, 1) FIELD(HDFGWTR_EL2, TRC, 33, 1) FIELD(HDFGWTR_EL2, TRCAUXCTLR, 35, 1) FIELD(HDFGWTR_EL2, TRCCLAIM, 36, 1) FIELD(HDFGWTR_EL2, TRCCNTVRn, 37, 1) FIELD(HDFGWTR_EL2, TRCIMSPECN, 41, 1) FIELD(HDFGWTR_EL2, TRCOSLAR, 42, 1) FIELD(HDFGWTR_EL2, TRCPRGCTLR, 44, 1) FIELD(HDFGWTR_EL2, TRCSEQSTR, 45, 1) FIELD(HDFGWTR_EL2, TRCSSCSRN, 46, 1) FIELD(HDFGWTR_EL2, TRCVICTLR, 48, 1) FIELD(HDFGWTR_EL2, TRFCR_EL1, 49, 1) FIELD(HDFGWTR_EL2, TRBBASER_EL1, 50, 1) FIELD(HDFGWTR_EL2, TRBLIMITR_EL1, 52, 1) FIELD(HDFGWTR_EL2, TRBMAR_EL1, 53, 1) FIELD(HDFGWTR_EL2, TRBPTR_EL1, 54, 1) FIELD(HDFGWTR_EL2, TRBSR_EL1, 55, 1) FIELD(HDFGWTR_EL2, TRBTRG_EL1, 56, 1) FIELD(HDFGWTR_EL2, PMUSERENR_EL0, 57, 1) FIELD(HDFGWTR_EL2, NBRBCTL, 60, 1) FIELD(HDFGWTR_EL2, NBRBDATA, 61, 1) FIELD(HDFGWTR_EL2, NPMSNEVFR_EL1, 62, 1) /* Which fine-grained trap bit register to check, if any */ FIELD(FGT, TYPE, 10, 3) FIELD(FGT, REV, 9, 1) /* Is bit sense reversed? */ FIELD(FGT, IDX, 6, 3) /* Index within a uint64_t[] array */ FIELD(FGT, BITPOS, 0, 6) /* Bit position within the uint64_t */ /* * Macros to define FGT_##bitname enum constants to use in ARMCPRegInfo::fgt * fields. We assume for brevity's sake that there are no duplicated * bit names across the various FGT registers. */ #define DO_BIT(REG, BITNAME) \ FGT_##BITNAME = FGT_##REG | R_##REG##_EL2_##BITNAME##_SHIFT /* Some bits have reversed sense, so 0 means trap and 1 means not */ #define DO_REV_BIT(REG, BITNAME) \ FGT_##BITNAME = FGT_##REG | FGT_REV | R_##REG##_EL2_##BITNAME##_SHIFT typedef enum FGTBit { /* * These bits tell us which register arrays to use: * if FGT_R is set then reads are checked against fgt_read[]; * if FGT_W is set then writes are checked against fgt_write[]; * if FGT_EXEC is set then all accesses are checked against fgt_exec[]. * * For almost all bits in the R/W register pairs, the bit exists in * both registers for a RW register, in HFGRTR/HDFGRTR for a RO register * with the corresponding HFGWTR/HDFGTWTR bit being RES0, and vice-versa * for a WO register. There are unfortunately a couple of exceptions * (PMCR_EL0, TRFCR_EL1) where the register being trapped is RW but * the FGT system only allows trapping of writes, not reads. * * Note that we arrange these bits so that a 0 FGTBit means "no trap". */ FGT_R = 1 << R_FGT_TYPE_SHIFT, FGT_W = 2 << R_FGT_TYPE_SHIFT, FGT_EXEC = 4 << R_FGT_TYPE_SHIFT, FGT_RW = FGT_R | FGT_W, /* Bit to identify whether trap bit is reversed sense */ FGT_REV = R_FGT_REV_MASK, /* * If a bit exists in HFGRTR/HDFGRTR then either the register being * trapped is RO or the bit also exists in HFGWTR/HDFGWTR, so we either * want to trap for both reads and writes or else it's harmless to mark * it as trap-on-writes. * If a bit exists only in HFGWTR/HDFGWTR then either the register being * trapped is WO, or else it is one of the two oddball special cases * which are RW but have only a write trap. We mark these as only * FGT_W so we get the right behaviour for those special cases. * (If a bit was added in future that provided only a read trap for an * RW register we'd need to do something special to get the FGT_R bit * only. But this seems unlikely to happen.) * * So for the DO_BIT/DO_REV_BIT macros: use FGT_HFGRTR/FGT_HDFGRTR if * the bit exists in that register. Otherwise use FGT_HFGWTR/FGT_HDFGWTR. */ FGT_HFGRTR = FGT_RW | (FGTREG_HFGRTR << R_FGT_IDX_SHIFT), FGT_HFGWTR = FGT_W | (FGTREG_HFGWTR << R_FGT_IDX_SHIFT), FGT_HDFGRTR = FGT_RW | (FGTREG_HDFGRTR << R_FGT_IDX_SHIFT), FGT_HDFGWTR = FGT_W | (FGTREG_HDFGWTR << R_FGT_IDX_SHIFT), FGT_HFGITR = FGT_EXEC | (FGTREG_HFGITR << R_FGT_IDX_SHIFT), /* Trap bits in HFGRTR_EL2 / HFGWTR_EL2, starting from bit 0. */ DO_BIT(HFGRTR, AFSR0_EL1), DO_BIT(HFGRTR, AFSR1_EL1), DO_BIT(HFGRTR, AIDR_EL1), DO_BIT(HFGRTR, AMAIR_EL1), DO_BIT(HFGRTR, APDAKEY), DO_BIT(HFGRTR, APDBKEY), DO_BIT(HFGRTR, APGAKEY), DO_BIT(HFGRTR, APIAKEY), DO_BIT(HFGRTR, APIBKEY), DO_BIT(HFGRTR, CCSIDR_EL1), DO_BIT(HFGRTR, CLIDR_EL1), DO_BIT(HFGRTR, CONTEXTIDR_EL1), DO_BIT(HFGRTR, CPACR_EL1), DO_BIT(HFGRTR, CSSELR_EL1), DO_BIT(HFGRTR, CTR_EL0), DO_BIT(HFGRTR, DCZID_EL0), DO_BIT(HFGRTR, ESR_EL1), DO_BIT(HFGRTR, FAR_EL1), DO_BIT(HFGRTR, ISR_EL1), DO_BIT(HFGRTR, LORC_EL1), DO_BIT(HFGRTR, LOREA_EL1), DO_BIT(HFGRTR, LORID_EL1), DO_BIT(HFGRTR, LORN_EL1), DO_BIT(HFGRTR, LORSA_EL1), DO_BIT(HFGRTR, MAIR_EL1), DO_BIT(HFGRTR, MIDR_EL1), DO_BIT(HFGRTR, MPIDR_EL1), DO_BIT(HFGRTR, PAR_EL1), DO_BIT(HFGRTR, REVIDR_EL1), DO_BIT(HFGRTR, SCTLR_EL1), DO_BIT(HFGRTR, SCXTNUM_EL1), DO_BIT(HFGRTR, SCXTNUM_EL0), DO_BIT(HFGRTR, TCR_EL1), DO_BIT(HFGRTR, TPIDR_EL1), DO_BIT(HFGRTR, TPIDRRO_EL0), DO_BIT(HFGRTR, TPIDR_EL0), DO_BIT(HFGRTR, TTBR0_EL1), DO_BIT(HFGRTR, TTBR1_EL1), DO_BIT(HFGRTR, VBAR_EL1), DO_BIT(HFGRTR, ICC_IGRPENN_EL1), DO_BIT(HFGRTR, ERRIDR_EL1), DO_REV_BIT(HFGRTR, NSMPRI_EL1), DO_REV_BIT(HFGRTR, NTPIDR2_EL0), /* Trap bits in HDFGRTR_EL2 / HDFGWTR_EL2, starting from bit 0. */ DO_BIT(HDFGRTR, DBGBCRN_EL1), DO_BIT(HDFGRTR, DBGBVRN_EL1), DO_BIT(HDFGRTR, DBGWCRN_EL1), DO_BIT(HDFGRTR, DBGWVRN_EL1), DO_BIT(HDFGRTR, MDSCR_EL1), DO_BIT(HDFGRTR, DBGCLAIM), DO_BIT(HDFGWTR, OSLAR_EL1), DO_BIT(HDFGRTR, OSLSR_EL1), DO_BIT(HDFGRTR, OSECCR_EL1), DO_BIT(HDFGRTR, OSDLR_EL1), DO_BIT(HDFGRTR, PMEVCNTRN_EL0), DO_BIT(HDFGRTR, PMEVTYPERN_EL0), DO_BIT(HDFGRTR, PMCCFILTR_EL0), DO_BIT(HDFGRTR, PMCCNTR_EL0), DO_BIT(HDFGRTR, PMCNTEN), DO_BIT(HDFGRTR, PMINTEN), DO_BIT(HDFGRTR, PMOVS), DO_BIT(HDFGRTR, PMSELR_EL0), DO_BIT(HDFGWTR, PMSWINC_EL0), DO_BIT(HDFGWTR, PMCR_EL0), DO_BIT(HDFGRTR, PMMIR_EL1), DO_BIT(HDFGRTR, PMCEIDN_EL0), /* Trap bits in HFGITR_EL2, starting from bit 0 */ DO_BIT(HFGITR, ICIALLUIS), DO_BIT(HFGITR, ICIALLU), DO_BIT(HFGITR, ICIVAU), DO_BIT(HFGITR, DCIVAC), DO_BIT(HFGITR, DCISW), DO_BIT(HFGITR, DCCSW), DO_BIT(HFGITR, DCCISW), DO_BIT(HFGITR, DCCVAU), DO_BIT(HFGITR, DCCVAP), DO_BIT(HFGITR, DCCVADP), DO_BIT(HFGITR, DCCIVAC), DO_BIT(HFGITR, DCZVA), DO_BIT(HFGITR, ATS1E1R), DO_BIT(HFGITR, ATS1E1W), DO_BIT(HFGITR, ATS1E0R), DO_BIT(HFGITR, ATS1E0W), DO_BIT(HFGITR, ATS1E1RP), DO_BIT(HFGITR, ATS1E1WP), DO_BIT(HFGITR, TLBIVMALLE1OS), DO_BIT(HFGITR, TLBIVAE1OS), DO_BIT(HFGITR, TLBIASIDE1OS), DO_BIT(HFGITR, TLBIVAAE1OS), DO_BIT(HFGITR, TLBIVALE1OS), DO_BIT(HFGITR, TLBIVAALE1OS), DO_BIT(HFGITR, TLBIRVAE1OS), DO_BIT(HFGITR, TLBIRVAAE1OS), DO_BIT(HFGITR, TLBIRVALE1OS), DO_BIT(HFGITR, TLBIRVAALE1OS), DO_BIT(HFGITR, TLBIVMALLE1IS), DO_BIT(HFGITR, TLBIVAE1IS), DO_BIT(HFGITR, TLBIASIDE1IS), DO_BIT(HFGITR, TLBIVAAE1IS), DO_BIT(HFGITR, TLBIVALE1IS), DO_BIT(HFGITR, TLBIVAALE1IS), DO_BIT(HFGITR, TLBIRVAE1IS), DO_BIT(HFGITR, TLBIRVAAE1IS), DO_BIT(HFGITR, TLBIRVALE1IS), DO_BIT(HFGITR, TLBIRVAALE1IS), DO_BIT(HFGITR, TLBIRVAE1), DO_BIT(HFGITR, TLBIRVAAE1), DO_BIT(HFGITR, TLBIRVALE1), DO_BIT(HFGITR, TLBIRVAALE1), DO_BIT(HFGITR, TLBIVMALLE1), DO_BIT(HFGITR, TLBIVAE1), DO_BIT(HFGITR, TLBIASIDE1), DO_BIT(HFGITR, TLBIVAAE1), DO_BIT(HFGITR, TLBIVALE1), DO_BIT(HFGITR, TLBIVAALE1), DO_BIT(HFGITR, CFPRCTX), DO_BIT(HFGITR, DVPRCTX), DO_BIT(HFGITR, CPPRCTX), DO_BIT(HFGITR, DCCVAC), } FGTBit; #undef DO_BIT #undef DO_REV_BIT typedef struct ARMCPRegInfo ARMCPRegInfo; /* * Access functions for coprocessor registers. These cannot fail and * may not raise exceptions. */ typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, uint64_t value); /* Access permission check functions for coprocessor registers. */ typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque, bool isread); /* Hook function for register reset */ typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); #define CP_ANY 0xff /* Flags in the high bits of nv2_redirect_offset */ #define NV2_REDIR_NV1 0x4000 /* Only redirect when HCR_EL2.NV1 == 1 */ #define NV2_REDIR_NO_NV1 0x8000 /* Only redirect when HCR_EL2.NV1 == 0 */ #define NV2_REDIR_FLAG_MASK 0xc000 /* Definition of an ARM coprocessor register */ struct ARMCPRegInfo { /* Name of register (useful mainly for debugging, need not be unique) */ const char *name; /* * Location of register: coprocessor number and (crn,crm,opc1,opc2) * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a * 'wildcard' field -- any value of that field in the MRC/MCR insn * will be decoded to this register. The register read and write * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 * used by the program, so it is possible to register a wildcard and * then behave differently on read/write if necessary. * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 * must both be zero. * For AArch64-visible registers, opc0 is also used. * Since there are no "coprocessors" in AArch64, cp is purely used as a * way to distinguish (for KVM's benefit) guest-visible system registers * from demuxed ones provided to preserve the "no side effects on * KVM register read/write from QEMU" semantics. cp==0x13 is guest * visible (to match KVM's encoding); cp==0 will be converted to * cp==0x13 when the ARMCPRegInfo is registered, for convenience. */ uint8_t cp; uint8_t crn; uint8_t crm; uint8_t opc0; uint8_t opc1; uint8_t opc2; /* Execution state in which this register is visible: ARM_CP_STATE_* */ CPState state; /* Register type: ARM_CP_* bits/values */ int type; /* Access rights: PL*_[RW] */ CPAccessRights access; /* Security state: ARM_CP_SECSTATE_* bits/values */ CPSecureState secure; /* * Which fine-grained trap register bit to check, if any. This * value encodes both the trap register and bit within it. */ FGTBit fgt; /* * Offset from VNCR_EL2 when FEAT_NV2 redirects access to memory; * may include an NV2_REDIR_* flag. */ uint32_t nv2_redirect_offset; /* * The opaque pointer passed to define_arm_cp_regs_with_opaque() when * this register was defined: can be used to hand data through to the * register read/write functions, since they are passed the ARMCPRegInfo*. */ void *opaque; /* * Value of this register, if it is ARM_CP_CONST. Otherwise, if * fieldoffset is non-zero, the reset value of the register. */ uint64_t resetvalue; /* * Offset of the field in CPUARMState for this register. * This is not needed if either: * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs * 2. both readfn and writefn are specified */ ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ /* * Offsets of the secure and non-secure fields in CPUARMState for the * register if it is banked. These fields are only used during the static * registration of a register. During hashing the bank associated * with a given security state is copied to fieldoffset which is used from * there on out. * * It is expected that register definitions use either fieldoffset or * bank_fieldoffsets in the definition but not both. It is also expected * that both bank offsets are set when defining a banked register. This * use indicates that a register is banked. */ ptrdiff_t bank_fieldoffsets[2]; /* * Function for making any access checks for this register in addition to * those specified by the 'access' permissions bits. If NULL, no extra * checks required. The access check is performed at runtime, not at * translate time. */ CPAccessFn *accessfn; /* * Function for handling reads of this register. If NULL, then reads * will be done by loading from the offset into CPUARMState specified * by fieldoffset. */ CPReadFn *readfn; /* * Function for handling writes of this register. If NULL, then writes * will be done by writing to the offset into CPUARMState specified * by fieldoffset. */ CPWriteFn *writefn; /* * Function for doing a "raw" read; used when we need to copy * coprocessor state to the kernel for KVM or out for * migration. This only needs to be provided if there is also a * readfn and it has side effects (for instance clear-on-read bits). */ CPReadFn *raw_readfn; /* * Function for doing a "raw" write; used when we need to copy KVM * kernel coprocessor state into userspace, or for inbound * migration. This only needs to be provided if there is also a * writefn and it masks out "unwritable" bits or has write-one-to-clear * or similar behaviour. */ CPWriteFn *raw_writefn; /* * Function for resetting the register. If NULL, then reset will be done * by writing resetvalue to the field specified in fieldoffset. If * fieldoffset is 0 then no reset will be done. */ CPResetFn *resetfn; /* * "Original" readfn, writefn, accessfn. * For ARMv8.1-VHE register aliases, we overwrite the read/write * accessor functions of various EL1/EL0 to perform the runtime * check for which sysreg should actually be modified, and then * forwards the operation. Before overwriting the accessors, * the original function is copied here, so that accesses that * really do go to the EL1/EL0 version proceed normally. * (The corresponding EL2 register is linked via opaque.) */ CPReadFn *orig_readfn; CPWriteFn *orig_writefn; CPAccessFn *orig_accessfn; }; /* * Macros which are lvalues for the field in CPUARMState for the * ARMCPRegInfo *ri. */ #define CPREG_FIELD32(env, ri) \ (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) #define CPREG_FIELD64(env, ri) \ (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *reg, void *opaque); static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) { define_one_arm_cp_reg_with_opaque(cpu, regs, NULL); } void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, void *opaque, size_t len); #define define_arm_cp_regs_with_opaque(CPU, REGS, OPAQUE) \ do { \ QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0); \ define_arm_cp_regs_with_opaque_len(CPU, REGS, OPAQUE, \ ARRAY_SIZE(REGS)); \ } while (0) #define define_arm_cp_regs(CPU, REGS) \ define_arm_cp_regs_with_opaque(CPU, REGS, NULL) const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); /* * Definition of an ARM co-processor register as viewed from * userspace. This is used for presenting sanitised versions of * registers to userspace when emulating the Linux AArch64 CPU * ID/feature ABI (advertised as HWCAP_CPUID). */ typedef struct ARMCPRegUserSpaceInfo { /* Name of register */ const char *name; /* Is the name actually a glob pattern */ bool is_glob; /* Only some bits are exported to user space */ uint64_t exported_bits; /* Fixed bits are applied after the mask */ uint64_t fixed_bits; } ARMCPRegUserSpaceInfo; void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, const ARMCPRegUserSpaceInfo *mods, size_t mods_len); #define modify_arm_cp_regs(REGS, MODS) \ do { \ QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0); \ QEMU_BUILD_BUG_ON(ARRAY_SIZE(MODS) == 0); \ modify_arm_cp_regs_with_len(REGS, ARRAY_SIZE(REGS), \ MODS, ARRAY_SIZE(MODS)); \ } while (0) /* CPWriteFn that can be used to implement writes-ignored behaviour */ void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value); /* CPReadFn that can be used for read-as-zero behaviour */ uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); /* CPWriteFn that just writes the value to ri->fieldoffset */ void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value); /* * CPResetFn that does nothing, for use if no reset is required even * if fieldoffset is non zero. */ void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); /* * Return true if this reginfo struct's field in the cpu state struct * is 64 bits wide. */ static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) { return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); } static inline bool cp_access_ok(int current_el, const ARMCPRegInfo *ri, int isread) { return (ri->access >> ((current_el * 2) + isread)) & 1; } /* Raw read of a coprocessor register (as needed for migration, etc) */ uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); /* * Return true if the cp register encoding is in the "feature ID space" as * defined by FEAT_IDST (and thus should be reported with ER_ELx.EC * as EC_SYSTEMREGISTERTRAP rather than EC_UNCATEGORIZED). */ static inline bool arm_cpreg_encoding_in_idspace(uint8_t opc0, uint8_t opc1, uint8_t opc2, uint8_t crn, uint8_t crm) { return opc0 == 3 && (opc1 == 0 || opc1 == 1 || opc1 == 3) && crn == 0 && crm < 8; } /* * As arm_cpreg_encoding_in_idspace(), but take the encoding from an * ARMCPRegInfo. */ static inline bool arm_cpreg_in_idspace(const ARMCPRegInfo *ri) { return ri->state == ARM_CP_STATE_AA64 && arm_cpreg_encoding_in_idspace(ri->opc0, ri->opc1, ri->opc2, ri->crn, ri->crm); } #ifdef CONFIG_USER_ONLY static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { } #else void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu); #endif CPAccessResult access_tvm_trvm(CPUARMState *, const ARMCPRegInfo *, bool); /** * arm_cpreg_trap_in_nv: Return true if cpreg traps in nested virtualization * * Return true if this cpreg is one which should be trapped to EL2 if * it is executed at EL1 when nested virtualization is enabled via HCR_EL2.NV. */ static inline bool arm_cpreg_traps_in_nv(const ARMCPRegInfo *ri) { /* * The Arm ARM defines the registers to be trapped in terms of * their names (I_TZTZL). However the underlying principle is "if * it would UNDEF at EL1 but work at EL2 then it should trap", and * the way the encoding of sysregs and system instructions is done * means that the right set of registers is exactly those where * the opc1 field is 4 or 5. (You can see this also in the assert * we do that the opc1 field and the permissions mask line up in * define_one_arm_cp_reg_with_opaque().) * Checking the opc1 field is easier for us and avoids the problem * that we do not consistently use the right architectural names * for all sysregs, since we treat the name field as largely for debug. * * However we do this check, it is going to be at least potentially * fragile to future new sysregs, but this seems the least likely * to break. * * In particular, note that the released sysreg XML defines that * the FEAT_MEC sysregs and instructions do not follow this FEAT_NV * trapping rule, so we will need to add an ARM_CP_* flag to indicate * "register does not trap on NV" to handle those if/when we implement * FEAT_MEC. */ return ri->opc1 == 4 || ri->opc1 == 5; } #endif /* TARGET_ARM_CPREGS_H */