/* * Copyright 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef DRM_FOURCC_H #define DRM_FOURCC_H #if defined(__cplusplus) extern "C" { #endif /** * DOC: overview * * In the DRM subsystem, framebuffer pixel formats are described using the * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the * fourcc code, a Format Modifier may optionally be provided, in order to * further describe the buffer's format - for example tiling or compression. * * Format Modifiers * ---------------- * * Format modifiers are used in conjunction with a fourcc code, forming a * unique fourcc:modifier pair. This format:modifier pair must fully define the * format and data layout of the buffer, and should be the only way to describe * that particular buffer. * * Having multiple fourcc:modifier pairs which describe the same layout should * be avoided, as such aliases run the risk of different drivers exposing * different names for the same data format, forcing userspace to understand * that they are aliases. * * Format modifiers may change any property of the buffer, including the number * of planes and/or the required allocation size. Format modifiers are * vendor-namespaced, and as such the relationship between a fourcc code and a * modifier is specific to the modifer being used. For example, some modifiers * may preserve meaning - such as number of planes - from the fourcc code, * whereas others may not. * * Vendors should document their modifier usage in as much detail as * possible, to ensure maximum compatibility across devices, drivers and * applications. * * The authoritative list of format modifier codes is found in * `include/uapi/drm/drm_fourcc.h` */ #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \ ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24)) #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */ /* Reserve 0 for the invalid format specifier */ #define DRM_FORMAT_INVALID 0 /* color index */ #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ /* 8 bpp Red */ #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ /* 16 bpp Red */ #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ /* 16 bpp RG */ #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ /* 32 bpp RG */ #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ /* 8 bpp RGB */ #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ /* 16 bpp RGB */ #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ /* 24 bpp RGB */ #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ /* 32 bpp RGB */ #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ /* * Floating point 64bpp RGB * IEEE 754-2008 binary16 half-precision float * [15:0] sign:exponent:mantissa 1:5:10 */ #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */ #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */ #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */ #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */ /* packed YCbCr */ #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */ #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */ /* * packed Y2xx indicate for each component, xx valid data occupy msb * 16-xx padding occupy lsb */ #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */ #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */ #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */ /* * packed Y4xx indicate for each component, xx valid data occupy msb * 16-xx padding occupy lsb except Y410 */ #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */ #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */ #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */ #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */ /* * packed YCbCr420 2x2 tiled formats * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile */ /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') /* * 1-plane YUV 4:2:0 * In these formats, the component ordering is specified (Y, followed by U * then V), but the exact Linear layout is undefined. * These formats can only be used with a non-Linear modifier. */ #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8') #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0') /* * 2 plane RGB + A * index 0 = RGB plane, same format as the corresponding non _A8 format has * index 1 = A plane, [7:0] A */ #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') /* * 2 plane YCbCr * index 0 = Y plane, [7:0] Y * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian * or * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian */ #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ /* * 2 plane YCbCr MSB aligned * index 0 = Y plane, [15:0] Y:x [10:6] little endian * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian */ #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */ /* * 2 plane YCbCr MSB aligned * index 0 = Y plane, [15:0] Y:x [10:6] little endian * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian */ #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ /* * 2 plane YCbCr MSB aligned * index 0 = Y plane, [15:0] Y:x [12:4] little endian * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian */ #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ /* * 2 plane YCbCr MSB aligned * index 0 = Y plane, [15:0] Y little endian * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian */ #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ /* * 3 plane YCbCr * index 0: Y plane, [7:0] Y * index 1: Cb plane, [7:0] Cb * index 2: Cr plane, [7:0] Cr * or * index 1: Cr plane, [7:0] Cr * index 2: Cb plane, [7:0] Cb */ #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ /* * Format Modifiers: * * Format modifiers describe, typically, a re-ordering or modification * of the data in a plane of an FB. This can be used to express tiled/ * swizzled formats, or compression, or a combination of the two. * * The upper 8 bits of the format modifier are a vendor-id as assigned * below. The lower 56 bits are assigned as vendor sees fit. */ /* Vendor Ids: */ #define DRM_FORMAT_MOD_NONE 0 #define DRM_FORMAT_MOD_VENDOR_NONE 0 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 /* add more to the end as needed */ #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) #define fourcc_mod_code(vendor, val) \ ((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) /* * Format Modifier tokens: * * When adding a new token please document the layout with a code comment, * similar to the fourcc codes above. drm_fourcc.h is considered the * authoritative source for all of these. */ /* * Invalid Modifier * * This modifier can be used as a sentinel to terminate the format modifiers * list, or to initialize a variable with an invalid modifier. It might also be * used to report an error back to userspace for certain APIs. */ #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) /* * Linear Layout * * Just plain linear layout. Note that this is different from no specifying any * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), * which tells the driver to also take driver-internal information into account * and so might actually result in a tiled framebuffer. */ #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) /* Intel framebuffer modifiers */ /* * Intel X-tiling layout * * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) * in row-major layout. Within the tile bytes are laid out row-major, with * a platform-dependent stride. On top of that the memory can apply * platform-depending swizzling of some higher address bits into bit6. * * This format is highly platforms specific and not useful for cross-driver * sharing. It exists since on a given platform it does uniquely identify the * layout in a simple way for i915-specific userspace. */ #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) /* * Intel Y-tiling layout * * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) * chunks column-major, with a platform-dependent height. On top of that the * memory can apply platform-depending swizzling of some higher address bits * into bit6. * * This format is highly platforms specific and not useful for cross-driver * sharing. It exists since on a given platform it does uniquely identify the * layout in a simple way for i915-specific userspace. */ #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) /* * Intel Yf-tiling layout * * This is a tiled layout using 4Kb tiles in row-major layout. * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which * are arranged in four groups (two wide, two high) with column-major layout. * Each group therefore consits out of four 256 byte units, which are also laid * out as 2x2 column-major. * 256 byte units are made out of four 64 byte blocks of pixels, producing * either a square block or a 2:1 unit. * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width * in pixel depends on the pixel depth. */ #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) /* * Intel color control surface (CCS) for render compression * * The framebuffer format must be one of the 8:8:8:8 RGB formats. * The main surface will be plane index 0 and must be Y/Yf-tiled, * the CCS will be plane index 1. * * Each CCS tile matches a 1024x512 pixel area of the main surface. * To match certain aspects of the 3D hardware the CCS is * considered to be made up of normal 128Bx32 Y tiles, Thus * the CCS pitch must be specified in multiples of 128 bytes. * * In reality the CCS tile appears to be a 64Bx64 Y tile, composed * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. * But that fact is not relevant unless the memory is accessed * directly. */ #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) /* * Intel color control surfaces (CCS) for Gen-12 render compression. * * The main surface is Y-tiled and at plane index 0, the CCS is linear and * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in * main surface. In other words, 4 bits in CCS map to a main surface cache * line pair. The main surface pitch is required to be a multiple of four * Y-tile widths. */ #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6) /* * Intel color control surfaces (CCS) for Gen-12 media compression * * The main surface is Y-tiled and at plane index 0, the CCS is linear and * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in * main surface. In other words, 4 bits in CCS map to a main surface cache * line pair. The main surface pitch is required to be a multiple of four * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, * planes 2 and 3 for the respective CCS. */ #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7) /* * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks * * Macroblocks are laid in a Z-shape, and each pixel data is following the * standard NV12 style. * As for NV12, an image is the result of two frame buffers: one for Y, * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). * Alignment requirements are (for each buffer): * - multiple of 128 pixels for the width * - multiple of 32 pixels for the height * * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html */ #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) /* * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks * * This is a simple tiled layout using tiles of 16x16 pixels in a row-major * layout. For YCbCr formats Cb/Cr components are taken in such a way that * they correspond to their 16x16 luma block. */ #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) /* * Qualcomm Compressed Format * * Refers to a compressed variant of the base format that is compressed. * Implementation may be platform and base-format specific. * * Each macrotile consists of m x n (mostly 4 x 4) tiles. * Pixel data pitch/stride is aligned with macrotile width. * Pixel data height is aligned with macrotile height. * Entire pixel data buffer is aligned with 4k(bytes). */ #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) /* Vivante framebuffer modifiers */ /* * Vivante 4x4 tiling layout * * This is a simple tiled layout using tiles of 4x4 pixels in a row-major * layout. */ #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) /* * Vivante 64x64 super-tiling layout * * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- * major layout. * * For more information: see * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling */ #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) /* * Vivante 4x4 tiling layout for dual-pipe * * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a * different base address. Offsets from the base addresses are therefore halved * compared to the non-split tiled layout. */ #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) /* * Vivante 64x64 super-tiling layout for dual-pipe * * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile * starts at a different base address. Offsets from the base addresses are * therefore halved compared to the non-split super-tiled layout. */ #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) /* NVIDIA frame buffer modifiers */ /* * Tegra Tiled Layout, used by Tegra 2, 3 and 4. * * Pixels are arranged in simple tiles of 16 x 16 bytes. */ #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) /* * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later * * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked * vertically by a power of 2 (1 to 32 GOBs) to form a block. * * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. * * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. * Valid values are: * * 0 == ONE_GOB * 1 == TWO_GOBS * 2 == FOUR_GOBS * 3 == EIGHT_GOBS * 4 == SIXTEEN_GOBS * 5 == THIRTYTWO_GOBS * * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format * in full detail. */ #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf)) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ fourcc_mod_code(NVIDIA, 0x10) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ fourcc_mod_code(NVIDIA, 0x11) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ fourcc_mod_code(NVIDIA, 0x12) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ fourcc_mod_code(NVIDIA, 0x13) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ fourcc_mod_code(NVIDIA, 0x14) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ fourcc_mod_code(NVIDIA, 0x15) /* * Some Broadcom modifiers take parameters, for example the number of * vertical lines in the image. Reserve the lower 32 bits for modifier * type, and the next 24 bits for parameters. Top 8 bits are the * vendor code. */ #define __fourcc_mod_broadcom_param_shift 8 #define __fourcc_mod_broadcom_param_bits 48 #define fourcc_mod_broadcom_code(val, params) \ fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val)) #define fourcc_mod_broadcom_param(m) \ ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) #define fourcc_mod_broadcom_mod(m) \ ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ __fourcc_mod_broadcom_param_shift)) /* * Broadcom VC4 "T" format * * This is the primary layout that the V3D GPU can texture from (it * can't do linear). The T format has: * * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 * pixels at 32 bit depth. * * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually * 16x16 pixels). * * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows * they're (TR, BR, BL, TL), where bottom left is start of memory. * * - an image made of 4k tiles in rows either left-to-right (even rows of 4k * tiles) or right-to-left (odd rows of 4k tiles). */ #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) /* * Broadcom SAND format * * This is the native format that the H.264 codec block uses. For VC4 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. * * The image can be considered to be split into columns, and the * columns are placed consecutively into memory. The width of those * columns can be either 32, 64, 128, or 256 pixels, but in practice * only 128 pixel columns are used. * * The pitch between the start of each column is set to optimally * switch between SDRAM banks. This is passed as the number of lines * of column width in the modifier (we can't use the stride value due * to various core checks that look at it , so you should set the * stride to width*cpp). * * Note that the column height for this format modifier is the same * for all of the planes, assuming that each column contains both Y * and UV. Some SAND-using hardware stores UV in a separate tiled * image from Y to reduce the column height, which is not supported * with these modifiers. */ #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ fourcc_mod_broadcom_code(2, v) #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ fourcc_mod_broadcom_code(3, v) #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ fourcc_mod_broadcom_code(4, v) #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ fourcc_mod_broadcom_code(5, v) #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) /* Broadcom UIF format * * This is the common format for the current Broadcom multimedia * blocks, including V3D 3.x and newer, newer video codecs, and * displays. * * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are * stored in columns, with padding between the columns to ensure that * moving from one column to the next doesn't hit the same SDRAM page * bank. * * To calculate the padding, it is assumed that each hardware block * and the software driving it knows the platform's SDRAM page size, * number of banks, and XOR address, and that it's identical between * all blocks using the format. This tiling modifier will use XOR as * necessary to reduce the padding. If a hardware block can't do XOR, * the assumption is that a no-XOR tiling modifier will be created. */ #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) /* * Arm Framebuffer Compression (AFBC) modifiers * * AFBC is a proprietary lossless image compression protocol and format. * It provides fine-grained random access and minimizes the amount of data * transferred between IP blocks. * * AFBC has several features which may be supported and/or used, which are * represented using bits in the modifier. Not all combinations are valid, * and different devices or use-cases may support different combinations. * * Further information on the use of AFBC modifiers can be found in * Documentation/gpu/afbc.rst */ /* * The top 4 bits (out of the 56 bits alloted for specifying vendor specific * modifiers) denote the category for modifiers. Currently we have only two * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen * different categories. */ #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \ fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL)) #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \ DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode) /* * AFBC superblock size * * Indicates the superblock size(s) used for the AFBC buffer. The buffer * size (in pixels) must be aligned to a multiple of the superblock size. * Four lowest significant bits(LSBs) are reserved for block size. * * Where one superblock size is specified, it applies to all planes of the * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, * the first applies to the Luma plane and the second applies to the Chroma * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). * Multiple superblock sizes are only valid for multi-plane YCbCr formats. */ #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) /* * AFBC lossless colorspace transform * * Indicates that the buffer makes use of the AFBC lossless colorspace * transform. */ #define AFBC_FORMAT_MOD_YTR (1ULL << 4) /* * AFBC block-split * * Indicates that the payload of each superblock is split. The second * half of the payload is positioned at a predefined offset from the start * of the superblock payload. */ #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) /* * AFBC sparse layout * * This flag indicates that the payload of each superblock must be stored at a * predefined position relative to the other superblocks in the same AFBC * buffer. This order is the same order used by the header buffer. In this mode * each superblock is given the same amount of space as an uncompressed * superblock of the particular format would require, rounding up to the next * multiple of 128 bytes in size. */ #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) /* * AFBC copy-block restrict * * Buffers with this flag must obey the copy-block restriction. The restriction * is such that there are no copy-blocks referring across the border of 8x8 * blocks. For the subsampled data the 8x8 limitation is also subsampled. */ #define AFBC_FORMAT_MOD_CBR (1ULL << 7) /* * AFBC tiled layout * * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all * superblocks inside a tile are stored together in memory. 8x8 tiles are used * for pixel formats up to and including 32 bpp while 4x4 tiles are used for * larger bpp formats. The order between the tiles is scan line. * When the tiled layout is used, the buffer size (in pixels) must be aligned * to the tile size. */ #define AFBC_FORMAT_MOD_TILED (1ULL << 8) /* * AFBC solid color blocks * * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth * can be reduced if a whole superblock is a single color. */ #define AFBC_FORMAT_MOD_SC (1ULL << 9) /* * AFBC double-buffer * * Indicates that the buffer is allocated in a layout safe for front-buffer * rendering. */ #define AFBC_FORMAT_MOD_DB (1ULL << 10) /* * AFBC buffer content hints * * Indicates that the buffer includes per-superblock content hints. */ #define AFBC_FORMAT_MOD_BCH (1ULL << 11) /* * Arm 16x16 Block U-Interleaved modifier * * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels * in the block are reordered. */ #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \ DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL) /* * Allwinner tiled modifier * * This tiling mode is implemented by the VPU found on all Allwinner platforms, * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 * planes. * * With this tiling, the luminance samples are disposed in tiles representing * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. * The pixel order in each tile is linear and the tiles are disposed linearly, * both in row-major order. */ #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) #if defined(__cplusplus) } #endif #endif /* DRM_FOURCC_H */