#!/usr/bin/python3 # # SPDX-License-Identifier: GPL-2.0-or-later # # A script to generate a CSV file showing the x86_64 ABI # compatibility levels for each CPU model. # from qemu.qmp.legacy import QEMUMonitorProtocol import sys if len(sys.argv) != 2: print("syntax: %s QMP-SOCK\n\n" % __file__ + "Where QMP-SOCK points to a QEMU process such as\n\n" + " # qemu-system-x86_64 -qmp unix:/tmp/qmp,server,nowait " + "-display none -accel kvm", file=sys.stderr) sys.exit(1) # Mandatory CPUID features for each microarch ABI level levels = [ [ # x86-64 baseline "cmov", "cx8", "fpu", "fxsr", "mmx", "syscall", "sse", "sse2", ], [ # x86-64-v2 "cx16", "lahf-lm", "popcnt", "pni", "sse4.1", "sse4.2", "ssse3", ], [ # x86-64-v3 "avx", "avx2", "bmi1", "bmi2", "f16c", "fma", "abm", "movbe", ], [ # x86-64-v4 "avx512f", "avx512bw", "avx512cd", "avx512dq", "avx512vl", ], ] # Assumes externally launched process such as # # qemu-system-x86_64 -qmp unix:/tmp/qmp,server,nowait -display none -accel kvm # # Note different results will be obtained with TCG, as # TCG masks out certain features otherwise present in # the CPU model definitions, as does KVM. sock = sys.argv[1] shell = QEMUMonitorProtocol(sock) shell.connect() models = shell.cmd("query-cpu-definitions") # These QMP props don't correspond to CPUID fatures # so ignore them skip = [ "family", "min-level", "min-xlevel", "vendor", "model", "model-id", "stepping", ] names = [] for model in models: if "alias-of" in model: continue names.append(model["name"]) models = {} for name in sorted(names): cpu = shell.cmd("query-cpu-model-expansion", { "type": "static", "model": { "name": name }}) got = {} for (feature, present) in cpu["model"]["props"].items(): if present and feature not in skip: got[feature] = True if name in ["host", "max", "base"]: continue models[name] = { # Dict of all present features in this CPU model "features": got, # Whether each x86-64 ABI level is satisfied "levels": [False, False, False, False], # Number of extra CPUID features compared to the x86-64 ABI level "distance":[-1, -1, -1, -1], # CPUID features present in model, but not in ABI level "delta":[[], [], [], []], # CPUID features in ABI level but not present in model "missing": [[], [], [], []], } # Calculate whether the CPU models satisfy each ABI level for name in models.keys(): for level in range(len(levels)): got = set(models[name]["features"]) want = set(levels[level]) missing = want - got match = True if len(missing) > 0: match = False models[name]["levels"][level] = match models[name]["missing"][level] = missing # Cache list of CPU models satisfying each ABI level abi_models = [ [], [], [], [], ] for name in models.keys(): for level in range(len(levels)): if models[name]["levels"][level]: abi_models[level].append(name) for level in range(len(abi_models)): # Find the union of features in all CPU models satisfying this ABI allfeatures = {} for name in abi_models[level]: for feat in models[name]["features"]: allfeatures[feat] = True # Find the intersection of features in all CPU models satisfying this ABI commonfeatures = [] for feat in allfeatures: present = True for name in models.keys(): if not models[name]["levels"][level]: continue if feat not in models[name]["features"]: present = False if present: commonfeatures.append(feat) # Determine how many extra features are present compared to the lowest # common denominator for name in models.keys(): if not models[name]["levels"][level]: continue delta = set(models[name]["features"].keys()) - set(commonfeatures) models[name]["distance"][level] = len(delta) models[name]["delta"][level] = delta def print_uarch_abi_csv(): print("# Automatically generated from '%s'" % __file__) print("Model,baseline,v2,v3,v4") for name in models.keys(): print(name, end="") for level in range(len(levels)): if models[name]["levels"][level]: print(",✅", end="") else: print(",", end="") print() print_uarch_abi_csv()