/* * Emulation of Linux signals * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu.h" #include "user-internals.h" #include "signal-common.h" #include "linux-user/trace.h" #include "user/tswap-target.h" /* from the Linux kernel - /arch/x86/include/uapi/asm/sigcontext.h */ #define TARGET_FP_XSTATE_MAGIC1 0x46505853U /* FPXS */ #define TARGET_FP_XSTATE_MAGIC2 0x46505845U /* FPXE */ #define TARGET_FP_XSTATE_MAGIC2_SIZE 4 struct target_fpreg { uint16_t significand[4]; uint16_t exponent; }; /* Legacy x87 fpu state format for FSAVE/FRESTOR. */ struct target_fregs_state { uint32_t cwd; uint32_t swd; uint32_t twd; uint32_t fip; uint32_t fcs; uint32_t foo; uint32_t fos; struct target_fpreg st[8]; /* Software status information [not touched by FSAVE]. */ uint16_t status; uint16_t magic; /* 0xffff: FPU data only, 0x0000: FXSR FPU data */ }; QEMU_BUILD_BUG_ON(sizeof(struct target_fregs_state) != 32 + 80); struct target_fpx_sw_bytes { uint32_t magic1; uint32_t extended_size; uint64_t xfeatures; uint32_t xstate_size; uint32_t reserved[7]; }; QEMU_BUILD_BUG_ON(sizeof(struct target_fpx_sw_bytes) != 12*4); struct target_fpstate_32 { struct target_fregs_state fpstate; X86LegacyXSaveArea fxstate; }; struct target_sigcontext_32 { uint16_t gs, __gsh; uint16_t fs, __fsh; uint16_t es, __esh; uint16_t ds, __dsh; uint32_t edi; uint32_t esi; uint32_t ebp; uint32_t esp; uint32_t ebx; uint32_t edx; uint32_t ecx; uint32_t eax; uint32_t trapno; uint32_t err; uint32_t eip; uint16_t cs, __csh; uint32_t eflags; uint32_t esp_at_signal; uint16_t ss, __ssh; uint32_t fpstate; /* pointer */ uint32_t oldmask; uint32_t cr2; }; struct target_sigcontext_64 { uint64_t r8; uint64_t r9; uint64_t r10; uint64_t r11; uint64_t r12; uint64_t r13; uint64_t r14; uint64_t r15; uint64_t rdi; uint64_t rsi; uint64_t rbp; uint64_t rbx; uint64_t rdx; uint64_t rax; uint64_t rcx; uint64_t rsp; uint64_t rip; uint64_t eflags; uint16_t cs; uint16_t gs; uint16_t fs; uint16_t ss; uint64_t err; uint64_t trapno; uint64_t oldmask; uint64_t cr2; uint64_t fpstate; /* pointer */ uint64_t padding[8]; }; #ifndef TARGET_X86_64 # define target_sigcontext target_sigcontext_32 #else # define target_sigcontext target_sigcontext_64 #endif /* see Linux/include/uapi/asm-generic/ucontext.h */ struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; #ifndef TARGET_X86_64 struct sigframe { abi_ulong pretcode; int sig; struct target_sigcontext sc; /* * The actual fpstate is placed after retcode[] below, to make room * for the variable-sized xsave data. The older unused fpstate has * to be kept to avoid changing the offset of extramask[], which * is part of the ABI. */ struct target_fpstate_32 fpstate_unused; abi_ulong extramask[TARGET_NSIG_WORDS-1]; char retcode[8]; /* fp state follows here */ }; struct rt_sigframe { abi_ulong pretcode; int sig; abi_ulong pinfo; abi_ulong puc; struct target_siginfo info; struct target_ucontext uc; char retcode[8]; /* fp state follows here */ }; /* * Verify that vdso-asmoffset.h constants match. */ #include "i386/vdso-asmoffset.h" QEMU_BUILD_BUG_ON(offsetof(struct sigframe, sc.eip) != SIGFRAME_SIGCONTEXT_eip); QEMU_BUILD_BUG_ON(offsetof(struct rt_sigframe, uc.tuc_mcontext.eip) != RT_SIGFRAME_SIGCONTEXT_eip); #else struct rt_sigframe { abi_ulong pretcode; struct target_ucontext uc; struct target_siginfo info; /* fp state follows here */ }; #endif typedef enum { #ifndef TARGET_X86_64 FPSTATE_FSAVE, #endif FPSTATE_FXSAVE, FPSTATE_XSAVE } FPStateKind; static FPStateKind get_fpstate_kind(CPUX86State *env) { if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) { return FPSTATE_XSAVE; } #ifdef TARGET_X86_64 return FPSTATE_FXSAVE; #else if (env->features[FEAT_1_EDX] & CPUID_FXSR) { return FPSTATE_FXSAVE; } return FPSTATE_FSAVE; #endif } static unsigned get_fpstate_size(CPUX86State *env, FPStateKind fpkind) { /* * Kernel: * fpu__alloc_mathframe * xstate_sigframe_size(current->thread.fpu.fpstate); * size = fpstate->user_size * use_xsave() ? size + FP_XSTATE_MAGIC2_SIZE : size * where fpstate->user_size is computed at init in * fpu__init_system_xstate_size_legacy and * fpu__init_system_xstate. * * Here we have no place to pre-compute, so inline it all. */ switch (fpkind) { case FPSTATE_XSAVE: return (xsave_area_size(env->xcr0, false) + TARGET_FP_XSTATE_MAGIC2_SIZE); case FPSTATE_FXSAVE: return sizeof(X86LegacyXSaveArea); #ifndef TARGET_X86_64 case FPSTATE_FSAVE: return sizeof(struct target_fregs_state); #endif } g_assert_not_reached(); } static abi_ptr get_sigframe(struct target_sigaction *ka, CPUX86State *env, unsigned frame_size, FPStateKind fpkind, abi_ptr *fpstate, abi_ptr *fxstate, abi_ptr *fpend) { abi_ptr sp; unsigned math_size; /* Default to using normal stack */ sp = get_sp_from_cpustate(env); #ifdef TARGET_X86_64 sp -= 128; /* this is the redzone */ #endif /* This is the X/Open sanctioned signal stack switching. */ if (ka->sa_flags & TARGET_SA_ONSTACK) { sp = target_sigsp(sp, ka); } else { #ifndef TARGET_X86_64 /* This is the legacy signal stack switching. */ if ((env->segs[R_SS].selector & 0xffff) != __USER_DS && !(ka->sa_flags & TARGET_SA_RESTORER) && ka->sa_restorer) { sp = ka->sa_restorer; } #endif } math_size = get_fpstate_size(env, fpkind); sp = ROUND_DOWN(sp - math_size, 64); *fpend = sp + math_size; *fxstate = sp; #ifndef TARGET_X86_64 if (fpkind != FPSTATE_FSAVE) { sp -= sizeof(struct target_fregs_state); } #endif *fpstate = sp; sp -= frame_size; /* * Align the stack pointer according to the ABI, i.e. so that on * function entry ((sp + sizeof(return_addr)) & 15) == 0. */ sp += sizeof(target_ulong); sp = ROUND_DOWN(sp, 16); sp -= sizeof(target_ulong); return sp; } /* * Set up a signal frame. */ static void fxsave_sigcontext(CPUX86State *env, X86LegacyXSaveArea *fxstate) { struct target_fpx_sw_bytes *sw = (void *)&fxstate->sw_reserved; cpu_x86_fxsave(env, fxstate, sizeof(*fxstate)); __put_user(0, &sw->magic1); } static void xsave_sigcontext(CPUX86State *env, X86LegacyXSaveArea *fxstate, abi_ptr fpstate_addr, abi_ptr xstate_addr, abi_ptr fpend_addr) { struct target_fpx_sw_bytes *sw = (void *)&fxstate->sw_reserved; /* * extended_size is the offset from fpstate_addr to right after * the end of the extended save states. On 32-bit that includes * the legacy FSAVE area. */ uint32_t extended_size = fpend_addr - fpstate_addr; /* Recover xstate_size by removing magic2. */ uint32_t xstate_size = (fpend_addr - xstate_addr - TARGET_FP_XSTATE_MAGIC2_SIZE); /* magic2 goes just after xstate. */ uint32_t *magic2 = (void *)fxstate + xstate_size; /* xstate_addr must be 64 byte aligned for xsave */ assert(!(xstate_addr & 0x3f)); /* Zero the header, XSAVE *adds* features to an existing save state. */ memset(fxstate + 1, 0, sizeof(X86XSaveHeader)); cpu_x86_xsave(env, fxstate, fpend_addr - xstate_addr, env->xcr0); __put_user(TARGET_FP_XSTATE_MAGIC1, &sw->magic1); __put_user(extended_size, &sw->extended_size); __put_user(env->xcr0, &sw->xfeatures); __put_user(xstate_size, &sw->xstate_size); __put_user(TARGET_FP_XSTATE_MAGIC2, magic2); } static void setup_sigcontext(CPUX86State *env, struct target_sigcontext *sc, abi_ulong mask, FPStateKind fpkind, struct target_fregs_state *fpstate, abi_ptr fpstate_addr, X86LegacyXSaveArea *fxstate, abi_ptr fxstate_addr, abi_ptr fpend_addr) { CPUState *cs = env_cpu(env); #ifndef TARGET_X86_64 uint16_t magic; /* already locked in setup_frame() */ __put_user(env->segs[R_GS].selector, (uint32_t *)&sc->gs); __put_user(env->segs[R_FS].selector, (uint32_t *)&sc->fs); __put_user(env->segs[R_ES].selector, (uint32_t *)&sc->es); __put_user(env->segs[R_DS].selector, (uint32_t *)&sc->ds); __put_user(env->regs[R_EDI], &sc->edi); __put_user(env->regs[R_ESI], &sc->esi); __put_user(env->regs[R_EBP], &sc->ebp); __put_user(env->regs[R_ESP], &sc->esp); __put_user(env->regs[R_EBX], &sc->ebx); __put_user(env->regs[R_EDX], &sc->edx); __put_user(env->regs[R_ECX], &sc->ecx); __put_user(env->regs[R_EAX], &sc->eax); __put_user(cs->exception_index, &sc->trapno); __put_user(env->error_code, &sc->err); __put_user(env->eip, &sc->eip); __put_user(env->segs[R_CS].selector, (uint32_t *)&sc->cs); __put_user(env->eflags, &sc->eflags); __put_user(env->regs[R_ESP], &sc->esp_at_signal); __put_user(env->segs[R_SS].selector, (uint32_t *)&sc->ss); cpu_x86_fsave(env, fpstate, sizeof(*fpstate)); fpstate->status = fpstate->swd; magic = (fpkind == FPSTATE_FSAVE ? 0 : 0xffff); __put_user(magic, &fpstate->magic); #else __put_user(env->regs[R_EDI], &sc->rdi); __put_user(env->regs[R_ESI], &sc->rsi); __put_user(env->regs[R_EBP], &sc->rbp); __put_user(env->regs[R_ESP], &sc->rsp); __put_user(env->regs[R_EBX], &sc->rbx); __put_user(env->regs[R_EDX], &sc->rdx); __put_user(env->regs[R_ECX], &sc->rcx); __put_user(env->regs[R_EAX], &sc->rax); __put_user(env->regs[8], &sc->r8); __put_user(env->regs[9], &sc->r9); __put_user(env->regs[10], &sc->r10); __put_user(env->regs[11], &sc->r11); __put_user(env->regs[12], &sc->r12); __put_user(env->regs[13], &sc->r13); __put_user(env->regs[14], &sc->r14); __put_user(env->regs[15], &sc->r15); __put_user(cs->exception_index, &sc->trapno); __put_user(env->error_code, &sc->err); __put_user(env->eip, &sc->rip); __put_user(env->eflags, &sc->eflags); __put_user(env->segs[R_CS].selector, &sc->cs); __put_user((uint16_t)0, &sc->gs); __put_user((uint16_t)0, &sc->fs); __put_user(env->segs[R_SS].selector, &sc->ss); #endif switch (fpkind) { case FPSTATE_XSAVE: xsave_sigcontext(env, fxstate, fpstate_addr, fxstate_addr, fpend_addr); break; case FPSTATE_FXSAVE: fxsave_sigcontext(env, fxstate); break; default: break; } __put_user(fpstate_addr, &sc->fpstate); /* non-iBCS2 extensions.. */ __put_user(mask, &sc->oldmask); __put_user(env->cr[2], &sc->cr2); } #ifndef TARGET_X86_64 static void install_sigtramp(void *tramp) { /* This is popl %eax ; movl $syscall,%eax ; int $0x80 */ __put_user(0xb858, (uint16_t *)(tramp + 0)); __put_user(TARGET_NR_sigreturn, (int32_t *)(tramp + 2)); __put_user(0x80cd, (uint16_t *)(tramp + 6)); } static void install_rt_sigtramp(void *tramp) { /* This is movl $syscall,%eax ; int $0x80 */ __put_user(0xb8, (uint8_t *)(tramp + 0)); __put_user(TARGET_NR_rt_sigreturn, (int32_t *)(tramp + 1)); __put_user(0x80cd, (uint16_t *)(tramp + 5)); } /* compare linux/arch/i386/kernel/signal.c:setup_frame() */ void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUX86State *env) { abi_ptr frame_addr, fpstate_addr, fxstate_addr, fpend_addr; struct sigframe *frame; struct target_fregs_state *fpstate; X86LegacyXSaveArea *fxstate; unsigned total_size; FPStateKind fpkind; fpkind = get_fpstate_kind(env); frame_addr = get_sigframe(ka, env, sizeof(struct sigframe), fpkind, &fpstate_addr, &fxstate_addr, &fpend_addr); trace_user_setup_frame(env, frame_addr); total_size = fpend_addr - frame_addr; frame = lock_user(VERIFY_WRITE, frame_addr, total_size, 0); if (!frame) { force_sigsegv(sig); return; } fxstate = (void *)frame + (fxstate_addr - frame_addr); #ifdef TARGET_X86_64 fpstate = NULL; #else fpstate = (void *)frame + (fpstate_addr - frame_addr); #endif setup_sigcontext(env, &frame->sc, set->sig[0], fpkind, fpstate, fpstate_addr, fxstate, fxstate_addr, fpend_addr); for (int i = 1; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->extramask[i - 1]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { __put_user(ka->sa_restorer, &frame->pretcode); } else { /* This is no longer used, but is retained for ABI compatibility. */ install_sigtramp(frame->retcode); __put_user(default_sigreturn, &frame->pretcode); } unlock_user(frame, frame_addr, total_size); /* Set up registers for signal handler */ env->regs[R_ESP] = frame_addr; env->eip = ka->_sa_handler; /* Store argument for both -mregparm=3 and standard. */ env->regs[R_EAX] = sig; __put_user(sig, &frame->sig); /* The kernel clears EDX and ECX even though there is only one arg. */ env->regs[R_EDX] = 0; env->regs[R_ECX] = 0; cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_SS, __USER_DS); cpu_x86_load_seg(env, R_CS, __USER_CS); env->eflags &= ~TF_MASK; } #endif /* compare linux/arch/x86/kernel/signal.c:setup_rt_frame() */ void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUX86State *env) { abi_ptr frame_addr, fpstate_addr, fxstate_addr, fpend_addr; struct rt_sigframe *frame; X86LegacyXSaveArea *fxstate; struct target_fregs_state *fpstate; unsigned total_size; FPStateKind fpkind; fpkind = get_fpstate_kind(env); frame_addr = get_sigframe(ka, env, sizeof(struct rt_sigframe), fpkind, &fpstate_addr, &fxstate_addr, &fpend_addr); trace_user_setup_rt_frame(env, frame_addr); total_size = fpend_addr - frame_addr; frame = lock_user(VERIFY_WRITE, frame_addr, total_size, 0); if (!frame) { goto give_sigsegv; } if (ka->sa_flags & TARGET_SA_SIGINFO) { frame->info = *info; } /* Create the ucontext. */ __put_user(fpkind == FPSTATE_XSAVE, &frame->uc.tuc_flags); __put_user(0, &frame->uc.tuc_link); target_save_altstack(&frame->uc.tuc_stack, env); fxstate = (void *)frame + (fxstate_addr - frame_addr); #ifdef TARGET_X86_64 fpstate = NULL; #else fpstate = (void *)frame + (fpstate_addr - frame_addr); #endif setup_sigcontext(env, &frame->uc.tuc_mcontext, set->sig[0], fpkind, fpstate, fpstate_addr, fxstate, fxstate_addr, fpend_addr); for (int i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); } /* * Set up to return from userspace. If provided, use a stub * already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { __put_user(ka->sa_restorer, &frame->pretcode); } else { #ifdef TARGET_X86_64 /* For x86_64, SA_RESTORER is required ABI. */ goto give_sigsegv; #else /* This is no longer used, but is retained for ABI compatibility. */ install_rt_sigtramp(frame->retcode); __put_user(default_rt_sigreturn, &frame->pretcode); #endif } /* Set up registers for signal handler */ env->regs[R_ESP] = frame_addr; env->eip = ka->_sa_handler; #ifndef TARGET_X86_64 /* Store arguments for both -mregparm=3 and standard. */ env->regs[R_EAX] = sig; __put_user(sig, &frame->sig); env->regs[R_EDX] = frame_addr + offsetof(struct rt_sigframe, info); __put_user(env->regs[R_EDX], &frame->pinfo); env->regs[R_ECX] = frame_addr + offsetof(struct rt_sigframe, uc); __put_user(env->regs[R_ECX], &frame->puc); #else env->regs[R_EAX] = 0; env->regs[R_EDI] = sig; env->regs[R_ESI] = frame_addr + offsetof(struct rt_sigframe, info); env->regs[R_EDX] = frame_addr + offsetof(struct rt_sigframe, uc); #endif unlock_user(frame, frame_addr, total_size); cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_CS, __USER_CS); cpu_x86_load_seg(env, R_SS, __USER_DS); env->eflags &= ~TF_MASK; return; give_sigsegv: force_sigsegv(sig); } /* * Restore a signal frame. */ static bool xrstor_sigcontext(CPUX86State *env, FPStateKind fpkind, X86LegacyXSaveArea *fxstate, abi_ptr fxstate_addr) { struct target_fpx_sw_bytes *sw = (void *)&fxstate->sw_reserved; uint32_t magic1, magic2; uint32_t extended_size, xstate_size, min_size, max_size; uint64_t xfeatures; void *xstate; bool ok; switch (fpkind) { case FPSTATE_XSAVE: magic1 = tswap32(sw->magic1); extended_size = tswap32(sw->extended_size); xstate_size = tswap32(sw->xstate_size); min_size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader); max_size = xsave_area_size(env->xcr0, false); /* Check for the first magic field and other error scenarios. */ if (magic1 != TARGET_FP_XSTATE_MAGIC1 || xstate_size < min_size || xstate_size > max_size || xstate_size > extended_size) { break; } /* * Restore the features indicated in the frame, masked by * those currently enabled. Re-check the frame size. * ??? It is not clear where the kernel does this, but it * is not in check_xstate_in_sigframe, and so (probably) * does not fall back to fxrstor. */ xfeatures = tswap64(sw->xfeatures) & env->xcr0; min_size = xsave_area_size(xfeatures, false); if (xstate_size < min_size) { return false; } /* Re-lock the entire xstate area, with the extensions and magic. */ xstate = lock_user(VERIFY_READ, fxstate_addr, xstate_size + TARGET_FP_XSTATE_MAGIC2_SIZE, 1); if (!xstate) { return false; } /* * Check for the presence of second magic word at the end of memory * layout. This detects the case where the user just copied the legacy * fpstate layout with out copying the extended state information * in the memory layout. */ magic2 = tswap32(*(uint32_t *)(xstate + xstate_size)); if (magic2 != TARGET_FP_XSTATE_MAGIC2) { unlock_user(xstate, fxstate_addr, 0); break; } ok = cpu_x86_xrstor(env, xstate, xstate_size, xfeatures); unlock_user(xstate, fxstate_addr, 0); return ok; default: break; } cpu_x86_fxrstor(env, fxstate, sizeof(*fxstate)); return true; } #ifndef TARGET_X86_64 static bool frstor_sigcontext(CPUX86State *env, FPStateKind fpkind, struct target_fregs_state *fpstate, abi_ptr fpstate_addr, X86LegacyXSaveArea *fxstate, abi_ptr fxstate_addr) { switch (fpkind) { case FPSTATE_XSAVE: if (!xrstor_sigcontext(env, fpkind, fxstate, fxstate_addr)) { return false; } break; case FPSTATE_FXSAVE: cpu_x86_fxrstor(env, fxstate, sizeof(*fxstate)); break; case FPSTATE_FSAVE: break; default: g_assert_not_reached(); } /* * Copy the legacy state because the FP portion of the FX frame has * to be ignored for histerical raisins. The kernel folds the two * states together and then performs a single load; here we perform * the merge within ENV by loading XSTATE/FXSTATE first, then * overriding with the FSTATE afterward. */ cpu_x86_frstor(env, fpstate, sizeof(*fpstate)); return true; } #endif static bool restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc) { abi_ptr fpstate_addr; unsigned tmpflags, math_size; FPStateKind fpkind; void *fpstate; bool ok; #ifndef TARGET_X86_64 cpu_x86_load_seg(env, R_GS, tswap16(sc->gs)); cpu_x86_load_seg(env, R_FS, tswap16(sc->fs)); cpu_x86_load_seg(env, R_ES, tswap16(sc->es)); cpu_x86_load_seg(env, R_DS, tswap16(sc->ds)); env->regs[R_EDI] = tswapl(sc->edi); env->regs[R_ESI] = tswapl(sc->esi); env->regs[R_EBP] = tswapl(sc->ebp); env->regs[R_ESP] = tswapl(sc->esp); env->regs[R_EBX] = tswapl(sc->ebx); env->regs[R_EDX] = tswapl(sc->edx); env->regs[R_ECX] = tswapl(sc->ecx); env->regs[R_EAX] = tswapl(sc->eax); env->eip = tswapl(sc->eip); #else env->regs[8] = tswapl(sc->r8); env->regs[9] = tswapl(sc->r9); env->regs[10] = tswapl(sc->r10); env->regs[11] = tswapl(sc->r11); env->regs[12] = tswapl(sc->r12); env->regs[13] = tswapl(sc->r13); env->regs[14] = tswapl(sc->r14); env->regs[15] = tswapl(sc->r15); env->regs[R_EDI] = tswapl(sc->rdi); env->regs[R_ESI] = tswapl(sc->rsi); env->regs[R_EBP] = tswapl(sc->rbp); env->regs[R_EBX] = tswapl(sc->rbx); env->regs[R_EDX] = tswapl(sc->rdx); env->regs[R_EAX] = tswapl(sc->rax); env->regs[R_ECX] = tswapl(sc->rcx); env->regs[R_ESP] = tswapl(sc->rsp); env->eip = tswapl(sc->rip); #endif cpu_x86_load_seg(env, R_CS, lduw_p(&sc->cs) | 3); cpu_x86_load_seg(env, R_SS, lduw_p(&sc->ss) | 3); tmpflags = tswapl(sc->eflags); env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5); fpstate_addr = tswapl(sc->fpstate); if (fpstate_addr == 0) { return true; } fpkind = get_fpstate_kind(env); math_size = get_fpstate_size(env, fpkind); #ifndef TARGET_X86_64 if (fpkind != FPSTATE_FSAVE) { math_size += sizeof(struct target_fregs_state); } #endif fpstate = lock_user(VERIFY_READ, fpstate_addr, math_size, 1); if (!fpstate) { return false; } #ifdef TARGET_X86_64 ok = xrstor_sigcontext(env, fpkind, fpstate, fpstate_addr); #else ok = frstor_sigcontext(env, fpkind, fpstate, fpstate_addr, fpstate + sizeof(struct target_fregs_state), fpstate_addr + sizeof(struct target_fregs_state)); #endif unlock_user(fpstate, fpstate_addr, 0); return ok; } /* Note: there is no sigreturn on x86_64, there is only rt_sigreturn */ #ifndef TARGET_X86_64 long do_sigreturn(CPUX86State *env) { struct sigframe *frame; abi_ulong frame_addr = env->regs[R_ESP] - 8; target_sigset_t target_set; sigset_t set; trace_user_do_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { force_sig(TARGET_SIGSEGV); return -QEMU_ESIGRETURN; } /* Set blocked signals. */ __get_user(target_set.sig[0], &frame->sc.oldmask); for (int i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(target_set.sig[i], &frame->extramask[i - 1]); } target_to_host_sigset_internal(&set, &target_set); set_sigmask(&set); /* Restore registers */ if (!restore_sigcontext(env, &frame->sc)) { force_sig(TARGET_SIGSEGV); } unlock_user_struct(frame, frame_addr, 0); return -QEMU_ESIGRETURN; } #endif long do_rt_sigreturn(CPUX86State *env) { abi_ulong frame_addr; struct rt_sigframe *frame; sigset_t set; frame_addr = env->regs[R_ESP] - sizeof(abi_ulong); trace_user_do_rt_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&set, &frame->uc.tuc_sigmask); set_sigmask(&set); if (!restore_sigcontext(env, &frame->uc.tuc_mcontext)) { goto badframe; } target_restore_altstack(&frame->uc.tuc_stack, env); unlock_user_struct(frame, frame_addr, 0); return -QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -QEMU_ESIGRETURN; } #ifndef TARGET_X86_64 void setup_sigtramp(abi_ulong sigtramp_page) { uint16_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 2 * 8, 0); assert(tramp != NULL); default_sigreturn = sigtramp_page; install_sigtramp(tramp); default_rt_sigreturn = sigtramp_page + 8; install_rt_sigtramp(tramp + 8); unlock_user(tramp, sigtramp_page, 2 * 8); } #endif