/* * QEMU Alpha CPU * * Copyright (c) 2007 Jocelyn Mayer * Copyright (c) 2012 SUSE LINUX Products GmbH * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/qemu-print.h" #include "cpu.h" #include "exec/exec-all.h" #include "fpu/softfloat.h" static void alpha_cpu_set_pc(CPUState *cs, vaddr value) { CPUAlphaState *env = cpu_env(cs); env->pc = value; } static vaddr alpha_cpu_get_pc(CPUState *cs) { CPUAlphaState *env = cpu_env(cs); return env->pc; } static void alpha_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb) { /* The program counter is always up to date with CF_PCREL. */ if (!(tb_cflags(tb) & CF_PCREL)) { CPUAlphaState *env = cpu_env(cs); env->pc = tb->pc; } } static void alpha_restore_state_to_opc(CPUState *cs, const TranslationBlock *tb, const uint64_t *data) { CPUAlphaState *env = cpu_env(cs); if (tb_cflags(tb) & CF_PCREL) { env->pc = (env->pc & TARGET_PAGE_MASK) | data[0]; } else { env->pc = data[0]; } } static bool alpha_cpu_has_work(CPUState *cs) { /* Here we are checking to see if the CPU should wake up from HALT. We will have gotten into this state only for WTINT from PALmode. */ /* ??? I'm not sure how the IPL state works with WTINT to keep a CPU asleep even if (some) interrupts have been asserted. For now, assume that if a CPU really wants to stay asleep, it will mask interrupts at the chipset level, which will prevent these bits from being set in the first place. */ return cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_SMP | CPU_INTERRUPT_MCHK); } static int alpha_cpu_mmu_index(CPUState *cs, bool ifetch) { return alpha_env_mmu_index(cpu_env(cs)); } static void alpha_cpu_disas_set_info(CPUState *cpu, disassemble_info *info) { info->mach = bfd_mach_alpha_ev6; info->print_insn = print_insn_alpha; } static void alpha_cpu_realizefn(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); AlphaCPUClass *acc = ALPHA_CPU_GET_CLASS(dev); Error *local_err = NULL; #ifndef CONFIG_USER_ONLY /* Use pc-relative instructions in system-mode */ cs->tcg_cflags |= CF_PCREL; #endif cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } qemu_init_vcpu(cs); acc->parent_realize(dev, errp); } /* Models */ typedef struct AlphaCPUAlias { const char *alias; const char *typename; } AlphaCPUAlias; static const AlphaCPUAlias alpha_cpu_aliases[] = { { "21064", ALPHA_CPU_TYPE_NAME("ev4") }, { "21164", ALPHA_CPU_TYPE_NAME("ev5") }, { "21164a", ALPHA_CPU_TYPE_NAME("ev56") }, { "21164pc", ALPHA_CPU_TYPE_NAME("pca56") }, { "21264", ALPHA_CPU_TYPE_NAME("ev6") }, { "21264a", ALPHA_CPU_TYPE_NAME("ev67") }, }; static ObjectClass *alpha_cpu_class_by_name(const char *cpu_model) { ObjectClass *oc; char *typename; int i; oc = object_class_by_name(cpu_model); if (oc != NULL && object_class_dynamic_cast(oc, TYPE_ALPHA_CPU) != NULL) { return oc; } for (i = 0; i < ARRAY_SIZE(alpha_cpu_aliases); i++) { if (strcmp(cpu_model, alpha_cpu_aliases[i].alias) == 0) { oc = object_class_by_name(alpha_cpu_aliases[i].typename); assert(oc != NULL && !object_class_is_abstract(oc)); return oc; } } typename = g_strdup_printf(ALPHA_CPU_TYPE_NAME("%s"), cpu_model); oc = object_class_by_name(typename); g_free(typename); return oc; } static void ev4_cpu_initfn(Object *obj) { cpu_env(CPU(obj))->implver = IMPLVER_2106x; } static void ev5_cpu_initfn(Object *obj) { cpu_env(CPU(obj))->implver = IMPLVER_21164; } static void ev56_cpu_initfn(Object *obj) { cpu_env(CPU(obj))->amask |= AMASK_BWX; } static void pca56_cpu_initfn(Object *obj) { cpu_env(CPU(obj))->amask |= AMASK_MVI; } static void ev6_cpu_initfn(Object *obj) { CPUAlphaState *env = cpu_env(CPU(obj)); env->implver = IMPLVER_21264; env->amask = AMASK_BWX | AMASK_FIX | AMASK_MVI | AMASK_TRAP; } static void ev67_cpu_initfn(Object *obj) { cpu_env(CPU(obj))->amask |= AMASK_CIX | AMASK_PREFETCH; } static void alpha_cpu_initfn(Object *obj) { CPUAlphaState *env = cpu_env(CPU(obj)); /* TODO all this should be done in reset, not init */ env->lock_addr = -1; /* * TODO: this is incorrect. The Alpha Architecture Handbook version 4 * describes NaN propagation in section 4.7.10.4. We should prefer * the operand in Fb (whether it is a QNaN or an SNaN), then the * operand in Fa. That is float_2nan_prop_ba. */ set_float_2nan_prop_rule(float_2nan_prop_x87, &env->fp_status); #if defined(CONFIG_USER_ONLY) env->flags = ENV_FLAG_PS_USER | ENV_FLAG_FEN; cpu_alpha_store_fpcr(env, (uint64_t)(FPCR_INVD | FPCR_DZED | FPCR_OVFD | FPCR_UNFD | FPCR_INED | FPCR_DNOD | FPCR_DYN_NORMAL) << 32); #else env->flags = ENV_FLAG_PAL_MODE | ENV_FLAG_FEN; #endif } #ifndef CONFIG_USER_ONLY #include "hw/core/sysemu-cpu-ops.h" static const struct SysemuCPUOps alpha_sysemu_ops = { .get_phys_page_debug = alpha_cpu_get_phys_page_debug, }; #endif #include "hw/core/tcg-cpu-ops.h" static const TCGCPUOps alpha_tcg_ops = { .initialize = alpha_translate_init, .synchronize_from_tb = alpha_cpu_synchronize_from_tb, .restore_state_to_opc = alpha_restore_state_to_opc, #ifdef CONFIG_USER_ONLY .record_sigsegv = alpha_cpu_record_sigsegv, .record_sigbus = alpha_cpu_record_sigbus, #else .tlb_fill = alpha_cpu_tlb_fill, .cpu_exec_interrupt = alpha_cpu_exec_interrupt, .cpu_exec_halt = alpha_cpu_has_work, .do_interrupt = alpha_cpu_do_interrupt, .do_transaction_failed = alpha_cpu_do_transaction_failed, .do_unaligned_access = alpha_cpu_do_unaligned_access, #endif /* !CONFIG_USER_ONLY */ }; static void alpha_cpu_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); CPUClass *cc = CPU_CLASS(oc); AlphaCPUClass *acc = ALPHA_CPU_CLASS(oc); device_class_set_parent_realize(dc, alpha_cpu_realizefn, &acc->parent_realize); cc->class_by_name = alpha_cpu_class_by_name; cc->has_work = alpha_cpu_has_work; cc->mmu_index = alpha_cpu_mmu_index; cc->dump_state = alpha_cpu_dump_state; cc->set_pc = alpha_cpu_set_pc; cc->get_pc = alpha_cpu_get_pc; cc->gdb_read_register = alpha_cpu_gdb_read_register; cc->gdb_write_register = alpha_cpu_gdb_write_register; #ifndef CONFIG_USER_ONLY dc->vmsd = &vmstate_alpha_cpu; cc->sysemu_ops = &alpha_sysemu_ops; #endif cc->disas_set_info = alpha_cpu_disas_set_info; cc->tcg_ops = &alpha_tcg_ops; cc->gdb_num_core_regs = 67; } #define DEFINE_ALPHA_CPU_TYPE(base_type, cpu_model, initfn) \ { \ .parent = base_type, \ .instance_init = initfn, \ .name = ALPHA_CPU_TYPE_NAME(cpu_model), \ } static const TypeInfo alpha_cpu_type_infos[] = { { .name = TYPE_ALPHA_CPU, .parent = TYPE_CPU, .instance_size = sizeof(AlphaCPU), .instance_align = __alignof(AlphaCPU), .instance_init = alpha_cpu_initfn, .abstract = true, .class_size = sizeof(AlphaCPUClass), .class_init = alpha_cpu_class_init, }, DEFINE_ALPHA_CPU_TYPE(TYPE_ALPHA_CPU, "ev4", ev4_cpu_initfn), DEFINE_ALPHA_CPU_TYPE(TYPE_ALPHA_CPU, "ev5", ev5_cpu_initfn), DEFINE_ALPHA_CPU_TYPE(ALPHA_CPU_TYPE_NAME("ev5"), "ev56", ev56_cpu_initfn), DEFINE_ALPHA_CPU_TYPE(ALPHA_CPU_TYPE_NAME("ev56"), "pca56", pca56_cpu_initfn), DEFINE_ALPHA_CPU_TYPE(TYPE_ALPHA_CPU, "ev6", ev6_cpu_initfn), DEFINE_ALPHA_CPU_TYPE(ALPHA_CPU_TYPE_NAME("ev6"), "ev67", ev67_cpu_initfn), DEFINE_ALPHA_CPU_TYPE(ALPHA_CPU_TYPE_NAME("ev67"), "ev68", NULL), }; DEFINE_TYPES(alpha_cpu_type_infos)