/* * QEMU S390 bootmap interpreter * * Copyright (c) 2009 Alexander Graf * * This work is licensed under the terms of the GNU GPL, version 2 or (at * your option) any later version. See the COPYING file in the top-level * directory. */ #include #include #include "s390-ccw.h" #include "s390-arch.h" #include "bootmap.h" #include "virtio.h" #include "bswap.h" #ifdef DEBUG /* #define DEBUG_FALLBACK */ #endif #ifdef DEBUG_FALLBACK #define dputs(txt) \ do { printf("zipl: " txt); } while (0) #else #define dputs(fmt, ...) \ do { } while (0) #endif /* Scratch space */ static uint8_t sec[MAX_SECTOR_SIZE*4] __attribute__((__aligned__(PAGE_SIZE))); const uint8_t el_torito_magic[] = "EL TORITO SPECIFICATION" "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; /* * Match two CCWs located after PSW and eight filler bytes. * From libmagic and arch/s390/kernel/head.S. */ const uint8_t linux_s390_magic[] = "\x02\x00\x00\x18\x60\x00\x00\x50\x02\x00" "\x00\x68\x60\x00\x00\x50\x40\x40\x40\x40" "\x40\x40\x40\x40"; static inline bool is_iso_vd_valid(IsoVolDesc *vd) { const uint8_t vol_desc_magic[] = "CD001"; return !memcmp(&vd->ident[0], vol_desc_magic, 5) && vd->version == 0x1 && vd->type <= VOL_DESC_TYPE_PARTITION; } /*********************************************************************** * IPL an ECKD DASD (CDL or LDL/CMS format) */ static unsigned char _bprs[8*1024]; /* guessed "max" ECKD sector size */ static const int max_bprs_entries = sizeof(_bprs) / sizeof(ExtEckdBlockPtr); static uint8_t _s2[MAX_SECTOR_SIZE * 3] __attribute__((__aligned__(PAGE_SIZE))); static void *s2_prev_blk = _s2; static void *s2_cur_blk = _s2 + MAX_SECTOR_SIZE; static void *s2_next_blk = _s2 + MAX_SECTOR_SIZE * 2; static inline int verify_boot_info(BootInfo *bip) { if (!magic_match(bip->magic, ZIPL_MAGIC)) { puts("No zIPL sig in BootInfo"); return -EINVAL; } if (bip->version != BOOT_INFO_VERSION) { puts("Wrong zIPL version"); return -EINVAL; } if (bip->bp_type != BOOT_INFO_BP_TYPE_IPL) { puts("DASD is not for IPL"); return -ENODEV; } if (bip->dev_type != BOOT_INFO_DEV_TYPE_ECKD) { puts("DASD is not ECKD"); return -ENODEV; } if (bip->flags != BOOT_INFO_FLAGS_ARCH) { puts("Not for this arch"); return -EINVAL; } if (!block_size_ok(bip->bp.ipl.bm_ptr.eckd.bptr.size)) { puts("Bad block size in zIPL section of 1st record"); return -EINVAL; } return 0; } static void eckd_format_chs(ExtEckdBlockPtr *ptr, bool ldipl, uint64_t *c, uint64_t *h, uint64_t *s) { if (ldipl) { *c = ptr->ldptr.chs.cylinder; *h = ptr->ldptr.chs.head; *s = ptr->ldptr.chs.sector; } else { *c = ptr->bptr.chs.cylinder; *h = ptr->bptr.chs.head; *s = ptr->bptr.chs.sector; } } static block_number_t eckd_chs_to_block(uint64_t c, uint64_t h, uint64_t s) { const uint64_t sectors = virtio_get_sectors(); const uint64_t heads = virtio_get_heads(); const uint64_t cylinder = c + ((h & 0xfff0) << 12); const uint64_t head = h & 0x000f; const block_number_t block = sectors * heads * cylinder + sectors * head + s - 1; /* block nr starts with zero */ return block; } static block_number_t eckd_block_num(EckdCHS *chs) { return eckd_chs_to_block(chs->cylinder, chs->head, chs->sector); } static block_number_t gen_eckd_block_num(ExtEckdBlockPtr *ptr, bool ldipl) { uint64_t cyl, head, sec; eckd_format_chs(ptr, ldipl, &cyl, &head, &sec); return eckd_chs_to_block(cyl, head, sec); } static bool eckd_valid_chs(uint64_t cyl, uint64_t head, uint64_t sector) { if (head >= virtio_get_heads() || sector > virtio_get_sectors() || sector <= 0) { return false; } if (!virtio_guessed_disk_nature() && eckd_chs_to_block(cyl, head, sector) >= virtio_get_blocks()) { return false; } return true; } static bool eckd_valid_address(ExtEckdBlockPtr *ptr, bool ldipl) { uint64_t cyl, head, sec; eckd_format_chs(ptr, ldipl, &cyl, &head, &sec); return eckd_valid_chs(cyl, head, sec); } static block_number_t load_eckd_segments(block_number_t blk, bool ldipl, uint64_t *address) { block_number_t block_nr; int j, rc, count; BootMapPointer *bprs = (void *)_bprs; bool more_data; memset(_bprs, FREE_SPACE_FILLER, sizeof(_bprs)); if (virtio_read(blk, bprs)) { puts("BPRS read failed"); return ERROR_BLOCK_NR; } do { more_data = false; for (j = 0;; j++) { block_nr = gen_eckd_block_num(&bprs[j].xeckd, ldipl); if (is_null_block_number(block_nr)) { /* end of chunk */ return NULL_BLOCK_NR; } /* we need the updated blockno for the next indirect entry * in the chain, but don't want to advance address */ if (j == (max_bprs_entries - 1)) { break; } /* List directed pointer does not store block size */ if (!ldipl && !block_size_ok(bprs[j].xeckd.bptr.size)) { puts("Bad chunk block size"); return ERROR_BLOCK_NR; } if (!eckd_valid_address(&bprs[j].xeckd, ldipl)) { /* * If an invalid address is found during LD-IPL then break and * retry as CCW-IPL, otherwise abort on error */ if (!ldipl) { puts("Bad chunk ECKD address"); return ERROR_BLOCK_NR; } break; } if (ldipl) { count = bprs[j].xeckd.ldptr.count; } else { count = bprs[j].xeckd.bptr.count; } if (count == 0 && unused_space(&bprs[j + 1], sizeof(EckdBlockPtr))) { /* This is a "continue" pointer. * This ptr should be the last one in the current * script section. * I.e. the next ptr must point to the unused memory area */ memset(_bprs, FREE_SPACE_FILLER, sizeof(_bprs)); if (virtio_read(block_nr, bprs)) { puts("BPRS continuation read failed"); return ERROR_BLOCK_NR; } more_data = true; break; } /* Load (count+1) blocks of code at (block_nr) * to memory (address). */ rc = virtio_read_many(block_nr, (void *)(*address), count + 1); if (rc != 0) { puts("Code chunk read failed"); return ERROR_BLOCK_NR; } *address += (count + 1) * virtio_get_block_size(); } } while (more_data); return block_nr; } static bool find_zipl_boot_menu_banner(int *offset) { int i; /* Menu banner starts with "zIPL" */ for (i = 0; i <= virtio_get_block_size() - 4; i++) { if (magic_match(s2_cur_blk + i, ZIPL_MAGIC_EBCDIC)) { *offset = i; return true; } } return false; } static int eckd_get_boot_menu_index(block_number_t s1b_block_nr) { block_number_t cur_block_nr; block_number_t prev_block_nr = 0; block_number_t next_block_nr = 0; EckdStage1b *s1b = (void *)sec; int banner_offset; int i; /* Get Stage1b data */ memset(sec, FREE_SPACE_FILLER, sizeof(sec)); if (virtio_read(s1b_block_nr, s1b)) { puts("Cannot read stage1b boot loader"); return -EIO; } memset(_s2, FREE_SPACE_FILLER, sizeof(_s2)); /* Get Stage2 data */ for (i = 0; i < STAGE2_BLK_CNT_MAX; i++) { cur_block_nr = eckd_block_num(&s1b->seek[i].chs); if (!cur_block_nr || is_null_block_number(cur_block_nr)) { break; } if (virtio_read(cur_block_nr, s2_cur_blk)) { puts("Cannot read stage2 boot loader"); return -EIO; } if (find_zipl_boot_menu_banner(&banner_offset)) { /* * Load the adjacent blocks to account for the * possibility of menu data spanning multiple blocks. */ if (prev_block_nr) { if (virtio_read(prev_block_nr, s2_prev_blk)) { puts("Cannot read stage2 boot loader"); return -EIO; } } if (i + 1 < STAGE2_BLK_CNT_MAX) { next_block_nr = eckd_block_num(&s1b->seek[i + 1].chs); } if (next_block_nr && !is_null_block_number(next_block_nr)) { if (virtio_read(next_block_nr, s2_next_blk)) { puts("Cannot read stage2 boot loader"); return -EIO; } } return menu_get_zipl_boot_index(s2_cur_blk + banner_offset); } prev_block_nr = cur_block_nr; } printf("No zipl boot menu data found. Booting default entry."); return 0; } static int run_eckd_boot_script(block_number_t bmt_block_nr, block_number_t s1b_block_nr) { int i; unsigned int loadparm = get_loadparm_index(); block_number_t block_nr; uint64_t address; BootMapTable *bmt = (void *)sec; BootMapScript *bms = (void *)sec; /* The S1B block number is NULL_BLOCK_NR if and only if it's an LD-IPL */ bool ldipl = (s1b_block_nr == NULL_BLOCK_NR); if (menu_is_enabled_zipl() && !ldipl) { loadparm = eckd_get_boot_menu_index(s1b_block_nr); } debug_print_int("loadparm", loadparm); if (loadparm >= MAX_BOOT_ENTRIES) { puts("loadparm value greater than max number of boot entries allowed"); return -EINVAL; } memset(sec, FREE_SPACE_FILLER, sizeof(sec)); if (virtio_read(bmt_block_nr, sec)) { puts("Cannot read Boot Map Table"); return -EIO; } block_nr = gen_eckd_block_num(&bmt->entry[loadparm].xeckd, ldipl); if (block_nr == NULL_BLOCK_NR) { puts("Cannot find Boot Map Table Entry"); return -EIO; } memset(sec, FREE_SPACE_FILLER, sizeof(sec)); if (virtio_read(block_nr, sec)) { puts("Cannot read Boot Map Script"); return -EIO; } for (i = 0; bms->entry[i].type == BOOT_SCRIPT_LOAD || bms->entry[i].type == BOOT_SCRIPT_SIGNATURE; i++) { /* We don't support secure boot yet, so we skip signature entries */ if (bms->entry[i].type == BOOT_SCRIPT_SIGNATURE) { continue; } address = bms->entry[i].address.load_address; block_nr = gen_eckd_block_num(&bms->entry[i].blkptr.xeckd, ldipl); do { block_nr = load_eckd_segments(block_nr, ldipl, &address); if (block_nr == ERROR_BLOCK_NR) { return ldipl ? 0 : -EIO; } } while (block_nr != NULL_BLOCK_NR); } if (ldipl && bms->entry[i].type != BOOT_SCRIPT_EXEC) { /* Abort LD-IPL and retry as CCW-IPL */ return 0; } if (bms->entry[i].type != BOOT_SCRIPT_EXEC) { puts("Unknown script entry type"); return -EINVAL; } write_reset_psw(bms->entry[i].address.load_address); jump_to_IPL_code(0); return -1; } static int ipl_eckd_cdl(void) { XEckdMbr *mbr; EckdCdlIpl2 *ipl2 = (void *)sec; IplVolumeLabel *vlbl = (void *)sec; block_number_t bmt_block_nr, s1b_block_nr; /* we have just read the block #0 and recognized it as "IPL1" */ puts("CDL"); memset(sec, FREE_SPACE_FILLER, sizeof(sec)); if (virtio_read(1, ipl2)) { puts("Cannot read IPL2 record at block 1"); return -EIO; } mbr = &ipl2->mbr; if (!magic_match(mbr, ZIPL_MAGIC)) { puts("No zIPL section in IPL2 record."); return 0; } if (!block_size_ok(mbr->blockptr.xeckd.bptr.size)) { puts("Bad block size in zIPL section of IPL2 record."); return 0; } if (mbr->dev_type != DEV_TYPE_ECKD) { puts("Non-ECKD device type in zIPL section of IPL2 record."); return 0; } /* save pointer to Boot Map Table */ bmt_block_nr = eckd_block_num(&mbr->blockptr.xeckd.bptr.chs); /* save pointer to Stage1b Data */ s1b_block_nr = eckd_block_num(&ipl2->stage1.seek[0].chs); memset(sec, FREE_SPACE_FILLER, sizeof(sec)); if (virtio_read(2, vlbl)) { puts("Cannot read Volume Label at block 2"); return -EIO; } if (!magic_match(vlbl->key, VOL1_MAGIC)) { puts("Invalid magic of volume label block."); return 0; } if (!magic_match(vlbl->f.key, VOL1_MAGIC)) { puts("Invalid magic of volser block."); return 0; } print_volser(vlbl->f.volser); return run_eckd_boot_script(bmt_block_nr, s1b_block_nr); } static void print_eckd_ldl_msg(ECKD_IPL_mode_t mode) { LDL_VTOC *vlbl = (void *)sec; /* already read, 3rd block */ char msg[4] = { '?', '.', '\n', '\0' }; printf((mode == ECKD_CMS) ? "CMS" : "LDL"); printf(" version "); switch (vlbl->LDL_version) { case LDL1_VERSION: msg[0] = '1'; break; case LDL2_VERSION: msg[0] = '2'; break; default: msg[0] = ebc2asc[vlbl->LDL_version]; msg[1] = '?'; break; } printf("%s", msg); print_volser(vlbl->volser); } static int ipl_eckd_ldl(ECKD_IPL_mode_t mode) { block_number_t bmt_block_nr, s1b_block_nr; EckdLdlIpl1 *ipl1 = (void *)sec; if (mode != ECKD_LDL_UNLABELED) { print_eckd_ldl_msg(mode); } /* DO NOT read BootMap pointer (only one, xECKD) at block #2 */ memset(sec, FREE_SPACE_FILLER, sizeof(sec)); if (virtio_read(0, sec)) { puts("Cannot read block 0 to grab boot info."); return -EIO; } if (mode == ECKD_LDL_UNLABELED) { if (!magic_match(ipl1->bip.magic, ZIPL_MAGIC)) { return 0; /* not applicable layout */ } puts("unlabeled LDL."); } verify_boot_info(&ipl1->bip); /* save pointer to Boot Map Table */ bmt_block_nr = eckd_block_num(&ipl1->bip.bp.ipl.bm_ptr.eckd.bptr.chs); /* save pointer to Stage1b Data */ s1b_block_nr = eckd_block_num(&ipl1->stage1.seek[0].chs); return run_eckd_boot_script(bmt_block_nr, s1b_block_nr); } static block_number_t eckd_find_bmt(ExtEckdBlockPtr *ptr) { block_number_t blockno; uint8_t tmp_sec[MAX_SECTOR_SIZE]; BootRecord *br; blockno = gen_eckd_block_num(ptr, 0); if (virtio_read(blockno, tmp_sec)) { puts("Cannot read boot record"); return ERROR_BLOCK_NR; } br = (BootRecord *)tmp_sec; if (!magic_match(br->magic, ZIPL_MAGIC)) { /* If the boot record is invalid, return and try CCW-IPL instead */ return NULL_BLOCK_NR; } return gen_eckd_block_num(&br->pgt.xeckd, 1); } static void print_eckd_msg(void) { char msg[] = "Using ECKD scheme (block size *****), "; char *p = &msg[34], *q = &msg[30]; int n = virtio_get_block_size(); /* Fill in the block size and show up the message */ if (n > 0 && n <= 99999) { while (n) { *p-- = '0' + (n % 10); n /= 10; } while (p >= q) { *p-- = ' '; } } printf("%s", msg); } static int ipl_eckd(void) { IplVolumeLabel *vlbl = (void *)sec; LDL_VTOC *vtoc = (void *)sec; block_number_t ldipl_bmt; /* Boot Map Table for List-Directed IPL */ print_eckd_msg(); /* Block 2 can contain either the CDL VOL1 label or the LDL VTOC */ memset(sec, FREE_SPACE_FILLER, sizeof(sec)); if (virtio_read(2, vlbl)) { puts("Cannot read block 2"); return -EIO; } /* * First check for a list-directed-format pointer which would * supersede the CCW pointer. */ if (eckd_valid_address((ExtEckdBlockPtr *)&vlbl->f.br, 0)) { ldipl_bmt = eckd_find_bmt((ExtEckdBlockPtr *)&vlbl->f.br); switch (ldipl_bmt) { case ERROR_BLOCK_NR: return -EIO; case NULL_BLOCK_NR: break; /* Invalid BMT but the device may still boot with CCW-IPL */ default: puts("List-Directed"); /* * LD-IPL does not use the S1B bock, just make it NULL_BLOCK_NR. * In some failure cases retry IPL before aborting. */ if (run_eckd_boot_script(ldipl_bmt, NULL_BLOCK_NR)) { return -EIO; } /* Non-fatal error, retry as CCW-IPL */ printf("Retrying IPL "); print_eckd_msg(); } memset(sec, FREE_SPACE_FILLER, sizeof(sec)); if (virtio_read(2, vtoc)) { puts("Cannot read block 2"); return -EIO; } } /* Not list-directed */ if (magic_match(vtoc->magic, VOL1_MAGIC)) { if (ipl_eckd_cdl()) { return -1; } } if (magic_match(vtoc->magic, CMS1_MAGIC)) { return ipl_eckd_ldl(ECKD_CMS); } if (magic_match(vtoc->magic, LNX1_MAGIC)) { return ipl_eckd_ldl(ECKD_LDL); } if (ipl_eckd_ldl(ECKD_LDL_UNLABELED)) { return -1; } /* * Ok, it is not a LDL by any means. * It still might be a CDL with zero record keys for IPL1 and IPL2 */ return ipl_eckd_cdl(); } /*********************************************************************** * IPL a SCSI disk */ static int zipl_load_segment(ComponentEntry *entry) { const int max_entries = (MAX_SECTOR_SIZE / sizeof(ScsiBlockPtr)); ScsiBlockPtr *bprs = (void *)sec; const int bprs_size = sizeof(sec); block_number_t blockno; uint64_t address; int i; char err_msg[] = "zIPL failed to read BPRS at 0xZZZZZZZZZZZZZZZZ"; char *blk_no = &err_msg[30]; /* where to print blockno in (those ZZs) */ blockno = entry->data.blockno; address = entry->compdat.load_addr; debug_print_int("loading segment at block", blockno); debug_print_int("addr", address); do { memset(bprs, FREE_SPACE_FILLER, bprs_size); fill_hex_val(blk_no, &blockno, sizeof(blockno)); if (virtio_read(blockno, bprs)) { puts(err_msg); return -EIO; } for (i = 0;; i++) { uint64_t *cur_desc = (void *)&bprs[i]; blockno = bprs[i].blockno; if (!blockno) { break; } /* we need the updated blockno for the next indirect entry in the chain, but don't want to advance address */ if (i == (max_entries - 1)) { break; } if (bprs[i].blockct == 0 && unused_space(&bprs[i + 1], sizeof(ScsiBlockPtr))) { /* This is a "continue" pointer. * This ptr is the last one in the current script section. * I.e. the next ptr must point to the unused memory area. * The blockno is not zero, so the upper loop must continue * reading next section of BPRS. */ break; } address = virtio_load_direct(cur_desc[0], cur_desc[1], 0, (void *)address); if (!address) { puts("zIPL load segment failed"); return -EIO; } } } while (blockno); return 0; } /* Run a zipl program */ static int zipl_run(ScsiBlockPtr *pte) { ComponentHeader *header; ComponentEntry *entry; uint8_t tmp_sec[MAX_SECTOR_SIZE]; if (virtio_read(pte->blockno, tmp_sec)) { puts("Cannot read header"); return -EIO; } header = (ComponentHeader *)tmp_sec; if (!magic_match(tmp_sec, ZIPL_MAGIC)) { puts("No zIPL magic in header"); return -EINVAL; } if (header->type != ZIPL_COMP_HEADER_IPL) { puts("Bad header type"); return -EINVAL; } dputs("start loading images\n"); /* Load image(s) into RAM */ entry = (ComponentEntry *)(&header[1]); while (entry->component_type == ZIPL_COMP_ENTRY_LOAD || entry->component_type == ZIPL_COMP_ENTRY_SIGNATURE) { /* We don't support secure boot yet, so we skip signature entries */ if (entry->component_type == ZIPL_COMP_ENTRY_SIGNATURE) { entry++; continue; } if (zipl_load_segment(entry)) { return -1; } entry++; if ((uint8_t *)(&entry[1]) > (tmp_sec + MAX_SECTOR_SIZE)) { puts("Wrong entry value"); return -EINVAL; } } if (entry->component_type != ZIPL_COMP_ENTRY_EXEC) { puts("No EXEC entry"); return -EINVAL; } /* should not return */ write_reset_psw(entry->compdat.load_psw); jump_to_IPL_code(0); return -1; } static int ipl_scsi(void) { ScsiMbr *mbr = (void *)sec; int program_table_entries = 0; BootMapTable *prog_table = (void *)sec; unsigned int loadparm = get_loadparm_index(); bool valid_entries[MAX_BOOT_ENTRIES] = {false}; size_t i; /* Grab the MBR */ memset(sec, FREE_SPACE_FILLER, sizeof(sec)); if (virtio_read(0, mbr)) { puts("Cannot read block 0"); return -EIO; } if (!magic_match(mbr->magic, ZIPL_MAGIC)) { return 0; } puts("Using SCSI scheme."); debug_print_int("MBR Version", mbr->version_id); IPL_check(mbr->version_id == 1, "Unknown MBR layout version, assuming version 1"); debug_print_int("program table", mbr->pt.blockno); if (!mbr->pt.blockno) { puts("No Program Table"); return -EINVAL; } /* Parse the program table */ if (virtio_read(mbr->pt.blockno, sec)) { puts("Error reading Program Table"); return -EIO; } if (!magic_match(sec, ZIPL_MAGIC)) { puts("No zIPL magic in Program Table"); return -EINVAL; } for (i = 0; i < MAX_BOOT_ENTRIES; i++) { if (prog_table->entry[i].scsi.blockno) { valid_entries[i] = true; program_table_entries++; } } debug_print_int("program table entries", program_table_entries); if (program_table_entries == 0) { puts("Empty Program Table"); return -EINVAL; } if (menu_is_enabled_enum()) { loadparm = menu_get_enum_boot_index(valid_entries); } debug_print_int("loadparm", loadparm); if (loadparm >= MAX_BOOT_ENTRIES) { puts("loadparm value greater than max number of boot entries allowed"); return -EINVAL; } return zipl_run(&prog_table->entry[loadparm].scsi); } /*********************************************************************** * IPL El Torito ISO9660 image or DVD */ static bool is_iso_bc_entry_compatible(IsoBcSection *s) { uint8_t *magic_sec = (uint8_t *)(sec + ISO_SECTOR_SIZE); if (s->unused || !s->sector_count) { return false; } if (virtio_read(bswap32(s->load_rba), magic_sec)) { puts("Failed to read image sector 0"); return false; } /* Checking bytes 8 - 32 for S390 Linux magic */ return !memcmp(magic_sec + 8, linux_s390_magic, 24); } /* Location of the current sector of the directory */ static uint32_t sec_loc[ISO9660_MAX_DIR_DEPTH]; /* Offset in the current sector of the directory */ static uint32_t sec_offset[ISO9660_MAX_DIR_DEPTH]; /* Remained directory space in bytes */ static uint32_t dir_rem[ISO9660_MAX_DIR_DEPTH]; static inline long iso_get_file_size(uint32_t load_rba) { IsoVolDesc *vd = (IsoVolDesc *)sec; IsoDirHdr *cur_record = &vd->vd.primary.rootdir; uint8_t *temp = sec + ISO_SECTOR_SIZE; int level = 0; if (virtio_read(ISO_PRIMARY_VD_SECTOR, sec)) { puts("Failed to read ISO primary descriptor"); return -EIO; } sec_loc[0] = iso_733_to_u32(cur_record->ext_loc); dir_rem[0] = 0; sec_offset[0] = 0; while (level >= 0) { if (sec_offset[level] > ISO_SECTOR_SIZE) { puts("Directory tree structure violation"); return -EIO; } cur_record = (IsoDirHdr *)(temp + sec_offset[level]); if (sec_offset[level] == 0) { if (virtio_read(sec_loc[level], temp)) { puts("Failed to read ISO directory"); return -EIO; } if (dir_rem[level] == 0) { /* Skip self and parent records */ dir_rem[level] = iso_733_to_u32(cur_record->data_len) - cur_record->dr_len; sec_offset[level] += cur_record->dr_len; cur_record = (IsoDirHdr *)(temp + sec_offset[level]); dir_rem[level] -= cur_record->dr_len; sec_offset[level] += cur_record->dr_len; continue; } } if (!cur_record->dr_len || sec_offset[level] == ISO_SECTOR_SIZE) { /* Zero-padding and/or the end of current sector */ dir_rem[level] -= ISO_SECTOR_SIZE - sec_offset[level]; sec_offset[level] = 0; sec_loc[level]++; } else { /* The directory record is valid */ if (load_rba == iso_733_to_u32(cur_record->ext_loc)) { return iso_733_to_u32(cur_record->data_len); } dir_rem[level] -= cur_record->dr_len; sec_offset[level] += cur_record->dr_len; if (cur_record->file_flags & 0x2) { /* Subdirectory */ if (level == ISO9660_MAX_DIR_DEPTH - 1) { puts("ISO-9660 directory depth limit exceeded"); } else { level++; sec_loc[level] = iso_733_to_u32(cur_record->ext_loc); sec_offset[level] = 0; dir_rem[level] = 0; continue; } } } if (dir_rem[level] == 0) { /* Nothing remaining */ level--; if (virtio_read(sec_loc[level], temp)) { puts("Failed to read ISO directory"); return -EIO; } } } return 0; } static void load_iso_bc_entry(IsoBcSection *load) { IsoBcSection s = *load; /* * According to spec, extent for each file * is padded and ISO_SECTOR_SIZE bytes aligned */ uint32_t blks_to_load = bswap16(s.sector_count) >> ET_SECTOR_SHIFT; long real_size = iso_get_file_size(bswap32(s.load_rba)); if (real_size > 0) { /* Round up blocks to load */ blks_to_load = (real_size + ISO_SECTOR_SIZE - 1) / ISO_SECTOR_SIZE; puts("ISO boot image size verified"); } else { puts("ISO boot image size could not be verified"); if (real_size < 0) { return; } } if (read_iso_boot_image(bswap32(s.load_rba), (void *)((uint64_t)bswap16(s.load_segment)), blks_to_load)) { return; } jump_to_low_kernel(); } static uint32_t find_iso_bc(void) { IsoVolDesc *vd = (IsoVolDesc *)sec; uint32_t block_num = ISO_PRIMARY_VD_SECTOR; if (virtio_read_many(block_num++, sec, 1)) { /* If primary vd cannot be read, there is no boot catalog */ return 0; } while (is_iso_vd_valid(vd) && vd->type != VOL_DESC_TERMINATOR) { if (vd->type == VOL_DESC_TYPE_BOOT) { IsoVdElTorito *et = &vd->vd.boot; if (!memcmp(&et->el_torito[0], el_torito_magic, 32)) { return bswap32(et->bc_offset); } } if (virtio_read(block_num++, sec)) { puts("Failed to read ISO volume descriptor"); return 0; } } return 0; } static IsoBcSection *find_iso_bc_entry(uint32_t offset) { IsoBcEntry *e = (IsoBcEntry *)sec; int i; unsigned int loadparm = get_loadparm_index(); if (!offset) { return NULL; } if (virtio_read(offset, sec)) { puts("Failed to read El Torito boot catalog"); return NULL; } if (!is_iso_bc_valid(e)) { /* The validation entry is mandatory */ return NULL; } /* * Each entry has 32 bytes size, so one sector cannot contain > 64 entries. * We consider only boot catalogs with no more than 64 entries. */ for (i = 1; i < ISO_BC_ENTRY_PER_SECTOR; i++) { if (e[i].id == ISO_BC_BOOTABLE_SECTION) { if (is_iso_bc_entry_compatible(&e[i].body.sect)) { if (loadparm <= 1) { /* found, default, or unspecified */ return &e[i].body.sect; } loadparm--; } } } return NULL; } static int ipl_iso_el_torito(void) { uint32_t offset = find_iso_bc(); if (!offset) { return 0; } IsoBcSection *s = find_iso_bc_entry(offset); if (s) { load_iso_bc_entry(s); /* only return in error */ return -1; } puts("No suitable boot entry found on ISO-9660 media!"); return -EIO; } /** * Detect whether we're trying to boot from an .ISO image. * These always have a signature string "CD001" at offset 0x8001. */ static bool has_iso_signature(void) { int blksize = virtio_get_block_size(); if (!blksize || virtio_read(0x8000 / blksize, sec)) { return false; } return !memcmp("CD001", &sec[1], 5); } /*********************************************************************** * Bus specific IPL sequences */ static int zipl_load_vblk(void) { int blksize = virtio_get_block_size(); if (blksize == VIRTIO_ISO_BLOCK_SIZE || has_iso_signature()) { if (blksize != VIRTIO_ISO_BLOCK_SIZE) { virtio_assume_iso9660(); } if (ipl_iso_el_torito()) { return 0; } } if (blksize != VIRTIO_DASD_DEFAULT_BLOCK_SIZE) { puts("Using guessed DASD geometry."); virtio_assume_eckd(); } return ipl_eckd(); } static int zipl_load_vscsi(void) { if (virtio_get_block_size() == VIRTIO_ISO_BLOCK_SIZE) { /* Is it an ISO image in non-CD drive? */ if (ipl_iso_el_torito()) { return 0; } } puts("Using guessed DASD geometry."); virtio_assume_eckd(); return ipl_eckd(); } /*********************************************************************** * IPL starts here */ void zipl_load(void) { VDev *vdev = virtio_get_device(); if (vdev->is_cdrom) { ipl_iso_el_torito(); puts("Failed to IPL this ISO image!"); return; } if (virtio_get_device_type() == VIRTIO_ID_NET) { netmain(); puts("Failed to IPL from this network!"); return; } if (ipl_scsi()) { puts("Failed to IPL from this SCSI device!"); return; } switch (virtio_get_device_type()) { case VIRTIO_ID_BLOCK: zipl_load_vblk(); break; case VIRTIO_ID_SCSI: zipl_load_vscsi(); break; default: puts("Unknown IPL device type!"); return; } puts("zIPL load failed!"); }