/* * ARM SSE (Subsystems for Embedded): IoTKit, SSE-200 * * Copyright (c) 2018 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ /* * This is a model of the Arm "Subsystems for Embedded" family of * hardware, which include the IoT Kit and the SSE-050, SSE-100 and * SSE-200. Currently we model: * - the Arm IoT Kit which is documented in * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html * - the SSE-200 which is documented in * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf * * The IoTKit contains: * a Cortex-M33 * the IDAU * some timers and watchdogs * two peripheral protection controllers * a memory protection controller * a security controller * a bus fabric which arranges that some parts of the address * space are secure and non-secure aliases of each other * The SSE-200 additionally contains: * a second Cortex-M33 * two Message Handling Units (MHUs) * an optional CryptoCell (which we do not model) * more SRAM banks with associated MPCs * multiple Power Policy Units (PPUs) * a control interface for an icache for each CPU * per-CPU identity and control register blocks * * QEMU interface: * + QOM property "memory" is a MemoryRegion containing the devices provided * by the board model. * + QOM property "MAINCLK" is the frequency of the main system clock * + QOM property "EXP_NUMIRQ" sets the number of expansion interrupts. * (In hardware, the SSE-200 permits the number of expansion interrupts * for the two CPUs to be configured separately, but we restrict it to * being the same for both, to avoid having to have separate Property * lists for different variants. This restriction can be relaxed later * if necessary.) * + QOM property "SRAM_ADDR_WIDTH" sets the number of bits used for the * address of each SRAM bank (and thus the total amount of internal SRAM) * + QOM property "init-svtor" sets the initial value of the CPU SVTOR register * (where it expects to load the PC and SP from the vector table on reset) * + QOM properties "CPU0_FPU", "CPU0_DSP", "CPU1_FPU" and "CPU1_DSP" which * set whether the CPUs have the FPU and DSP features present. The default * (matching the hardware) is that for CPU0 in an IoTKit and CPU1 in an * SSE-200 both are present; CPU0 in an SSE-200 has neither. * Since the IoTKit has only one CPU, it does not have the CPU1_* properties. * + Named GPIO inputs "EXP_IRQ" 0..n are the expansion interrupts for CPU 0, * which are wired to its NVIC lines 32 .. n+32 * + Named GPIO inputs "EXP_CPU1_IRQ" 0..n are the expansion interrupts for * CPU 1, which are wired to its NVIC lines 32 .. n+32 * + sysbus MMIO region 0 is the "AHB Slave Expansion" which allows * bus master devices in the board model to make transactions into * all the devices and memory areas in the IoTKit * Controlling up to 4 AHB expansion PPBs which a system using the IoTKit * might provide: * + named GPIO outputs apb_ppcexp{0,1,2,3}_nonsec[0..15] * + named GPIO outputs apb_ppcexp{0,1,2,3}_ap[0..15] * + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_enable * + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_clear * + named GPIO inputs apb_ppcexp{0,1,2,3}_irq_status * Controlling each of the 4 expansion AHB PPCs which a system using the IoTKit * might provide: * + named GPIO outputs ahb_ppcexp{0,1,2,3}_nonsec[0..15] * + named GPIO outputs ahb_ppcexp{0,1,2,3}_ap[0..15] * + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_enable * + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_clear * + named GPIO inputs ahb_ppcexp{0,1,2,3}_irq_status * Controlling each of the 16 expansion MPCs which a system using the IoTKit * might provide: * + named GPIO inputs mpcexp_status[0..15] * Controlling each of the 16 expansion MSCs which a system using the IoTKit * might provide: * + named GPIO inputs mscexp_status[0..15] * + named GPIO outputs mscexp_clear[0..15] * + named GPIO outputs mscexp_ns[0..15] */ #ifndef ARMSSE_H #define ARMSSE_H #include "hw/sysbus.h" #include "hw/arm/armv7m.h" #include "hw/misc/iotkit-secctl.h" #include "hw/misc/tz-ppc.h" #include "hw/misc/tz-mpc.h" #include "hw/timer/cmsdk-apb-timer.h" #include "hw/timer/cmsdk-apb-dualtimer.h" #include "hw/watchdog/cmsdk-apb-watchdog.h" #include "hw/misc/iotkit-sysctl.h" #include "hw/misc/iotkit-sysinfo.h" #include "hw/misc/armsse-cpuid.h" #include "hw/misc/armsse-mhu.h" #include "hw/misc/unimp.h" #include "hw/or-irq.h" #include "hw/core/split-irq.h" #include "hw/cpu/cluster.h" #define TYPE_ARM_SSE "arm-sse" #define ARM_SSE(obj) OBJECT_CHECK(ARMSSE, (obj), TYPE_ARM_SSE) /* * These type names are for specific IoTKit subsystems; other than * instantiating them, code using these devices should always handle * them via the ARMSSE base class, so they have no IOTKIT() etc macros. */ #define TYPE_IOTKIT "iotkit" #define TYPE_SSE200 "sse-200" /* We have an IRQ splitter and an OR gate input for each external PPC * and the 2 internal PPCs */ #define NUM_EXTERNAL_PPCS (IOTS_NUM_AHB_EXP_PPC + IOTS_NUM_APB_EXP_PPC) #define NUM_PPCS (NUM_EXTERNAL_PPCS + 2) #define MAX_SRAM_BANKS 4 #if MAX_SRAM_BANKS > IOTS_NUM_MPC #error Too many SRAM banks #endif #define SSE_MAX_CPUS 2 /* These define what each PPU in the ppu[] index is for */ #define CPU0CORE_PPU 0 #define CPU1CORE_PPU 1 #define DBG_PPU 2 #define RAM0_PPU 3 #define RAM1_PPU 4 #define RAM2_PPU 5 #define RAM3_PPU 6 #define NUM_PPUS 7 typedef struct ARMSSE { /*< private >*/ SysBusDevice parent_obj; /*< public >*/ ARMv7MState armv7m[SSE_MAX_CPUS]; CPUClusterState cluster[SSE_MAX_CPUS]; IoTKitSecCtl secctl; TZPPC apb_ppc0; TZPPC apb_ppc1; TZMPC mpc[IOTS_NUM_MPC]; CMSDKAPBTIMER timer0; CMSDKAPBTIMER timer1; CMSDKAPBTIMER s32ktimer; qemu_or_irq ppc_irq_orgate; SplitIRQ sec_resp_splitter; SplitIRQ ppc_irq_splitter[NUM_PPCS]; SplitIRQ mpc_irq_splitter[IOTS_NUM_EXP_MPC + IOTS_NUM_MPC]; qemu_or_irq mpc_irq_orgate; qemu_or_irq nmi_orgate; SplitIRQ cpu_irq_splitter[32]; CMSDKAPBDualTimer dualtimer; CMSDKAPBWatchdog s32kwatchdog; CMSDKAPBWatchdog nswatchdog; CMSDKAPBWatchdog swatchdog; IoTKitSysCtl sysctl; IoTKitSysCtl sysinfo; ARMSSEMHU mhu[2]; UnimplementedDeviceState ppu[NUM_PPUS]; UnimplementedDeviceState cachectrl[SSE_MAX_CPUS]; UnimplementedDeviceState cpusecctrl[SSE_MAX_CPUS]; ARMSSECPUID cpuid[SSE_MAX_CPUS]; /* * 'container' holds all devices seen by all CPUs. * 'cpu_container[i]' is the view that CPU i has: this has the * per-CPU devices of that CPU, plus as the background 'container' * (or an alias of it, since we can only use it directly once). * container_alias[i] is the alias of 'container' used by CPU i+1; * CPU 0 can use 'container' directly. */ MemoryRegion container; MemoryRegion container_alias[SSE_MAX_CPUS - 1]; MemoryRegion cpu_container[SSE_MAX_CPUS]; MemoryRegion alias1; MemoryRegion alias2; MemoryRegion alias3[SSE_MAX_CPUS]; MemoryRegion sram[MAX_SRAM_BANKS]; qemu_irq *exp_irqs[SSE_MAX_CPUS]; qemu_irq ppc0_irq; qemu_irq ppc1_irq; qemu_irq sec_resp_cfg; qemu_irq sec_resp_cfg_in; qemu_irq nsc_cfg_in; qemu_irq irq_status_in[NUM_EXTERNAL_PPCS]; qemu_irq mpcexp_status_in[IOTS_NUM_EXP_MPC]; uint32_t nsccfg; /* Properties */ MemoryRegion *board_memory; uint32_t exp_numirq; uint32_t mainclk_frq; uint32_t sram_addr_width; uint32_t init_svtor; bool cpu_fpu[SSE_MAX_CPUS]; bool cpu_dsp[SSE_MAX_CPUS]; } ARMSSE; typedef struct ARMSSEInfo ARMSSEInfo; typedef struct ARMSSEClass { SysBusDeviceClass parent_class; const ARMSSEInfo *info; } ARMSSEClass; #define ARM_SSE_CLASS(klass) \ OBJECT_CLASS_CHECK(ARMSSEClass, (klass), TYPE_ARM_SSE) #define ARM_SSE_GET_CLASS(obj) \ OBJECT_GET_CLASS(ARMSSEClass, (obj), TYPE_ARM_SSE) #endif