/* This is the Linux kernel elf-loading code, ported into user space */ #include "qemu/osdep.h" #include #include #include #include #include "qemu.h" #include "user/tswap-target.h" #include "exec/page-protection.h" #include "user/guest-base.h" #include "user-internals.h" #include "signal-common.h" #include "loader.h" #include "user-mmap.h" #include "disas/disas.h" #include "qemu/bitops.h" #include "qemu/path.h" #include "qemu/queue.h" #include "qemu/guest-random.h" #include "qemu/units.h" #include "qemu/selfmap.h" #include "qemu/lockable.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "target_signal.h" #include "tcg/debuginfo.h" #ifdef TARGET_ARM #include "target/arm/cpu-features.h" #endif #ifdef _ARCH_PPC64 #undef ARCH_DLINFO #undef ELF_PLATFORM #undef ELF_HWCAP #undef ELF_HWCAP2 #undef ELF_CLASS #undef ELF_DATA #undef ELF_ARCH #endif #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0 #endif typedef struct { const uint8_t *image; const uint32_t *relocs; unsigned image_size; unsigned reloc_count; unsigned sigreturn_ofs; unsigned rt_sigreturn_ofs; } VdsoImageInfo; #define ELF_OSABI ELFOSABI_SYSV /* from personality.h */ /* * Flags for bug emulation. * * These occupy the top three bytes. */ enum { ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors (signal handling) */ MMAP_PAGE_ZERO = 0x0100000, ADDR_COMPAT_LAYOUT = 0x0200000, READ_IMPLIES_EXEC = 0x0400000, ADDR_LIMIT_32BIT = 0x0800000, SHORT_INODE = 0x1000000, WHOLE_SECONDS = 0x2000000, STICKY_TIMEOUTS = 0x4000000, ADDR_LIMIT_3GB = 0x8000000, }; /* * Personality types. * * These go in the low byte. Avoid using the top bit, it will * conflict with error returns. */ enum { PER_LINUX = 0x0000, PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, PER_BSD = 0x0006, PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, PER_LINUX32 = 0x0008, PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ PER_RISCOS = 0x000c, PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, PER_OSF4 = 0x000f, /* OSF/1 v4 */ PER_HPUX = 0x0010, PER_MASK = 0x00ff, }; /* * Return the base personality without flags. */ #define personality(pers) (pers & PER_MASK) int info_is_fdpic(struct image_info *info) { return info->personality == PER_LINUX_FDPIC; } /* this flag is uneffective under linux too, should be deleted */ #ifndef MAP_DENYWRITE #define MAP_DENYWRITE 0 #endif /* should probably go in elf.h */ #ifndef ELIBBAD #define ELIBBAD 80 #endif #if TARGET_BIG_ENDIAN #define ELF_DATA ELFDATA2MSB #else #define ELF_DATA ELFDATA2LSB #endif #ifdef TARGET_ABI_MIPSN32 typedef abi_ullong target_elf_greg_t; #define tswapreg(ptr) tswap64(ptr) #else typedef abi_ulong target_elf_greg_t; #define tswapreg(ptr) tswapal(ptr) #endif #ifdef USE_UID16 typedef abi_ushort target_uid_t; typedef abi_ushort target_gid_t; #else typedef abi_uint target_uid_t; typedef abi_uint target_gid_t; #endif typedef abi_int target_pid_t; #ifdef TARGET_I386 #define ELF_HWCAP get_elf_hwcap() static uint32_t get_elf_hwcap(void) { X86CPU *cpu = X86_CPU(thread_cpu); return cpu->env.features[FEAT_1_EDX]; } #ifdef TARGET_X86_64 #define ELF_CLASS ELFCLASS64 #define ELF_ARCH EM_X86_64 #define ELF_PLATFORM "x86_64" static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->rax = 0; regs->rsp = infop->start_stack; regs->rip = infop->entry; } #define ELF_NREG 27 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; /* * Note that ELF_NREG should be 29 as there should be place for * TRAPNO and ERR "registers" as well but linux doesn't dump * those. * * See linux kernel: arch/x86/include/asm/elf.h */ static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) { (*regs)[0] = tswapreg(env->regs[15]); (*regs)[1] = tswapreg(env->regs[14]); (*regs)[2] = tswapreg(env->regs[13]); (*regs)[3] = tswapreg(env->regs[12]); (*regs)[4] = tswapreg(env->regs[R_EBP]); (*regs)[5] = tswapreg(env->regs[R_EBX]); (*regs)[6] = tswapreg(env->regs[11]); (*regs)[7] = tswapreg(env->regs[10]); (*regs)[8] = tswapreg(env->regs[9]); (*regs)[9] = tswapreg(env->regs[8]); (*regs)[10] = tswapreg(env->regs[R_EAX]); (*regs)[11] = tswapreg(env->regs[R_ECX]); (*regs)[12] = tswapreg(env->regs[R_EDX]); (*regs)[13] = tswapreg(env->regs[R_ESI]); (*regs)[14] = tswapreg(env->regs[R_EDI]); (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ (*regs)[16] = tswapreg(env->eip); (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); (*regs)[18] = tswapreg(env->eflags); (*regs)[19] = tswapreg(env->regs[R_ESP]); (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); } #if ULONG_MAX > UINT32_MAX #define INIT_GUEST_COMMPAGE static bool init_guest_commpage(void) { /* * The vsyscall page is at a high negative address aka kernel space, * which means that we cannot actually allocate it with target_mmap. * We still should be able to use page_set_flags, unless the user * has specified -R reserved_va, which would trigger an assert(). */ if (reserved_va != 0 && TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { error_report("Cannot allocate vsyscall page"); exit(EXIT_FAILURE); } page_set_flags(TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, PAGE_EXEC | PAGE_VALID); return true; } #endif #else /* * This is used to ensure we don't load something for the wrong architecture. */ #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) /* * These are used to set parameters in the core dumps. */ #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_386 #define ELF_PLATFORM get_elf_platform() #define EXSTACK_DEFAULT true static const char *get_elf_platform(void) { static char elf_platform[] = "i386"; int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); if (family > 6) { family = 6; } if (family >= 3) { elf_platform[1] = '0' + family; } return elf_platform; } static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->esp = infop->start_stack; regs->eip = infop->entry; /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program starts %edx contains a pointer to a function which might be registered using `atexit'. This provides a mean for the dynamic linker to call DT_FINI functions for shared libraries that have been loaded before the code runs. A value of 0 tells we have no such handler. */ regs->edx = 0; } #define ELF_NREG 17 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; /* * Note that ELF_NREG should be 19 as there should be place for * TRAPNO and ERR "registers" as well but linux doesn't dump * those. * * See linux kernel: arch/x86/include/asm/elf.h */ static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) { (*regs)[0] = tswapreg(env->regs[R_EBX]); (*regs)[1] = tswapreg(env->regs[R_ECX]); (*regs)[2] = tswapreg(env->regs[R_EDX]); (*regs)[3] = tswapreg(env->regs[R_ESI]); (*regs)[4] = tswapreg(env->regs[R_EDI]); (*regs)[5] = tswapreg(env->regs[R_EBP]); (*regs)[6] = tswapreg(env->regs[R_EAX]); (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ (*regs)[12] = tswapreg(env->eip); (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); (*regs)[14] = tswapreg(env->eflags); (*regs)[15] = tswapreg(env->regs[R_ESP]); (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); } /* * i386 is the only target which supplies AT_SYSINFO for the vdso. * All others only supply AT_SYSINFO_EHDR. */ #define DLINFO_ARCH_ITEMS (vdso_info != NULL) #define ARCH_DLINFO \ do { \ if (vdso_info) { \ NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \ } \ } while (0) #endif /* TARGET_X86_64 */ #define VDSO_HEADER "vdso.c.inc" #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #endif /* TARGET_I386 */ #ifdef TARGET_ARM #ifndef TARGET_AARCH64 /* 32 bit ARM definitions */ #define ELF_ARCH EM_ARM #define ELF_CLASS ELFCLASS32 #define EXSTACK_DEFAULT true static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { abi_long stack = infop->start_stack; memset(regs, 0, sizeof(*regs)); regs->uregs[16] = ARM_CPU_MODE_USR; if (infop->entry & 1) { regs->uregs[16] |= CPSR_T; } regs->uregs[15] = infop->entry & 0xfffffffe; regs->uregs[13] = infop->start_stack; /* FIXME - what to for failure of get_user()? */ get_user_ual(regs->uregs[2], stack + 8); /* envp */ get_user_ual(regs->uregs[1], stack + 4); /* envp */ /* XXX: it seems that r0 is zeroed after ! */ regs->uregs[0] = 0; /* For uClinux PIC binaries. */ /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ regs->uregs[10] = infop->start_data; /* Support ARM FDPIC. */ if (info_is_fdpic(infop)) { /* As described in the ABI document, r7 points to the loadmap info * prepared by the kernel. If an interpreter is needed, r8 points * to the interpreter loadmap and r9 points to the interpreter * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and * r9 points to the main program PT_DYNAMIC info. */ regs->uregs[7] = infop->loadmap_addr; if (infop->interpreter_loadmap_addr) { /* Executable is dynamically loaded. */ regs->uregs[8] = infop->interpreter_loadmap_addr; regs->uregs[9] = infop->interpreter_pt_dynamic_addr; } else { regs->uregs[8] = 0; regs->uregs[9] = infop->pt_dynamic_addr; } } } #define ELF_NREG 18 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) { (*regs)[0] = tswapreg(env->regs[0]); (*regs)[1] = tswapreg(env->regs[1]); (*regs)[2] = tswapreg(env->regs[2]); (*regs)[3] = tswapreg(env->regs[3]); (*regs)[4] = tswapreg(env->regs[4]); (*regs)[5] = tswapreg(env->regs[5]); (*regs)[6] = tswapreg(env->regs[6]); (*regs)[7] = tswapreg(env->regs[7]); (*regs)[8] = tswapreg(env->regs[8]); (*regs)[9] = tswapreg(env->regs[9]); (*regs)[10] = tswapreg(env->regs[10]); (*regs)[11] = tswapreg(env->regs[11]); (*regs)[12] = tswapreg(env->regs[12]); (*regs)[13] = tswapreg(env->regs[13]); (*regs)[14] = tswapreg(env->regs[14]); (*regs)[15] = tswapreg(env->regs[15]); (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 enum { ARM_HWCAP_ARM_SWP = 1 << 0, ARM_HWCAP_ARM_HALF = 1 << 1, ARM_HWCAP_ARM_THUMB = 1 << 2, ARM_HWCAP_ARM_26BIT = 1 << 3, ARM_HWCAP_ARM_FAST_MULT = 1 << 4, ARM_HWCAP_ARM_FPA = 1 << 5, ARM_HWCAP_ARM_VFP = 1 << 6, ARM_HWCAP_ARM_EDSP = 1 << 7, ARM_HWCAP_ARM_JAVA = 1 << 8, ARM_HWCAP_ARM_IWMMXT = 1 << 9, ARM_HWCAP_ARM_CRUNCH = 1 << 10, ARM_HWCAP_ARM_THUMBEE = 1 << 11, ARM_HWCAP_ARM_NEON = 1 << 12, ARM_HWCAP_ARM_VFPv3 = 1 << 13, ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, ARM_HWCAP_ARM_TLS = 1 << 15, ARM_HWCAP_ARM_VFPv4 = 1 << 16, ARM_HWCAP_ARM_IDIVA = 1 << 17, ARM_HWCAP_ARM_IDIVT = 1 << 18, ARM_HWCAP_ARM_VFPD32 = 1 << 19, ARM_HWCAP_ARM_LPAE = 1 << 20, ARM_HWCAP_ARM_EVTSTRM = 1 << 21, ARM_HWCAP_ARM_FPHP = 1 << 22, ARM_HWCAP_ARM_ASIMDHP = 1 << 23, ARM_HWCAP_ARM_ASIMDDP = 1 << 24, ARM_HWCAP_ARM_ASIMDFHM = 1 << 25, ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26, ARM_HWCAP_ARM_I8MM = 1 << 27, }; enum { ARM_HWCAP2_ARM_AES = 1 << 0, ARM_HWCAP2_ARM_PMULL = 1 << 1, ARM_HWCAP2_ARM_SHA1 = 1 << 2, ARM_HWCAP2_ARM_SHA2 = 1 << 3, ARM_HWCAP2_ARM_CRC32 = 1 << 4, ARM_HWCAP2_ARM_SB = 1 << 5, ARM_HWCAP2_ARM_SSBS = 1 << 6, }; /* The commpage only exists for 32 bit kernels */ #define HI_COMMPAGE (intptr_t)0xffff0f00u static bool init_guest_commpage(void) { ARMCPU *cpu = ARM_CPU(thread_cpu); int host_page_size = qemu_real_host_page_size(); abi_ptr commpage; void *want; void *addr; /* * M-profile allocates maximum of 2GB address space, so can never * allocate the commpage. Skip it. */ if (arm_feature(&cpu->env, ARM_FEATURE_M)) { return true; } commpage = HI_COMMPAGE & -host_page_size; want = g2h_untagged(commpage); addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE), -1, 0); if (addr == MAP_FAILED) { perror("Allocating guest commpage"); exit(EXIT_FAILURE); } if (addr != want) { return false; } /* Set kernel helper versions; rest of page is 0. */ __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); if (mprotect(addr, host_page_size, PROT_READ)) { perror("Protecting guest commpage"); exit(EXIT_FAILURE); } page_set_flags(commpage, commpage | (host_page_size - 1), PAGE_READ | PAGE_EXEC | PAGE_VALID); return true; } #define ELF_HWCAP get_elf_hwcap() #define ELF_HWCAP2 get_elf_hwcap2() uint32_t get_elf_hwcap(void) { ARMCPU *cpu = ARM_CPU(thread_cpu); uint32_t hwcaps = 0; hwcaps |= ARM_HWCAP_ARM_SWP; hwcaps |= ARM_HWCAP_ARM_HALF; hwcaps |= ARM_HWCAP_ARM_THUMB; hwcaps |= ARM_HWCAP_ARM_FAST_MULT; /* probe for the extra features */ #define GET_FEATURE(feat, hwcap) \ do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) #define GET_FEATURE_ID(feat, hwcap) \ do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); if (cpu_isar_feature(aa32_fpsp_v3, cpu) || cpu_isar_feature(aa32_fpdp_v3, cpu)) { hwcaps |= ARM_HWCAP_ARM_VFPv3; if (cpu_isar_feature(aa32_simd_r32, cpu)) { hwcaps |= ARM_HWCAP_ARM_VFPD32; } else { hwcaps |= ARM_HWCAP_ARM_VFPv3D16; } } GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); /* * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same * isar_feature function for both. The kernel reports them as two hwcaps. */ GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP); GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP); GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP); GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM); GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16); GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM); return hwcaps; } uint64_t get_elf_hwcap2(void) { ARMCPU *cpu = ARM_CPU(thread_cpu); uint64_t hwcaps = 0; GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB); GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS); return hwcaps; } const char *elf_hwcap_str(uint32_t bit) { static const char *hwcap_str[] = { [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp", [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half", [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb", [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit", [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult", [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa", [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp", [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp", [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java", [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt", [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch", [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee", [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon", [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3", [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16", [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls", [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4", [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva", [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt", [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32", [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae", [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm", [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp", [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp", [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp", [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm", [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16", [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm", }; return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; } const char *elf_hwcap2_str(uint32_t bit) { static const char *hwcap_str[] = { [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes", [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull", [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1", [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2", [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32", [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb", [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs", }; return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; } #undef GET_FEATURE #undef GET_FEATURE_ID #define ELF_PLATFORM get_elf_platform() static const char *get_elf_platform(void) { CPUARMState *env = cpu_env(thread_cpu); #if TARGET_BIG_ENDIAN # define END "b" #else # define END "l" #endif if (arm_feature(env, ARM_FEATURE_V8)) { return "v8" END; } else if (arm_feature(env, ARM_FEATURE_V7)) { if (arm_feature(env, ARM_FEATURE_M)) { return "v7m" END; } else { return "v7" END; } } else if (arm_feature(env, ARM_FEATURE_V6)) { return "v6" END; } else if (arm_feature(env, ARM_FEATURE_V5)) { return "v5" END; } else { return "v4" END; } #undef END } #else /* 64 bit ARM definitions */ #define ELF_ARCH EM_AARCH64 #define ELF_CLASS ELFCLASS64 #if TARGET_BIG_ENDIAN # define ELF_PLATFORM "aarch64_be" #else # define ELF_PLATFORM "aarch64" #endif static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { abi_long stack = infop->start_stack; memset(regs, 0, sizeof(*regs)); regs->pc = infop->entry & ~0x3ULL; regs->sp = stack; } #define ELF_NREG 34 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) { int i; for (i = 0; i < 32; i++) { (*regs)[i] = tswapreg(env->xregs[i]); } (*regs)[32] = tswapreg(env->pc); (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 enum { ARM_HWCAP_A64_FP = 1 << 0, ARM_HWCAP_A64_ASIMD = 1 << 1, ARM_HWCAP_A64_EVTSTRM = 1 << 2, ARM_HWCAP_A64_AES = 1 << 3, ARM_HWCAP_A64_PMULL = 1 << 4, ARM_HWCAP_A64_SHA1 = 1 << 5, ARM_HWCAP_A64_SHA2 = 1 << 6, ARM_HWCAP_A64_CRC32 = 1 << 7, ARM_HWCAP_A64_ATOMICS = 1 << 8, ARM_HWCAP_A64_FPHP = 1 << 9, ARM_HWCAP_A64_ASIMDHP = 1 << 10, ARM_HWCAP_A64_CPUID = 1 << 11, ARM_HWCAP_A64_ASIMDRDM = 1 << 12, ARM_HWCAP_A64_JSCVT = 1 << 13, ARM_HWCAP_A64_FCMA = 1 << 14, ARM_HWCAP_A64_LRCPC = 1 << 15, ARM_HWCAP_A64_DCPOP = 1 << 16, ARM_HWCAP_A64_SHA3 = 1 << 17, ARM_HWCAP_A64_SM3 = 1 << 18, ARM_HWCAP_A64_SM4 = 1 << 19, ARM_HWCAP_A64_ASIMDDP = 1 << 20, ARM_HWCAP_A64_SHA512 = 1 << 21, ARM_HWCAP_A64_SVE = 1 << 22, ARM_HWCAP_A64_ASIMDFHM = 1 << 23, ARM_HWCAP_A64_DIT = 1 << 24, ARM_HWCAP_A64_USCAT = 1 << 25, ARM_HWCAP_A64_ILRCPC = 1 << 26, ARM_HWCAP_A64_FLAGM = 1 << 27, ARM_HWCAP_A64_SSBS = 1 << 28, ARM_HWCAP_A64_SB = 1 << 29, ARM_HWCAP_A64_PACA = 1 << 30, ARM_HWCAP_A64_PACG = 1UL << 31, ARM_HWCAP2_A64_DCPODP = 1 << 0, ARM_HWCAP2_A64_SVE2 = 1 << 1, ARM_HWCAP2_A64_SVEAES = 1 << 2, ARM_HWCAP2_A64_SVEPMULL = 1 << 3, ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, ARM_HWCAP2_A64_SVESHA3 = 1 << 5, ARM_HWCAP2_A64_SVESM4 = 1 << 6, ARM_HWCAP2_A64_FLAGM2 = 1 << 7, ARM_HWCAP2_A64_FRINT = 1 << 8, ARM_HWCAP2_A64_SVEI8MM = 1 << 9, ARM_HWCAP2_A64_SVEF32MM = 1 << 10, ARM_HWCAP2_A64_SVEF64MM = 1 << 11, ARM_HWCAP2_A64_SVEBF16 = 1 << 12, ARM_HWCAP2_A64_I8MM = 1 << 13, ARM_HWCAP2_A64_BF16 = 1 << 14, ARM_HWCAP2_A64_DGH = 1 << 15, ARM_HWCAP2_A64_RNG = 1 << 16, ARM_HWCAP2_A64_BTI = 1 << 17, ARM_HWCAP2_A64_MTE = 1 << 18, ARM_HWCAP2_A64_ECV = 1 << 19, ARM_HWCAP2_A64_AFP = 1 << 20, ARM_HWCAP2_A64_RPRES = 1 << 21, ARM_HWCAP2_A64_MTE3 = 1 << 22, ARM_HWCAP2_A64_SME = 1 << 23, ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, ARM_HWCAP2_A64_SME_FA64 = 1 << 30, ARM_HWCAP2_A64_WFXT = 1ULL << 31, ARM_HWCAP2_A64_EBF16 = 1ULL << 32, ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33, ARM_HWCAP2_A64_CSSC = 1ULL << 34, ARM_HWCAP2_A64_RPRFM = 1ULL << 35, ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36, ARM_HWCAP2_A64_SME2 = 1ULL << 37, ARM_HWCAP2_A64_SME2P1 = 1ULL << 38, ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39, ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40, ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41, ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42, ARM_HWCAP2_A64_MOPS = 1ULL << 43, ARM_HWCAP2_A64_HBC = 1ULL << 44, }; #define ELF_HWCAP get_elf_hwcap() #define ELF_HWCAP2 get_elf_hwcap2() #define GET_FEATURE_ID(feat, hwcap) \ do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) uint32_t get_elf_hwcap(void) { ARMCPU *cpu = ARM_CPU(thread_cpu); uint32_t hwcaps = 0; hwcaps |= ARM_HWCAP_A64_FP; hwcaps |= ARM_HWCAP_A64_ASIMD; hwcaps |= ARM_HWCAP_A64_CPUID; /* probe for the extra features */ GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT); GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT); GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); return hwcaps; } uint64_t get_elf_hwcap2(void) { ARMCPU *cpu = ARM_CPU(thread_cpu); uint64_t hwcaps = 0; GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3); GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | ARM_HWCAP2_A64_SME_F32F32 | ARM_HWCAP2_A64_SME_B16F32 | ARM_HWCAP2_A64_SME_F16F32 | ARM_HWCAP2_A64_SME_I8I32)); GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC); GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS); return hwcaps; } const char *elf_hwcap_str(uint32_t bit) { static const char *hwcap_str[] = { [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp", [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd", [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm", [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes", [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull", [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1", [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2", [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32", [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics", [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp", [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp", [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid", [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm", [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt", [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma", [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc", [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop", [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3", [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3", [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4", [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp", [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512", [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve", [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm", [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit", [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat", [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc", [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm", [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs", [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb", [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca", [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg", }; return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; } const char *elf_hwcap2_str(uint32_t bit) { static const char *hwcap_str[] = { [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp", [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2", [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes", [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull", [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm", [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3", [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4", [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2", [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint", [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm", [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm", [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm", [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16", [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm", [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16", [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh", [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng", [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti", [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte", [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv", [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp", [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres", [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3", [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme", [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64", [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64", [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32", [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32", [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32", [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32", [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64", [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt", [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16", [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16", [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc", [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm", [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1", [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2", [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1", [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32", [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32", [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16", [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16", [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops", [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc", }; return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; } #undef GET_FEATURE_ID #endif /* not TARGET_AARCH64 */ #if TARGET_BIG_ENDIAN # define VDSO_HEADER "vdso-be.c.inc" #else # define VDSO_HEADER "vdso-le.c.inc" #endif #endif /* TARGET_ARM */ #ifdef TARGET_SPARC #ifndef TARGET_SPARC64 # define ELF_CLASS ELFCLASS32 # define ELF_ARCH EM_SPARC #elif defined(TARGET_ABI32) # define ELF_CLASS ELFCLASS32 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC) #else # define ELF_CLASS ELFCLASS64 # define ELF_ARCH EM_SPARCV9 #endif #include "elf.h" #define ELF_HWCAP get_elf_hwcap() static uint32_t get_elf_hwcap(void) { /* There are not many sparc32 hwcap bits -- we have all of them. */ uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV; #ifdef TARGET_SPARC64 CPUSPARCState *env = cpu_env(thread_cpu); uint32_t features = env->def.features; r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS; /* 32x32 multiply and divide are efficient. */ r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32; /* We don't have an internal feature bit for this. */ r |= HWCAP_SPARC_POPC; r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0; r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0; r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0; r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0; r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0; r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0; #endif return r; } static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { /* Note that target_cpu_copy_regs does not read psr/tstate. */ regs->pc = infop->entry; regs->npc = regs->pc + 4; regs->y = 0; regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) - TARGET_STACK_BIAS); } #endif /* TARGET_SPARC */ #ifdef TARGET_PPC #define ELF_MACHINE PPC_ELF_MACHINE #if defined(TARGET_PPC64) #define elf_check_arch(x) ( (x) == EM_PPC64 ) #define ELF_CLASS ELFCLASS64 #else #define ELF_CLASS ELFCLASS32 #define EXSTACK_DEFAULT true #endif #define ELF_ARCH EM_PPC /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). See arch/powerpc/include/asm/cputable.h. */ enum { QEMU_PPC_FEATURE_32 = 0x80000000, QEMU_PPC_FEATURE_64 = 0x40000000, QEMU_PPC_FEATURE_601_INSTR = 0x20000000, QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, QEMU_PPC_FEATURE_NO_TB = 0x00100000, QEMU_PPC_FEATURE_POWER4 = 0x00080000, QEMU_PPC_FEATURE_POWER5 = 0x00040000, QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, QEMU_PPC_FEATURE_CELL = 0x00010000, QEMU_PPC_FEATURE_BOOKE = 0x00008000, QEMU_PPC_FEATURE_SMT = 0x00004000, QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, QEMU_PPC_FEATURE_PA6T = 0x00000800, QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, QEMU_PPC_FEATURE_PPC_LE = 0x00000001, /* Feature definitions in AT_HWCAP2. */ QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ }; #define ELF_HWCAP get_elf_hwcap() static uint32_t get_elf_hwcap(void) { PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); uint32_t features = 0; /* We don't have to be terribly complete here; the high points are Altivec/FP/SPE support. Anything else is just a bonus. */ #define GET_FEATURE(flag, feature) \ do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) #define GET_FEATURE2(flags, feature) \ do { \ if ((cpu->env.insns_flags2 & flags) == flags) { \ features |= feature; \ } \ } while (0) GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), QEMU_PPC_FEATURE_ARCH_2_06); #undef GET_FEATURE #undef GET_FEATURE2 return features; } #define ELF_HWCAP2 get_elf_hwcap2() static uint32_t get_elf_hwcap2(void) { PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); uint32_t features = 0; #define GET_FEATURE(flag, feature) \ do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) #define GET_FEATURE2(flag, feature) \ do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | QEMU_PPC_FEATURE2_VEC_CRYPTO); GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | QEMU_PPC_FEATURE2_MMA); #undef GET_FEATURE #undef GET_FEATURE2 return features; } /* * The requirements here are: * - keep the final alignment of sp (sp & 0xf) * - make sure the 32-bit value at the first 16 byte aligned position of * AUXV is greater than 16 for glibc compatibility. * AT_IGNOREPPC is used for that. * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. */ #define DLINFO_ARCH_ITEMS 5 #define ARCH_DLINFO \ do { \ PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ /* \ * Handle glibc compatibility: these magic entries must \ * be at the lowest addresses in the final auxv. \ */ \ NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ } while (0) static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) { _regs->gpr[1] = infop->start_stack; #if defined(TARGET_PPC64) if (get_ppc64_abi(infop) < 2) { uint64_t val; get_user_u64(val, infop->entry + 8); _regs->gpr[2] = val + infop->load_bias; get_user_u64(val, infop->entry); infop->entry = val + infop->load_bias; } else { _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ } #endif _regs->nip = infop->entry; } /* See linux kernel: arch/powerpc/include/asm/elf.h. */ #define ELF_NREG 48 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) { int i; target_ulong ccr = 0; for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { (*regs)[i] = tswapreg(env->gpr[i]); } (*regs)[32] = tswapreg(env->nip); (*regs)[33] = tswapreg(env->msr); (*regs)[35] = tswapreg(env->ctr); (*regs)[36] = tswapreg(env->lr); (*regs)[37] = tswapreg(cpu_read_xer(env)); ccr = ppc_get_cr(env); (*regs)[38] = tswapreg(ccr); } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #ifndef TARGET_PPC64 # define VDSO_HEADER "vdso-32.c.inc" #elif TARGET_BIG_ENDIAN # define VDSO_HEADER "vdso-64.c.inc" #else # define VDSO_HEADER "vdso-64le.c.inc" #endif #endif #ifdef TARGET_LOONGARCH64 #define ELF_CLASS ELFCLASS64 #define ELF_ARCH EM_LOONGARCH #define EXSTACK_DEFAULT true #define elf_check_arch(x) ((x) == EM_LOONGARCH) #define VDSO_HEADER "vdso.c.inc" static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { /*Set crmd PG,DA = 1,0 */ regs->csr.crmd = 2 << 3; regs->csr.era = infop->entry; regs->regs[3] = infop->start_stack; } /* See linux kernel: arch/loongarch/include/asm/elf.h */ #define ELF_NREG 45 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; enum { TARGET_EF_R0 = 0, TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, }; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPULoongArchState *env) { int i; (*regs)[TARGET_EF_R0] = 0; for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); } (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #define ELF_HWCAP get_elf_hwcap() /* See arch/loongarch/include/uapi/asm/hwcap.h */ enum { HWCAP_LOONGARCH_CPUCFG = (1 << 0), HWCAP_LOONGARCH_LAM = (1 << 1), HWCAP_LOONGARCH_UAL = (1 << 2), HWCAP_LOONGARCH_FPU = (1 << 3), HWCAP_LOONGARCH_LSX = (1 << 4), HWCAP_LOONGARCH_LASX = (1 << 5), HWCAP_LOONGARCH_CRC32 = (1 << 6), HWCAP_LOONGARCH_COMPLEX = (1 << 7), HWCAP_LOONGARCH_CRYPTO = (1 << 8), HWCAP_LOONGARCH_LVZ = (1 << 9), HWCAP_LOONGARCH_LBT_X86 = (1 << 10), HWCAP_LOONGARCH_LBT_ARM = (1 << 11), HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), }; static uint32_t get_elf_hwcap(void) { LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); uint32_t hwcaps = 0; hwcaps |= HWCAP_LOONGARCH_CRC32; if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { hwcaps |= HWCAP_LOONGARCH_UAL; } if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { hwcaps |= HWCAP_LOONGARCH_FPU; } if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { hwcaps |= HWCAP_LOONGARCH_LAM; } if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) { hwcaps |= HWCAP_LOONGARCH_LSX; } if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) { hwcaps |= HWCAP_LOONGARCH_LASX; } return hwcaps; } #define ELF_PLATFORM "loongarch" #endif /* TARGET_LOONGARCH64 */ #ifdef TARGET_MIPS #ifdef TARGET_MIPS64 #define ELF_CLASS ELFCLASS64 #else #define ELF_CLASS ELFCLASS32 #endif #define ELF_ARCH EM_MIPS #define EXSTACK_DEFAULT true #ifdef TARGET_ABI_MIPSN32 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) #else #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) #endif #define ELF_BASE_PLATFORM get_elf_base_platform() #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ { return _base_platform; } } while (0) static const char *get_elf_base_platform(void) { MIPSCPU *cpu = MIPS_CPU(thread_cpu); /* 64 bit ISAs goes first */ MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); /* 32 bit ISAs */ MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); /* Fallback */ return "mips"; } #undef MATCH_PLATFORM_INSN static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->cp0_status = 2 << CP0St_KSU; regs->cp0_epc = infop->entry; regs->regs[29] = infop->start_stack; } /* See linux kernel: arch/mips/include/asm/elf.h. */ #define ELF_NREG 45 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; /* See linux kernel: arch/mips/include/asm/reg.h. */ enum { #ifdef TARGET_MIPS64 TARGET_EF_R0 = 0, #else TARGET_EF_R0 = 6, #endif TARGET_EF_R26 = TARGET_EF_R0 + 26, TARGET_EF_R27 = TARGET_EF_R0 + 27, TARGET_EF_LO = TARGET_EF_R0 + 32, TARGET_EF_HI = TARGET_EF_R0 + 33, TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 }; /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) { int i; for (i = 0; i < TARGET_EF_R0; i++) { (*regs)[i] = 0; } (*regs)[TARGET_EF_R0] = 0; for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); } (*regs)[TARGET_EF_R26] = 0; (*regs)[TARGET_EF_R27] = 0; (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 /* See arch/mips/include/uapi/asm/hwcap.h. */ enum { HWCAP_MIPS_R6 = (1 << 0), HWCAP_MIPS_MSA = (1 << 1), HWCAP_MIPS_CRC32 = (1 << 2), HWCAP_MIPS_MIPS16 = (1 << 3), HWCAP_MIPS_MDMX = (1 << 4), HWCAP_MIPS_MIPS3D = (1 << 5), HWCAP_MIPS_SMARTMIPS = (1 << 6), HWCAP_MIPS_DSP = (1 << 7), HWCAP_MIPS_DSP2 = (1 << 8), HWCAP_MIPS_DSP3 = (1 << 9), HWCAP_MIPS_MIPS16E2 = (1 << 10), HWCAP_LOONGSON_MMI = (1 << 11), HWCAP_LOONGSON_EXT = (1 << 12), HWCAP_LOONGSON_EXT2 = (1 << 13), HWCAP_LOONGSON_CPUCFG = (1 << 14), }; #define ELF_HWCAP get_elf_hwcap() #define GET_FEATURE_INSN(_flag, _hwcap) \ do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ do { \ if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ hwcaps |= _hwcap; \ } \ } while (0) static uint32_t get_elf_hwcap(void) { MIPSCPU *cpu = MIPS_CPU(thread_cpu); uint32_t hwcaps = 0; GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 2, HWCAP_MIPS_R6); GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); return hwcaps; } #undef GET_FEATURE_REG_EQU #undef GET_FEATURE_REG_SET #undef GET_FEATURE_INSN #endif /* TARGET_MIPS */ #ifdef TARGET_MICROBLAZE #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_MICROBLAZE static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->pc = infop->entry; regs->r1 = infop->start_stack; } #define ELF_EXEC_PAGESIZE 4096 #define USE_ELF_CORE_DUMP #define ELF_NREG 38 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) { int i, pos = 0; for (i = 0; i < 32; i++) { (*regs)[pos++] = tswapreg(env->regs[i]); } (*regs)[pos++] = tswapreg(env->pc); (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); (*regs)[pos++] = 0; (*regs)[pos++] = tswapreg(env->ear); (*regs)[pos++] = 0; (*regs)[pos++] = tswapreg(env->esr); } #endif /* TARGET_MICROBLAZE */ #ifdef TARGET_OPENRISC #define ELF_ARCH EM_OPENRISC #define ELF_CLASS ELFCLASS32 #define ELF_DATA ELFDATA2MSB static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->pc = infop->entry; regs->gpr[1] = infop->start_stack; } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 8192 /* See linux kernel arch/openrisc/include/asm/elf.h. */ #define ELF_NREG 34 /* gprs and pc, sr */ typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUOpenRISCState *env) { int i; for (i = 0; i < 32; i++) { (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); } (*regs)[32] = tswapreg(env->pc); (*regs)[33] = tswapreg(cpu_get_sr(env)); } #define ELF_HWCAP 0 #define ELF_PLATFORM NULL #endif /* TARGET_OPENRISC */ #ifdef TARGET_SH4 #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_SH static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { /* Check other registers XXXXX */ regs->pc = infop->entry; regs->regs[15] = infop->start_stack; } /* See linux kernel: arch/sh/include/asm/elf.h. */ #define ELF_NREG 23 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; /* See linux kernel: arch/sh/include/asm/ptrace.h. */ enum { TARGET_REG_PC = 16, TARGET_REG_PR = 17, TARGET_REG_SR = 18, TARGET_REG_GBR = 19, TARGET_REG_MACH = 20, TARGET_REG_MACL = 21, TARGET_REG_SYSCALL = 22 }; static inline void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUSH4State *env) { int i; for (i = 0; i < 16; i++) { (*regs)[i] = tswapreg(env->gregs[i]); } (*regs)[TARGET_REG_PC] = tswapreg(env->pc); (*regs)[TARGET_REG_PR] = tswapreg(env->pr); (*regs)[TARGET_REG_SR] = tswapreg(env->sr); (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 enum { SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ }; #define ELF_HWCAP get_elf_hwcap() static uint32_t get_elf_hwcap(void) { SuperHCPU *cpu = SUPERH_CPU(thread_cpu); uint32_t hwcap = 0; hwcap |= SH_CPU_HAS_FPU; if (cpu->env.features & SH_FEATURE_SH4A) { hwcap |= SH_CPU_HAS_LLSC; } return hwcap; } #endif #ifdef TARGET_CRIS #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_CRIS static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->erp = infop->entry; } #define ELF_EXEC_PAGESIZE 8192 #endif #ifdef TARGET_M68K #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_68K /* ??? Does this need to do anything? #define ELF_PLAT_INIT(_r) */ static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->usp = infop->start_stack; regs->sr = 0; regs->pc = infop->entry; } /* See linux kernel: arch/m68k/include/asm/elf.h. */ #define ELF_NREG 20 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) { (*regs)[0] = tswapreg(env->dregs[1]); (*regs)[1] = tswapreg(env->dregs[2]); (*regs)[2] = tswapreg(env->dregs[3]); (*regs)[3] = tswapreg(env->dregs[4]); (*regs)[4] = tswapreg(env->dregs[5]); (*regs)[5] = tswapreg(env->dregs[6]); (*regs)[6] = tswapreg(env->dregs[7]); (*regs)[7] = tswapreg(env->aregs[0]); (*regs)[8] = tswapreg(env->aregs[1]); (*regs)[9] = tswapreg(env->aregs[2]); (*regs)[10] = tswapreg(env->aregs[3]); (*regs)[11] = tswapreg(env->aregs[4]); (*regs)[12] = tswapreg(env->aregs[5]); (*regs)[13] = tswapreg(env->aregs[6]); (*regs)[14] = tswapreg(env->dregs[0]); (*regs)[15] = tswapreg(env->aregs[7]); (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ (*regs)[17] = tswapreg(env->sr); (*regs)[18] = tswapreg(env->pc); (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 8192 #endif #ifdef TARGET_ALPHA #define ELF_CLASS ELFCLASS64 #define ELF_ARCH EM_ALPHA static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->pc = infop->entry; regs->ps = 8; regs->usp = infop->start_stack; } #define ELF_EXEC_PAGESIZE 8192 #endif /* TARGET_ALPHA */ #ifdef TARGET_S390X #define ELF_CLASS ELFCLASS64 #define ELF_DATA ELFDATA2MSB #define ELF_ARCH EM_S390 #include "elf.h" #define ELF_HWCAP get_elf_hwcap() #define GET_FEATURE(_feat, _hwcap) \ do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) uint32_t get_elf_hwcap(void) { /* * Let's assume we always have esan3 and zarch. * 31-bit processes can use 64-bit registers (high gprs). */ uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && s390_has_feat(S390_FEAT_ETF3_ENH)) { hwcap |= HWCAP_S390_ETF3EH; } GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2); return hwcap; } const char *elf_hwcap_str(uint32_t bit) { static const char *hwcap_str[] = { [HWCAP_S390_NR_ESAN3] = "esan3", [HWCAP_S390_NR_ZARCH] = "zarch", [HWCAP_S390_NR_STFLE] = "stfle", [HWCAP_S390_NR_MSA] = "msa", [HWCAP_S390_NR_LDISP] = "ldisp", [HWCAP_S390_NR_EIMM] = "eimm", [HWCAP_S390_NR_DFP] = "dfp", [HWCAP_S390_NR_HPAGE] = "edat", [HWCAP_S390_NR_ETF3EH] = "etf3eh", [HWCAP_S390_NR_HIGH_GPRS] = "highgprs", [HWCAP_S390_NR_TE] = "te", [HWCAP_S390_NR_VXRS] = "vx", [HWCAP_S390_NR_VXRS_BCD] = "vxd", [HWCAP_S390_NR_VXRS_EXT] = "vxe", [HWCAP_S390_NR_GS] = "gs", [HWCAP_S390_NR_VXRS_EXT2] = "vxe2", [HWCAP_S390_NR_VXRS_PDE] = "vxp", [HWCAP_S390_NR_SORT] = "sort", [HWCAP_S390_NR_DFLT] = "dflt", [HWCAP_S390_NR_NNPA] = "nnpa", [HWCAP_S390_NR_PCI_MIO] = "pcimio", [HWCAP_S390_NR_SIE] = "sie", }; return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; } static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->psw.addr = infop->entry; regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \ PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \ PSW_MASK_32; regs->gprs[15] = infop->start_stack; } /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ #define ELF_NREG 27 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; enum { TARGET_REG_PSWM = 0, TARGET_REG_PSWA = 1, TARGET_REG_GPRS = 2, TARGET_REG_ARS = 18, TARGET_REG_ORIG_R2 = 26, }; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUS390XState *env) { int i; uint32_t *aregs; (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); for (i = 0; i < 16; i++) { (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); } aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); for (i = 0; i < 16; i++) { aregs[i] = tswap32(env->aregs[i]); } (*regs)[TARGET_REG_ORIG_R2] = 0; } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #define VDSO_HEADER "vdso.c.inc" #endif /* TARGET_S390X */ #ifdef TARGET_RISCV #define ELF_ARCH EM_RISCV #ifdef TARGET_RISCV32 #define ELF_CLASS ELFCLASS32 #define VDSO_HEADER "vdso-32.c.inc" #else #define ELF_CLASS ELFCLASS64 #define VDSO_HEADER "vdso-64.c.inc" #endif #define ELF_HWCAP get_elf_hwcap() static uint32_t get_elf_hwcap(void) { #define MISA_BIT(EXT) (1 << (EXT - 'A')) RISCVCPU *cpu = RISCV_CPU(thread_cpu); uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C') | MISA_BIT('V'); return cpu->env.misa_ext & mask; #undef MISA_BIT } static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->sepc = infop->entry; regs->sp = infop->start_stack; } #define ELF_EXEC_PAGESIZE 4096 #endif /* TARGET_RISCV */ #ifdef TARGET_HPPA #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_PARISC #define ELF_PLATFORM "PARISC" #define STACK_GROWS_DOWN 0 #define STACK_ALIGNMENT 64 #define VDSO_HEADER "vdso.c.inc" static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->iaoq[0] = infop->entry | PRIV_USER; regs->iaoq[1] = regs->iaoq[0] + 4; regs->gr[23] = 0; regs->gr[24] = infop->argv; regs->gr[25] = infop->argc; /* The top-of-stack contains a linkage buffer. */ regs->gr[30] = infop->start_stack + 64; regs->gr[31] = infop->entry; } #define LO_COMMPAGE 0 static bool init_guest_commpage(void) { /* If reserved_va, then we have already mapped 0 page on the host. */ if (!reserved_va) { void *want, *addr; want = g2h_untagged(LO_COMMPAGE); addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0); if (addr == MAP_FAILED) { perror("Allocating guest commpage"); exit(EXIT_FAILURE); } if (addr != want) { return false; } } /* * On Linux, page zero is normally marked execute only + gateway. * Normal read or write is supposed to fail (thus PROT_NONE above), * but specific offsets have kernel code mapped to raise permissions * and implement syscalls. Here, simply mark the page executable. * Special case the entry points during translation (see do_page_zero). */ page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, PAGE_EXEC | PAGE_VALID); return true; } #endif /* TARGET_HPPA */ #ifdef TARGET_XTENSA #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_XTENSA static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->windowbase = 0; regs->windowstart = 1; regs->areg[1] = infop->start_stack; regs->pc = infop->entry; if (info_is_fdpic(infop)) { regs->areg[4] = infop->loadmap_addr; regs->areg[5] = infop->interpreter_loadmap_addr; if (infop->interpreter_loadmap_addr) { regs->areg[6] = infop->interpreter_pt_dynamic_addr; } else { regs->areg[6] = infop->pt_dynamic_addr; } } } /* See linux kernel: arch/xtensa/include/asm/elf.h. */ #define ELF_NREG 128 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; enum { TARGET_REG_PC, TARGET_REG_PS, TARGET_REG_LBEG, TARGET_REG_LEND, TARGET_REG_LCOUNT, TARGET_REG_SAR, TARGET_REG_WINDOWSTART, TARGET_REG_WINDOWBASE, TARGET_REG_THREADPTR, TARGET_REG_AR0 = 64, }; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUXtensaState *env) { unsigned i; (*regs)[TARGET_REG_PC] = tswapreg(env->pc); (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); xtensa_sync_phys_from_window((CPUXtensaState *)env); for (i = 0; i < env->config->nareg; ++i) { (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); } } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #endif /* TARGET_XTENSA */ #ifdef TARGET_HEXAGON #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_HEXAGON static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->sepc = infop->entry; regs->sp = infop->start_stack; } #endif /* TARGET_HEXAGON */ #ifndef ELF_BASE_PLATFORM #define ELF_BASE_PLATFORM (NULL) #endif #ifndef ELF_PLATFORM #define ELF_PLATFORM (NULL) #endif #ifndef ELF_MACHINE #define ELF_MACHINE ELF_ARCH #endif #ifndef elf_check_arch #define elf_check_arch(x) ((x) == ELF_ARCH) #endif #ifndef elf_check_abi #define elf_check_abi(x) (1) #endif #ifndef ELF_HWCAP #define ELF_HWCAP 0 #endif #ifndef STACK_GROWS_DOWN #define STACK_GROWS_DOWN 1 #endif #ifndef STACK_ALIGNMENT #define STACK_ALIGNMENT 16 #endif #ifdef TARGET_ABI32 #undef ELF_CLASS #define ELF_CLASS ELFCLASS32 #undef bswaptls #define bswaptls(ptr) bswap32s(ptr) #endif #ifndef EXSTACK_DEFAULT #define EXSTACK_DEFAULT false #endif #include "elf.h" /* We must delay the following stanzas until after "elf.h". */ #if defined(TARGET_AARCH64) static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, const uint32_t *data, struct image_info *info, Error **errp) { if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { if (pr_datasz != sizeof(uint32_t)) { error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); return false; } /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ info->note_flags = *data; } return true; } #define ARCH_USE_GNU_PROPERTY 1 #else static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, const uint32_t *data, struct image_info *info, Error **errp) { g_assert_not_reached(); } #define ARCH_USE_GNU_PROPERTY 0 #endif struct exec { unsigned int a_info; /* Use macros N_MAGIC, etc for access */ unsigned int a_text; /* length of text, in bytes */ unsigned int a_data; /* length of data, in bytes */ unsigned int a_bss; /* length of uninitialized data area, in bytes */ unsigned int a_syms; /* length of symbol table data in file, in bytes */ unsigned int a_entry; /* start address */ unsigned int a_trsize; /* length of relocation info for text, in bytes */ unsigned int a_drsize; /* length of relocation info for data, in bytes */ }; #define N_MAGIC(exec) ((exec).a_info & 0xffff) #define OMAGIC 0407 #define NMAGIC 0410 #define ZMAGIC 0413 #define QMAGIC 0314 #define DLINFO_ITEMS 16 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) { memcpy(to, from, n); } #ifdef BSWAP_NEEDED static void bswap_ehdr(struct elfhdr *ehdr) { bswap16s(&ehdr->e_type); /* Object file type */ bswap16s(&ehdr->e_machine); /* Architecture */ bswap32s(&ehdr->e_version); /* Object file version */ bswaptls(&ehdr->e_entry); /* Entry point virtual address */ bswaptls(&ehdr->e_phoff); /* Program header table file offset */ bswaptls(&ehdr->e_shoff); /* Section header table file offset */ bswap32s(&ehdr->e_flags); /* Processor-specific flags */ bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ bswap16s(&ehdr->e_phnum); /* Program header table entry count */ bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ bswap16s(&ehdr->e_shnum); /* Section header table entry count */ bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ } static void bswap_phdr(struct elf_phdr *phdr, int phnum) { int i; for (i = 0; i < phnum; ++i, ++phdr) { bswap32s(&phdr->p_type); /* Segment type */ bswap32s(&phdr->p_flags); /* Segment flags */ bswaptls(&phdr->p_offset); /* Segment file offset */ bswaptls(&phdr->p_vaddr); /* Segment virtual address */ bswaptls(&phdr->p_paddr); /* Segment physical address */ bswaptls(&phdr->p_filesz); /* Segment size in file */ bswaptls(&phdr->p_memsz); /* Segment size in memory */ bswaptls(&phdr->p_align); /* Segment alignment */ } } static void bswap_shdr(struct elf_shdr *shdr, int shnum) { int i; for (i = 0; i < shnum; ++i, ++shdr) { bswap32s(&shdr->sh_name); bswap32s(&shdr->sh_type); bswaptls(&shdr->sh_flags); bswaptls(&shdr->sh_addr); bswaptls(&shdr->sh_offset); bswaptls(&shdr->sh_size); bswap32s(&shdr->sh_link); bswap32s(&shdr->sh_info); bswaptls(&shdr->sh_addralign); bswaptls(&shdr->sh_entsize); } } static void bswap_sym(struct elf_sym *sym) { bswap32s(&sym->st_name); bswaptls(&sym->st_value); bswaptls(&sym->st_size); bswap16s(&sym->st_shndx); } #ifdef TARGET_MIPS static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { bswap16s(&abiflags->version); bswap32s(&abiflags->ases); bswap32s(&abiflags->isa_ext); bswap32s(&abiflags->flags1); bswap32s(&abiflags->flags2); } #endif #else static inline void bswap_ehdr(struct elfhdr *ehdr) { } static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } static inline void bswap_sym(struct elf_sym *sym) { } #ifdef TARGET_MIPS static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } #endif #endif #ifdef USE_ELF_CORE_DUMP static int elf_core_dump(int, const CPUArchState *); #endif /* USE_ELF_CORE_DUMP */ static void load_symbols(struct elfhdr *hdr, const ImageSource *src, abi_ulong load_bias); /* Verify the portions of EHDR within E_IDENT for the target. This can be performed before bswapping the entire header. */ static bool elf_check_ident(struct elfhdr *ehdr) { return (ehdr->e_ident[EI_MAG0] == ELFMAG0 && ehdr->e_ident[EI_MAG1] == ELFMAG1 && ehdr->e_ident[EI_MAG2] == ELFMAG2 && ehdr->e_ident[EI_MAG3] == ELFMAG3 && ehdr->e_ident[EI_CLASS] == ELF_CLASS && ehdr->e_ident[EI_DATA] == ELF_DATA && ehdr->e_ident[EI_VERSION] == EV_CURRENT); } /* Verify the portions of EHDR outside of E_IDENT for the target. This has to wait until after bswapping the header. */ static bool elf_check_ehdr(struct elfhdr *ehdr) { return (elf_check_arch(ehdr->e_machine) && elf_check_abi(ehdr->e_flags) && ehdr->e_ehsize == sizeof(struct elfhdr) && ehdr->e_phentsize == sizeof(struct elf_phdr) && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); } /* * 'copy_elf_strings()' copies argument/envelope strings from user * memory to free pages in kernel mem. These are in a format ready * to be put directly into the top of new user memory. * */ static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, abi_ulong p, abi_ulong stack_limit) { char *tmp; int len, i; abi_ulong top = p; if (!p) { return 0; /* bullet-proofing */ } if (STACK_GROWS_DOWN) { int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; for (i = argc - 1; i >= 0; --i) { tmp = argv[i]; if (!tmp) { fprintf(stderr, "VFS: argc is wrong"); exit(-1); } len = strlen(tmp) + 1; tmp += len; if (len > (p - stack_limit)) { return 0; } while (len) { int bytes_to_copy = (len > offset) ? offset : len; tmp -= bytes_to_copy; p -= bytes_to_copy; offset -= bytes_to_copy; len -= bytes_to_copy; memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); if (offset == 0) { memcpy_to_target(p, scratch, top - p); top = p; offset = TARGET_PAGE_SIZE; } } } if (p != top) { memcpy_to_target(p, scratch + offset, top - p); } } else { int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); for (i = 0; i < argc; ++i) { tmp = argv[i]; if (!tmp) { fprintf(stderr, "VFS: argc is wrong"); exit(-1); } len = strlen(tmp) + 1; if (len > (stack_limit - p)) { return 0; } while (len) { int bytes_to_copy = (len > remaining) ? remaining : len; memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); tmp += bytes_to_copy; remaining -= bytes_to_copy; p += bytes_to_copy; len -= bytes_to_copy; if (remaining == 0) { memcpy_to_target(top, scratch, p - top); top = p; remaining = TARGET_PAGE_SIZE; } } } if (p != top) { memcpy_to_target(top, scratch, p - top); } } return p; } /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of * argument/environment space. Newer kernels (>2.6.33) allow more, * dependent on stack size, but guarantee at least 32 pages for * backwards compatibility. */ #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) static abi_ulong setup_arg_pages(struct linux_binprm *bprm, struct image_info *info) { abi_ulong size, error, guard; int prot; size = guest_stack_size; if (size < STACK_LOWER_LIMIT) { size = STACK_LOWER_LIMIT; } if (STACK_GROWS_DOWN) { guard = TARGET_PAGE_SIZE; if (guard < qemu_real_host_page_size()) { guard = qemu_real_host_page_size(); } } else { /* no guard page for hppa target where stack grows upwards. */ guard = 0; } prot = PROT_READ | PROT_WRITE; if (info->exec_stack) { prot |= PROT_EXEC; } error = target_mmap(0, size + guard, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (error == -1) { perror("mmap stack"); exit(-1); } /* We reserve one extra page at the top of the stack as guard. */ if (STACK_GROWS_DOWN) { target_mprotect(error, guard, PROT_NONE); info->stack_limit = error + guard; return info->stack_limit + size - sizeof(void *); } else { info->stack_limit = error + size; return error; } } /** * zero_bss: * * Map and zero the bss. We need to explicitly zero any fractional pages * after the data section (i.e. bss). Return false on mapping failure. */ static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot, Error **errp) { abi_ulong align_bss; /* We only expect writable bss; the code segment shouldn't need this. */ if (!(prot & PROT_WRITE)) { error_setg(errp, "PT_LOAD with non-writable bss"); return false; } align_bss = TARGET_PAGE_ALIGN(start_bss); end_bss = TARGET_PAGE_ALIGN(end_bss); if (start_bss < align_bss) { int flags = page_get_flags(start_bss); if (!(flags & PAGE_RWX)) { /* * The whole address space of the executable was reserved * at the start, therefore all pages will be VALID. * But assuming there are no PROT_NONE PT_LOAD segments, * a PROT_NONE page means no data all bss, and we can * simply extend the new anon mapping back to the start * of the page of bss. */ align_bss -= TARGET_PAGE_SIZE; } else { /* * The start of the bss shares a page with something. * The only thing that we expect is the data section, * which would already be marked writable. * Overlapping the RX code segment seems malformed. */ if (!(flags & PAGE_WRITE)) { error_setg(errp, "PT_LOAD with bss overlapping " "non-writable page"); return false; } /* The page is already mapped and writable. */ memset(g2h_untagged(start_bss), 0, align_bss - start_bss); } } if (align_bss < end_bss && target_mmap(align_bss, end_bss - align_bss, prot, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { error_setg_errno(errp, errno, "Error mapping bss"); return false; } return true; } #if defined(TARGET_ARM) static int elf_is_fdpic(struct elfhdr *exec) { return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; } #elif defined(TARGET_XTENSA) static int elf_is_fdpic(struct elfhdr *exec) { return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; } #else /* Default implementation, always false. */ static int elf_is_fdpic(struct elfhdr *exec) { return 0; } #endif static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) { uint16_t n; struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; /* elf32_fdpic_loadseg */ n = info->nsegs; while (n--) { sp -= 12; put_user_u32(loadsegs[n].addr, sp+0); put_user_u32(loadsegs[n].p_vaddr, sp+4); put_user_u32(loadsegs[n].p_memsz, sp+8); } /* elf32_fdpic_loadmap */ sp -= 4; put_user_u16(0, sp+0); /* version */ put_user_u16(info->nsegs, sp+2); /* nsegs */ info->personality = PER_LINUX_FDPIC; info->loadmap_addr = sp; return sp; } static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, struct elfhdr *exec, struct image_info *info, struct image_info *interp_info, struct image_info *vdso_info) { abi_ulong sp; abi_ulong u_argc, u_argv, u_envp, u_auxv; int size; int i; abi_ulong u_rand_bytes; uint8_t k_rand_bytes[16]; abi_ulong u_platform, u_base_platform; const char *k_platform, *k_base_platform; const int n = sizeof(elf_addr_t); sp = p; /* Needs to be before we load the env/argc/... */ if (elf_is_fdpic(exec)) { /* Need 4 byte alignment for these structs */ sp &= ~3; sp = loader_build_fdpic_loadmap(info, sp); info->other_info = interp_info; if (interp_info) { interp_info->other_info = info; sp = loader_build_fdpic_loadmap(interp_info, sp); info->interpreter_loadmap_addr = interp_info->loadmap_addr; info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; } else { info->interpreter_loadmap_addr = 0; info->interpreter_pt_dynamic_addr = 0; } } u_base_platform = 0; k_base_platform = ELF_BASE_PLATFORM; if (k_base_platform) { size_t len = strlen(k_base_platform) + 1; if (STACK_GROWS_DOWN) { sp -= (len + n - 1) & ~(n - 1); u_base_platform = sp; /* FIXME - check return value of memcpy_to_target() for failure */ memcpy_to_target(sp, k_base_platform, len); } else { memcpy_to_target(sp, k_base_platform, len); u_base_platform = sp; sp += len + 1; } } u_platform = 0; k_platform = ELF_PLATFORM; if (k_platform) { size_t len = strlen(k_platform) + 1; if (STACK_GROWS_DOWN) { sp -= (len + n - 1) & ~(n - 1); u_platform = sp; /* FIXME - check return value of memcpy_to_target() for failure */ memcpy_to_target(sp, k_platform, len); } else { memcpy_to_target(sp, k_platform, len); u_platform = sp; sp += len + 1; } } /* Provide 16 byte alignment for the PRNG, and basic alignment for * the argv and envp pointers. */ if (STACK_GROWS_DOWN) { sp = QEMU_ALIGN_DOWN(sp, 16); } else { sp = QEMU_ALIGN_UP(sp, 16); } /* * Generate 16 random bytes for userspace PRNG seeding. */ qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); if (STACK_GROWS_DOWN) { sp -= 16; u_rand_bytes = sp; /* FIXME - check return value of memcpy_to_target() for failure */ memcpy_to_target(sp, k_rand_bytes, 16); } else { memcpy_to_target(sp, k_rand_bytes, 16); u_rand_bytes = sp; sp += 16; } size = (DLINFO_ITEMS + 1) * 2; if (k_base_platform) { size += 2; } if (k_platform) { size += 2; } if (vdso_info) { size += 2; } #ifdef DLINFO_ARCH_ITEMS size += DLINFO_ARCH_ITEMS * 2; #endif #ifdef ELF_HWCAP2 size += 2; #endif info->auxv_len = size * n; size += envc + argc + 2; size += 1; /* argc itself */ size *= n; /* Allocate space and finalize stack alignment for entry now. */ if (STACK_GROWS_DOWN) { u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); sp = u_argc; } else { u_argc = sp; sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); } u_argv = u_argc + n; u_envp = u_argv + (argc + 1) * n; u_auxv = u_envp + (envc + 1) * n; info->saved_auxv = u_auxv; info->argc = argc; info->envc = envc; info->argv = u_argv; info->envp = u_envp; /* This is correct because Linux defines * elf_addr_t as Elf32_Off / Elf64_Off */ #define NEW_AUX_ENT(id, val) do { \ put_user_ual(id, u_auxv); u_auxv += n; \ put_user_ual(val, u_auxv); u_auxv += n; \ } while(0) #ifdef ARCH_DLINFO /* * ARCH_DLINFO must come first so platform specific code can enforce * special alignment requirements on the AUXV if necessary (eg. PPC). */ ARCH_DLINFO; #endif /* There must be exactly DLINFO_ITEMS entries here, or the assert * on info->auxv_len will trigger. */ NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); NEW_AUX_ENT(AT_ENTRY, info->entry); NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); NEW_AUX_ENT(AT_EXECFN, info->file_string); #ifdef ELF_HWCAP2 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); #endif if (u_base_platform) { NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); } if (u_platform) { NEW_AUX_ENT(AT_PLATFORM, u_platform); } if (vdso_info) { NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr); } NEW_AUX_ENT (AT_NULL, 0); #undef NEW_AUX_ENT /* Check that our initial calculation of the auxv length matches how much * we actually put into it. */ assert(info->auxv_len == u_auxv - info->saved_auxv); put_user_ual(argc, u_argc); p = info->arg_strings; for (i = 0; i < argc; ++i) { put_user_ual(p, u_argv); u_argv += n; p += target_strlen(p) + 1; } put_user_ual(0, u_argv); p = info->env_strings; for (i = 0; i < envc; ++i) { put_user_ual(p, u_envp); u_envp += n; p += target_strlen(p) + 1; } put_user_ual(0, u_envp); return sp; } #if defined(HI_COMMPAGE) #define LO_COMMPAGE -1 #elif defined(LO_COMMPAGE) #define HI_COMMPAGE 0 #else #define HI_COMMPAGE 0 #define LO_COMMPAGE -1 #ifndef INIT_GUEST_COMMPAGE #define init_guest_commpage() true #endif #endif /** * pgb_try_mmap: * @addr: host start address * @addr_last: host last address * @keep: do not unmap the probe region * * Return 1 if [@addr, @addr_last] is not mapped in the host, * return 0 if it is not available to map, and -1 on mmap error. * If @keep, the region is left mapped on success, otherwise unmapped. */ static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep) { size_t size = addr_last - addr + 1; void *p = mmap((void *)addr, size, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0); int ret; if (p == MAP_FAILED) { return errno == EEXIST ? 0 : -1; } ret = p == (void *)addr; if (!keep || !ret) { munmap(p, size); } return ret; } /** * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk) * @addr: host address * @addr_last: host last address * @brk: host brk * * Like pgb_try_mmap, but additionally reserve some memory following brk. */ static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last, uintptr_t brk, bool keep) { uintptr_t brk_last = brk + 16 * MiB - 1; /* Do not map anything close to the host brk. */ if (addr <= brk_last && brk <= addr_last) { return 0; } return pgb_try_mmap(addr, addr_last, keep); } /** * pgb_try_mmap_set: * @ga: set of guest addrs * @base: guest_base * @brk: host brk * * Return true if all @ga can be mapped by the host at @base. * On success, retain the mapping at index 0 for reserved_va. */ typedef struct PGBAddrs { uintptr_t bounds[3][2]; /* start/last pairs */ int nbounds; } PGBAddrs; static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk) { for (int i = ga->nbounds - 1; i >= 0; --i) { if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base, ga->bounds[i][1] + base, brk, i == 0 && reserved_va) <= 0) { return false; } } return true; } /** * pgb_addr_set: * @ga: output set of guest addrs * @guest_loaddr: guest image low address * @guest_loaddr: guest image high address * @identity: create for identity mapping * * Fill in @ga with the image, COMMPAGE and NULL page. */ static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr, abi_ulong guest_hiaddr, bool try_identity) { int n; /* * With a low commpage, or a guest mapped very low, * we may not be able to use the identity map. */ if (try_identity) { if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) { return false; } if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) { return false; } } memset(ga, 0, sizeof(*ga)); n = 0; if (reserved_va) { ga->bounds[n][0] = try_identity ? mmap_min_addr : 0; ga->bounds[n][1] = reserved_va; n++; /* LO_COMMPAGE and NULL handled by reserving from 0. */ } else { /* Add any LO_COMMPAGE or NULL page. */ if (LO_COMMPAGE != -1) { ga->bounds[n][0] = 0; ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1; n++; } else if (!try_identity) { ga->bounds[n][0] = 0; ga->bounds[n][1] = TARGET_PAGE_SIZE - 1; n++; } /* Add the guest image for ET_EXEC. */ if (guest_loaddr) { ga->bounds[n][0] = guest_loaddr; ga->bounds[n][1] = guest_hiaddr; n++; } } /* * Temporarily disable * "comparison is always false due to limited range of data type" * due to comparison between unsigned and (possible) 0. */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wtype-limits" /* Add any HI_COMMPAGE not covered by reserved_va. */ if (reserved_va < HI_COMMPAGE) { ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask(); ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1; n++; } #pragma GCC diagnostic pop ga->nbounds = n; return true; } static void pgb_fail_in_use(const char *image_name) { error_report("%s: requires virtual address space that is in use " "(omit the -B option or choose a different value)", image_name); exit(EXIT_FAILURE); } static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr, uintptr_t guest_hiaddr, uintptr_t align) { PGBAddrs ga; uintptr_t brk = (uintptr_t)sbrk(0); if (!QEMU_IS_ALIGNED(guest_base, align)) { fprintf(stderr, "Requested guest base %p does not satisfy " "host minimum alignment (0x%" PRIxPTR ")\n", (void *)guest_base, align); exit(EXIT_FAILURE); } if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base) || !pgb_try_mmap_set(&ga, guest_base, brk)) { pgb_fail_in_use(image_name); } } /** * pgb_find_fallback: * * This is a fallback method for finding holes in the host address space * if we don't have the benefit of being able to access /proc/self/map. * It can potentially take a very long time as we can only dumbly iterate * up the host address space seeing if the allocation would work. */ static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align, uintptr_t brk) { /* TODO: come up with a better estimate of how much to skip. */ uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB; for (uintptr_t base = skip; ; base += skip) { base = ROUND_UP(base, align); if (pgb_try_mmap_set(ga, base, brk)) { return base; } if (base >= -skip) { return -1; } } } static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base, IntervalTreeRoot *root) { for (int i = ga->nbounds - 1; i >= 0; --i) { uintptr_t s = base + ga->bounds[i][0]; uintptr_t l = base + ga->bounds[i][1]; IntervalTreeNode *n; if (l < s) { /* Wraparound. Skip to advance S to mmap_min_addr. */ return mmap_min_addr - s; } n = interval_tree_iter_first(root, s, l); if (n != NULL) { /* Conflict. Skip to advance S to LAST + 1. */ return n->last - s + 1; } } return 0; /* success */ } static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root, uintptr_t align, uintptr_t brk) { uintptr_t last = mmap_min_addr; uintptr_t base, skip; while (true) { base = ROUND_UP(last, align); if (base < last) { return -1; } skip = pgb_try_itree(ga, base, root); if (skip == 0) { break; } last = base + skip; if (last < base) { return -1; } } /* * We've chosen 'base' based on holes in the interval tree, * but we don't yet know if it is a valid host address. * Because it is the first matching hole, if the host addresses * are invalid we know there are no further matches. */ return pgb_try_mmap_set(ga, base, brk) ? base : -1; } static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr, uintptr_t guest_hiaddr, uintptr_t align) { IntervalTreeRoot *root; uintptr_t brk, ret; PGBAddrs ga; /* Try the identity map first. */ if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) { brk = (uintptr_t)sbrk(0); if (pgb_try_mmap_set(&ga, 0, brk)) { guest_base = 0; return; } } /* * Rebuild the address set for non-identity map. * This differs in the mapping of the guest NULL page. */ pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false); root = read_self_maps(); /* Read brk after we've read the maps, which will malloc. */ brk = (uintptr_t)sbrk(0); if (!root) { ret = pgb_find_fallback(&ga, align, brk); } else { /* * Reserve the area close to the host brk. * This will be freed with the rest of the tree. */ IntervalTreeNode *b = g_new0(IntervalTreeNode, 1); b->start = brk; b->last = brk + 16 * MiB - 1; interval_tree_insert(b, root); ret = pgb_find_itree(&ga, root, align, brk); free_self_maps(root); } if (ret == -1) { int w = TARGET_LONG_BITS / 4; error_report("%s: Unable to find a guest_base to satisfy all " "guest address mapping requirements", image_name); for (int i = 0; i < ga.nbounds; ++i) { error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n", w, (uint64_t)ga.bounds[i][0], w, (uint64_t)ga.bounds[i][1]); } exit(EXIT_FAILURE); } guest_base = ret; } void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, abi_ulong guest_hiaddr) { /* In order to use host shmat, we must be able to honor SHMLBA. */ uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE); /* Sanity check the guest binary. */ if (reserved_va) { if (guest_hiaddr > reserved_va) { error_report("%s: requires more than reserved virtual " "address space (0x%" PRIx64 " > 0x%lx)", image_name, (uint64_t)guest_hiaddr, reserved_va); exit(EXIT_FAILURE); } } else { if (guest_hiaddr != (uintptr_t)guest_hiaddr) { error_report("%s: requires more virtual address space " "than the host can provide (0x%" PRIx64 ")", image_name, (uint64_t)guest_hiaddr + 1); exit(EXIT_FAILURE); } } if (have_guest_base) { pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align); } else { pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align); } /* Reserve and initialize the commpage. */ if (!init_guest_commpage()) { /* We have already probed for the commpage being free. */ g_assert_not_reached(); } assert(QEMU_IS_ALIGNED(guest_base, align)); qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); } enum { /* The string "GNU\0" as a magic number. */ GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), NOTE_DATA_SZ = 1 * KiB, NOTE_NAME_SZ = 4, ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, }; /* * Process a single gnu_property entry. * Return false for error. */ static bool parse_elf_property(const uint32_t *data, int *off, int datasz, struct image_info *info, bool have_prev_type, uint32_t *prev_type, Error **errp) { uint32_t pr_type, pr_datasz, step; if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { goto error_data; } datasz -= *off; data += *off / sizeof(uint32_t); if (datasz < 2 * sizeof(uint32_t)) { goto error_data; } pr_type = data[0]; pr_datasz = data[1]; data += 2; datasz -= 2 * sizeof(uint32_t); step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); if (step > datasz) { goto error_data; } /* Properties are supposed to be unique and sorted on pr_type. */ if (have_prev_type && pr_type <= *prev_type) { if (pr_type == *prev_type) { error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); } else { error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); } return false; } *prev_type = pr_type; if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { return false; } *off += 2 * sizeof(uint32_t) + step; return true; error_data: error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); return false; } /* Process NT_GNU_PROPERTY_TYPE_0. */ static bool parse_elf_properties(const ImageSource *src, struct image_info *info, const struct elf_phdr *phdr, Error **errp) { union { struct elf_note nhdr; uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; } note; int n, off, datasz; bool have_prev_type; uint32_t prev_type; /* Unless the arch requires properties, ignore them. */ if (!ARCH_USE_GNU_PROPERTY) { return true; } /* If the properties are crazy large, that's too bad. */ n = phdr->p_filesz; if (n > sizeof(note)) { error_setg(errp, "PT_GNU_PROPERTY too large"); return false; } if (n < sizeof(note.nhdr)) { error_setg(errp, "PT_GNU_PROPERTY too small"); return false; } if (!imgsrc_read(¬e, phdr->p_offset, n, src, errp)) { return false; } /* * The contents of a valid PT_GNU_PROPERTY is a sequence of uint32_t. * Swap most of them now, beyond the header and namesz. */ #ifdef BSWAP_NEEDED for (int i = 4; i < n / 4; i++) { bswap32s(note.data + i); } #endif /* * Note that nhdr is 3 words, and that the "name" described by namesz * immediately follows nhdr and is thus at the 4th word. Further, all * of the inputs to the kernel's round_up are multiples of 4. */ if (tswap32(note.nhdr.n_type) != NT_GNU_PROPERTY_TYPE_0 || tswap32(note.nhdr.n_namesz) != NOTE_NAME_SZ || note.data[3] != GNU0_MAGIC) { error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); return false; } off = sizeof(note.nhdr) + NOTE_NAME_SZ; datasz = tswap32(note.nhdr.n_descsz) + off; if (datasz > n) { error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); return false; } have_prev_type = false; prev_type = 0; while (1) { if (off == datasz) { return true; /* end, exit ok */ } if (!parse_elf_property(note.data, &off, datasz, info, have_prev_type, &prev_type, errp)) { return false; } have_prev_type = true; } } /** * load_elf_image: Load an ELF image into the address space. * @image_name: the filename of the image, to use in error messages. * @src: the ImageSource from which to read. * @info: info collected from the loaded image. * @ehdr: the ELF header, not yet bswapped. * @pinterp_name: record any PT_INTERP string found. * * On return: @info values will be filled in, as necessary or available. */ static void load_elf_image(const char *image_name, const ImageSource *src, struct image_info *info, struct elfhdr *ehdr, char **pinterp_name) { g_autofree struct elf_phdr *phdr = NULL; abi_ulong load_addr, load_bias, loaddr, hiaddr, error; int i, prot_exec; Error *err = NULL; /* * First of all, some simple consistency checks. * Note that we rely on the bswapped ehdr staying in bprm_buf, * for later use by load_elf_binary and create_elf_tables. */ if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) { goto exit_errmsg; } if (!elf_check_ident(ehdr)) { error_setg(&err, "Invalid ELF image for this architecture"); goto exit_errmsg; } bswap_ehdr(ehdr); if (!elf_check_ehdr(ehdr)) { error_setg(&err, "Invalid ELF image for this architecture"); goto exit_errmsg; } phdr = imgsrc_read_alloc(ehdr->e_phoff, ehdr->e_phnum * sizeof(struct elf_phdr), src, &err); if (phdr == NULL) { goto exit_errmsg; } bswap_phdr(phdr, ehdr->e_phnum); info->nsegs = 0; info->pt_dynamic_addr = 0; mmap_lock(); /* * Find the maximum size of the image and allocate an appropriate * amount of memory to handle that. Locate the interpreter, if any. */ loaddr = -1, hiaddr = 0; info->alignment = 0; info->exec_stack = EXSTACK_DEFAULT; for (i = 0; i < ehdr->e_phnum; ++i) { struct elf_phdr *eppnt = phdr + i; if (eppnt->p_type == PT_LOAD) { abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK; if (a < loaddr) { loaddr = a; } a = eppnt->p_vaddr + eppnt->p_memsz - 1; if (a > hiaddr) { hiaddr = a; } ++info->nsegs; info->alignment |= eppnt->p_align; } else if (eppnt->p_type == PT_INTERP && pinterp_name) { g_autofree char *interp_name = NULL; if (*pinterp_name) { error_setg(&err, "Multiple PT_INTERP entries"); goto exit_errmsg; } interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz, src, &err); if (interp_name == NULL) { goto exit_errmsg; } if (interp_name[eppnt->p_filesz - 1] != 0) { error_setg(&err, "Invalid PT_INTERP entry"); goto exit_errmsg; } *pinterp_name = g_steal_pointer(&interp_name); } else if (eppnt->p_type == PT_GNU_PROPERTY) { if (!parse_elf_properties(src, info, eppnt, &err)) { goto exit_errmsg; } } else if (eppnt->p_type == PT_GNU_STACK) { info->exec_stack = eppnt->p_flags & PF_X; } } load_addr = loaddr; if (pinterp_name != NULL) { if (ehdr->e_type == ET_EXEC) { /* * Make sure that the low address does not conflict with * MMAP_MIN_ADDR or the QEMU application itself. */ probe_guest_base(image_name, loaddr, hiaddr); } else { abi_ulong align; /* * The binary is dynamic, but we still need to * select guest_base. In this case we pass a size. */ probe_guest_base(image_name, 0, hiaddr - loaddr); /* * Avoid collision with the loader by providing a different * default load address. */ load_addr += elf_et_dyn_base; /* * TODO: Better support for mmap alignment is desirable. * Since we do not have complete control over the guest * address space, we prefer the kernel to choose some address * rather than force the use of LOAD_ADDR via MAP_FIXED. * But without MAP_FIXED we cannot guarantee alignment, * only suggest it. */ align = pow2ceil(info->alignment); if (align) { load_addr &= -align; } } } /* * Reserve address space for all of this. * * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get * exactly the address range that is required. Without reserved_va, * the guest address space is not isolated. We have attempted to avoid * conflict with the host program itself via probe_guest_base, but using * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check. * * Otherwise this is ET_DYN, and we are searching for a location * that can hold the memory space required. If the image is * pre-linked, LOAD_ADDR will be non-zero, and the kernel should * honor that address if it happens to be free. * * In both cases, we will overwrite pages in this range with mappings * from the executable. */ load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0), -1, 0); if (load_addr == -1) { goto exit_mmap; } load_bias = load_addr - loaddr; if (elf_is_fdpic(ehdr)) { struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = g_malloc(sizeof(*loadsegs) * info->nsegs); for (i = 0; i < ehdr->e_phnum; ++i) { switch (phdr[i].p_type) { case PT_DYNAMIC: info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; break; case PT_LOAD: loadsegs->addr = phdr[i].p_vaddr + load_bias; loadsegs->p_vaddr = phdr[i].p_vaddr; loadsegs->p_memsz = phdr[i].p_memsz; ++loadsegs; break; } } } info->load_bias = load_bias; info->code_offset = load_bias; info->data_offset = load_bias; info->load_addr = load_addr; info->entry = ehdr->e_entry + load_bias; info->start_code = -1; info->end_code = 0; info->start_data = -1; info->end_data = 0; /* Usual start for brk is after all sections of the main executable. */ info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias); info->elf_flags = ehdr->e_flags; prot_exec = PROT_EXEC; #ifdef TARGET_AARCH64 /* * If the BTI feature is present, this indicates that the executable * pages of the startup binary should be mapped with PROT_BTI, so that * branch targets are enforced. * * The startup binary is either the interpreter or the static executable. * The interpreter is responsible for all pages of a dynamic executable. * * Elf notes are backward compatible to older cpus. * Do not enable BTI unless it is supported. */ if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) && (pinterp_name == NULL || *pinterp_name == 0) && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { prot_exec |= TARGET_PROT_BTI; } #endif for (i = 0; i < ehdr->e_phnum; i++) { struct elf_phdr *eppnt = phdr + i; if (eppnt->p_type == PT_LOAD) { abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; int elf_prot = 0; if (eppnt->p_flags & PF_R) { elf_prot |= PROT_READ; } if (eppnt->p_flags & PF_W) { elf_prot |= PROT_WRITE; } if (eppnt->p_flags & PF_X) { elf_prot |= prot_exec; } vaddr = load_bias + eppnt->p_vaddr; vaddr_po = vaddr & ~TARGET_PAGE_MASK; vaddr_ps = vaddr & TARGET_PAGE_MASK; vaddr_ef = vaddr + eppnt->p_filesz; vaddr_em = vaddr + eppnt->p_memsz; /* * Some segments may be completely empty, with a non-zero p_memsz * but no backing file segment. */ if (eppnt->p_filesz != 0) { error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, elf_prot, MAP_PRIVATE | MAP_FIXED, src, eppnt->p_offset - vaddr_po); if (error == -1) { goto exit_mmap; } } /* If the load segment requests extra zeros (e.g. bss), map it. */ if (vaddr_ef < vaddr_em && !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) { goto exit_errmsg; } /* Find the full program boundaries. */ if (elf_prot & PROT_EXEC) { if (vaddr < info->start_code) { info->start_code = vaddr; } if (vaddr_ef > info->end_code) { info->end_code = vaddr_ef; } } if (elf_prot & PROT_WRITE) { if (vaddr < info->start_data) { info->start_data = vaddr; } if (vaddr_ef > info->end_data) { info->end_data = vaddr_ef; } } #ifdef TARGET_MIPS } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { Mips_elf_abiflags_v0 abiflags; if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags), src, &err)) { goto exit_errmsg; } bswap_mips_abiflags(&abiflags); info->fp_abi = abiflags.fp_abi; #endif } } if (info->end_data == 0) { info->start_data = info->end_code; info->end_data = info->end_code; } if (qemu_log_enabled()) { load_symbols(ehdr, src, load_bias); } debuginfo_report_elf(image_name, src->fd, load_bias); mmap_unlock(); close(src->fd); return; exit_mmap: error_setg_errno(&err, errno, "Error mapping file"); goto exit_errmsg; exit_errmsg: error_reportf_err(err, "%s: ", image_name); exit(-1); } static void load_elf_interp(const char *filename, struct image_info *info, char bprm_buf[BPRM_BUF_SIZE]) { struct elfhdr ehdr; ImageSource src; int fd, retval; Error *err = NULL; fd = open(path(filename), O_RDONLY); if (fd < 0) { error_setg_file_open(&err, errno, filename); error_report_err(err); exit(-1); } retval = read(fd, bprm_buf, BPRM_BUF_SIZE); if (retval < 0) { error_setg_errno(&err, errno, "Error reading file header"); error_reportf_err(err, "%s: ", filename); exit(-1); } src.fd = fd; src.cache = bprm_buf; src.cache_size = retval; load_elf_image(filename, &src, info, &ehdr, NULL); } #ifdef VDSO_HEADER #include VDSO_HEADER #define vdso_image_info() &vdso_image_info #else #define vdso_image_info() NULL #endif static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso) { ImageSource src; struct elfhdr ehdr; abi_ulong load_bias, load_addr; src.fd = -1; src.cache = vdso->image; src.cache_size = vdso->image_size; load_elf_image("", &src, info, &ehdr, NULL); load_addr = info->load_addr; load_bias = info->load_bias; /* * We need to relocate the VDSO image. The one built into the kernel * is built for a fixed address. The one built for QEMU is not, since * that requires close control of the guest address space. * We pre-processed the image to locate all of the addresses that need * to be updated. */ for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) { abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]); *addr = tswapal(tswapal(*addr) + load_bias); } /* Install signal trampolines, if present. */ if (vdso->sigreturn_ofs) { default_sigreturn = load_addr + vdso->sigreturn_ofs; } if (vdso->rt_sigreturn_ofs) { default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs; } /* Remove write from VDSO segment. */ target_mprotect(info->start_data, info->end_data - info->start_data, PROT_READ | PROT_EXEC); } static int symfind(const void *s0, const void *s1) { struct elf_sym *sym = (struct elf_sym *)s1; __typeof(sym->st_value) addr = *(uint64_t *)s0; int result = 0; if (addr < sym->st_value) { result = -1; } else if (addr >= sym->st_value + sym->st_size) { result = 1; } return result; } static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) { #if ELF_CLASS == ELFCLASS32 struct elf_sym *syms = s->disas_symtab.elf32; #else struct elf_sym *syms = s->disas_symtab.elf64; #endif // binary search struct elf_sym *sym; sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); if (sym != NULL) { return s->disas_strtab + sym->st_name; } return ""; } /* FIXME: This should use elf_ops.h.inc */ static int symcmp(const void *s0, const void *s1) { struct elf_sym *sym0 = (struct elf_sym *)s0; struct elf_sym *sym1 = (struct elf_sym *)s1; return (sym0->st_value < sym1->st_value) ? -1 : ((sym0->st_value > sym1->st_value) ? 1 : 0); } /* Best attempt to load symbols from this ELF object. */ static void load_symbols(struct elfhdr *hdr, const ImageSource *src, abi_ulong load_bias) { int i, shnum, nsyms, sym_idx = 0, str_idx = 0; g_autofree struct elf_shdr *shdr = NULL; char *strings = NULL; struct elf_sym *syms = NULL; struct elf_sym *new_syms; uint64_t segsz; shnum = hdr->e_shnum; shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr), src, NULL); if (shdr == NULL) { return; } bswap_shdr(shdr, shnum); for (i = 0; i < shnum; ++i) { if (shdr[i].sh_type == SHT_SYMTAB) { sym_idx = i; str_idx = shdr[i].sh_link; goto found; } } /* There will be no symbol table if the file was stripped. */ return; found: /* Now know where the strtab and symtab are. Snarf them. */ segsz = shdr[str_idx].sh_size; strings = g_try_malloc(segsz); if (!strings) { goto give_up; } if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) { goto give_up; } segsz = shdr[sym_idx].sh_size; if (segsz / sizeof(struct elf_sym) > INT_MAX) { /* * Implausibly large symbol table: give up rather than ploughing * on with the number of symbols calculation overflowing. */ goto give_up; } nsyms = segsz / sizeof(struct elf_sym); syms = g_try_malloc(segsz); if (!syms) { goto give_up; } if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) { goto give_up; } for (i = 0; i < nsyms; ) { bswap_sym(syms + i); /* Throw away entries which we do not need. */ if (syms[i].st_shndx == SHN_UNDEF || syms[i].st_shndx >= SHN_LORESERVE || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { if (i < --nsyms) { syms[i] = syms[nsyms]; } } else { #if defined(TARGET_ARM) || defined (TARGET_MIPS) /* The bottom address bit marks a Thumb or MIPS16 symbol. */ syms[i].st_value &= ~(target_ulong)1; #endif syms[i].st_value += load_bias; i++; } } /* No "useful" symbol. */ if (nsyms == 0) { goto give_up; } /* * Attempt to free the storage associated with the local symbols * that we threw away. Whether or not this has any effect on the * memory allocation depends on the malloc implementation and how * many symbols we managed to discard. */ new_syms = g_try_renew(struct elf_sym, syms, nsyms); if (new_syms == NULL) { goto give_up; } syms = new_syms; qsort(syms, nsyms, sizeof(*syms), symcmp); { struct syminfo *s = g_new(struct syminfo, 1); s->disas_strtab = strings; s->disas_num_syms = nsyms; #if ELF_CLASS == ELFCLASS32 s->disas_symtab.elf32 = syms; #else s->disas_symtab.elf64 = syms; #endif s->lookup_symbol = lookup_symbolxx; s->next = syminfos; syminfos = s; } return; give_up: g_free(strings); g_free(syms); } uint32_t get_elf_eflags(int fd) { struct elfhdr ehdr; off_t offset; int ret; /* Read ELF header */ offset = lseek(fd, 0, SEEK_SET); if (offset == (off_t) -1) { return 0; } ret = read(fd, &ehdr, sizeof(ehdr)); if (ret < sizeof(ehdr)) { return 0; } offset = lseek(fd, offset, SEEK_SET); if (offset == (off_t) -1) { return 0; } /* Check ELF signature */ if (!elf_check_ident(&ehdr)) { return 0; } /* check header */ bswap_ehdr(&ehdr); if (!elf_check_ehdr(&ehdr)) { return 0; } /* return architecture id */ return ehdr.e_flags; } int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) { /* * We need a copy of the elf header for passing to create_elf_tables. * We will have overwritten the original when we re-use bprm->buf * while loading the interpreter. Allocate the storage for this now * and let elf_load_image do any swapping that may be required. */ struct elfhdr ehdr; struct image_info interp_info, vdso_info; char *elf_interpreter = NULL; char *scratch; memset(&interp_info, 0, sizeof(interp_info)); #ifdef TARGET_MIPS interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; #endif load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter); /* Do this so that we can load the interpreter, if need be. We will change some of these later */ bprm->p = setup_arg_pages(bprm, info); scratch = g_new0(char, TARGET_PAGE_SIZE); if (STACK_GROWS_DOWN) { bprm->p = copy_elf_strings(1, &bprm->filename, scratch, bprm->p, info->stack_limit); info->file_string = bprm->p; bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, bprm->p, info->stack_limit); info->env_strings = bprm->p; bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, bprm->p, info->stack_limit); info->arg_strings = bprm->p; } else { info->arg_strings = bprm->p; bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, bprm->p, info->stack_limit); info->env_strings = bprm->p; bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, bprm->p, info->stack_limit); info->file_string = bprm->p; bprm->p = copy_elf_strings(1, &bprm->filename, scratch, bprm->p, info->stack_limit); } g_free(scratch); if (!bprm->p) { fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); exit(-1); } if (elf_interpreter) { load_elf_interp(elf_interpreter, &interp_info, bprm->buf); /* * While unusual because of ELF_ET_DYN_BASE, if we are unlucky * with the mappings the interpreter can be loaded above but * near the main executable, which can leave very little room * for the heap. * If the current brk has less than 16MB, use the end of the * interpreter. */ if (interp_info.brk > info->brk && interp_info.load_bias - info->brk < 16 * MiB) { info->brk = interp_info.brk; } /* If the program interpreter is one of these two, then assume an iBCS2 image. Otherwise assume a native linux image. */ if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { info->personality = PER_SVR4; /* Why this, you ask??? Well SVr4 maps page 0 as read-only, and some applications "depend" upon this behavior. Since we do not have the power to recompile these, we emulate the SVr4 behavior. Sigh. */ target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC, MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); } #ifdef TARGET_MIPS info->interp_fp_abi = interp_info.fp_abi; #endif } /* * Load a vdso if available, which will amongst other things contain the * signal trampolines. Otherwise, allocate a separate page for them. */ const VdsoImageInfo *vdso = vdso_image_info(); if (vdso) { load_elf_vdso(&vdso_info, vdso); info->vdso = vdso_info.load_bias; } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); if (tramp_page == -1) { return -errno; } setup_sigtramp(tramp_page); target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); } bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info, elf_interpreter ? &interp_info : NULL, vdso ? &vdso_info : NULL); info->start_stack = bprm->p; /* If we have an interpreter, set that as the program's entry point. Copy the load_bias as well, to help PPC64 interpret the entry point as a function descriptor. Do this after creating elf tables so that we copy the original program entry point into the AUXV. */ if (elf_interpreter) { info->load_bias = interp_info.load_bias; info->entry = interp_info.entry; g_free(elf_interpreter); } #ifdef USE_ELF_CORE_DUMP bprm->core_dump = &elf_core_dump; #endif return 0; } #ifdef USE_ELF_CORE_DUMP #include "exec/translate-all.h" /* * Definitions to generate Intel SVR4-like core files. * These mostly have the same names as the SVR4 types with "target_elf_" * tacked on the front to prevent clashes with linux definitions, * and the typedef forms have been avoided. This is mostly like * the SVR4 structure, but more Linuxy, with things that Linux does * not support and which gdb doesn't really use excluded. * * Fields we don't dump (their contents is zero) in linux-user qemu * are marked with XXX. * * Core dump code is copied from linux kernel (fs/binfmt_elf.c). * * Porting ELF coredump for target is (quite) simple process. First you * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for * the target resides): * * #define USE_ELF_CORE_DUMP * * Next you define type of register set used for dumping. ELF specification * says that it needs to be array of elf_greg_t that has size of ELF_NREG. * * typedef target_elf_greg_t; * #define ELF_NREG * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; * * Last step is to implement target specific function that copies registers * from given cpu into just specified register set. Prototype is: * * static void elf_core_copy_regs(taret_elf_gregset_t *regs, * const CPUArchState *env); * * Parameters: * regs - copy register values into here (allocated and zeroed by caller) * env - copy registers from here * * Example for ARM target is provided in this file. */ struct target_elf_siginfo { abi_int si_signo; /* signal number */ abi_int si_code; /* extra code */ abi_int si_errno; /* errno */ }; struct target_elf_prstatus { struct target_elf_siginfo pr_info; /* Info associated with signal */ abi_short pr_cursig; /* Current signal */ abi_ulong pr_sigpend; /* XXX */ abi_ulong pr_sighold; /* XXX */ target_pid_t pr_pid; target_pid_t pr_ppid; target_pid_t pr_pgrp; target_pid_t pr_sid; struct target_timeval pr_utime; /* XXX User time */ struct target_timeval pr_stime; /* XXX System time */ struct target_timeval pr_cutime; /* XXX Cumulative user time */ struct target_timeval pr_cstime; /* XXX Cumulative system time */ target_elf_gregset_t pr_reg; /* GP registers */ abi_int pr_fpvalid; /* XXX */ }; #define ELF_PRARGSZ (80) /* Number of chars for args */ struct target_elf_prpsinfo { char pr_state; /* numeric process state */ char pr_sname; /* char for pr_state */ char pr_zomb; /* zombie */ char pr_nice; /* nice val */ abi_ulong pr_flag; /* flags */ target_uid_t pr_uid; target_gid_t pr_gid; target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; /* Lots missing */ char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ }; #ifdef BSWAP_NEEDED static void bswap_prstatus(struct target_elf_prstatus *prstatus) { prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); prstatus->pr_cursig = tswap16(prstatus->pr_cursig); prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); prstatus->pr_sighold = tswapal(prstatus->pr_sighold); prstatus->pr_pid = tswap32(prstatus->pr_pid); prstatus->pr_ppid = tswap32(prstatus->pr_ppid); prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); prstatus->pr_sid = tswap32(prstatus->pr_sid); /* cpu times are not filled, so we skip them */ /* regs should be in correct format already */ prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); } static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) { psinfo->pr_flag = tswapal(psinfo->pr_flag); psinfo->pr_uid = tswap16(psinfo->pr_uid); psinfo->pr_gid = tswap16(psinfo->pr_gid); psinfo->pr_pid = tswap32(psinfo->pr_pid); psinfo->pr_ppid = tswap32(psinfo->pr_ppid); psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); psinfo->pr_sid = tswap32(psinfo->pr_sid); } static void bswap_note(struct elf_note *en) { bswap32s(&en->n_namesz); bswap32s(&en->n_descsz); bswap32s(&en->n_type); } #else static inline void bswap_prstatus(struct target_elf_prstatus *p) { } static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} static inline void bswap_note(struct elf_note *en) { } #endif /* BSWAP_NEEDED */ /* * Calculate file (dump) size of given memory region. */ static size_t vma_dump_size(target_ulong start, target_ulong end, unsigned long flags) { /* The area must be readable. */ if (!(flags & PAGE_READ)) { return 0; } /* * Usually we don't dump executable pages as they contain * non-writable code that debugger can read directly from * target library etc. If there is no elf header, we dump it. */ if (!(flags & PAGE_WRITE_ORG) && (flags & PAGE_EXEC) && memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) { return 0; } return end - start; } static size_t size_note(const char *name, size_t datasz) { size_t namesz = strlen(name) + 1; namesz = ROUND_UP(namesz, 4); datasz = ROUND_UP(datasz, 4); return sizeof(struct elf_note) + namesz + datasz; } static void *fill_note(void **pptr, int type, const char *name, size_t datasz) { void *ptr = *pptr; struct elf_note *n = ptr; size_t namesz = strlen(name) + 1; n->n_namesz = namesz; n->n_descsz = datasz; n->n_type = type; bswap_note(n); ptr += sizeof(*n); memcpy(ptr, name, namesz); namesz = ROUND_UP(namesz, 4); datasz = ROUND_UP(datasz, 4); *pptr = ptr + namesz + datasz; return ptr + namesz; } static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, uint32_t flags) { memcpy(elf->e_ident, ELFMAG, SELFMAG); elf->e_ident[EI_CLASS] = ELF_CLASS; elf->e_ident[EI_DATA] = ELF_DATA; elf->e_ident[EI_VERSION] = EV_CURRENT; elf->e_ident[EI_OSABI] = ELF_OSABI; elf->e_type = ET_CORE; elf->e_machine = machine; elf->e_version = EV_CURRENT; elf->e_phoff = sizeof(struct elfhdr); elf->e_flags = flags; elf->e_ehsize = sizeof(struct elfhdr); elf->e_phentsize = sizeof(struct elf_phdr); elf->e_phnum = segs; bswap_ehdr(elf); } static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset) { phdr->p_type = PT_NOTE; phdr->p_offset = offset; phdr->p_filesz = sz; bswap_phdr(phdr, 1); } static void fill_prstatus_note(void *data, CPUState *cpu, int signr) { /* * Because note memory is only aligned to 4, and target_elf_prstatus * may well have higher alignment requirements, fill locally and * memcpy to the destination afterward. */ struct target_elf_prstatus prstatus = { .pr_info.si_signo = signr, .pr_cursig = signr, .pr_pid = get_task_state(cpu)->ts_tid, .pr_ppid = getppid(), .pr_pgrp = getpgrp(), .pr_sid = getsid(0), }; elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu)); bswap_prstatus(&prstatus); memcpy(data, &prstatus, sizeof(prstatus)); } static void fill_prpsinfo_note(void *data, const TaskState *ts) { /* * Because note memory is only aligned to 4, and target_elf_prpsinfo * may well have higher alignment requirements, fill locally and * memcpy to the destination afterward. */ struct target_elf_prpsinfo psinfo = { .pr_pid = getpid(), .pr_ppid = getppid(), .pr_pgrp = getpgrp(), .pr_sid = getsid(0), .pr_uid = getuid(), .pr_gid = getgid(), }; char *base_filename; size_t len; len = ts->info->env_strings - ts->info->arg_strings; len = MIN(len, ELF_PRARGSZ); memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len); for (size_t i = 0; i < len; i++) { if (psinfo.pr_psargs[i] == 0) { psinfo.pr_psargs[i] = ' '; } } base_filename = g_path_get_basename(ts->bprm->filename); /* * Using strncpy here is fine: at max-length, * this field is not NUL-terminated. */ strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname)); g_free(base_filename); bswap_psinfo(&psinfo); memcpy(data, &psinfo, sizeof(psinfo)); } static void fill_auxv_note(void *data, const TaskState *ts) { memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len); } /* * Constructs name of coredump file. We have following convention * for the name: * qemu__-