#ifndef GDBSTUB_H #define GDBSTUB_H #define DEFAULT_GDBSTUB_PORT "1234" /* GDB breakpoint/watchpoint types */ #define GDB_BREAKPOINT_SW 0 #define GDB_BREAKPOINT_HW 1 #define GDB_WATCHPOINT_WRITE 2 #define GDB_WATCHPOINT_READ 3 #define GDB_WATCHPOINT_ACCESS 4 #ifdef NEED_CPU_H #include "cpu.h" typedef void (*gdb_syscall_complete_cb)(CPUState *cpu, target_ulong ret, target_ulong err); /** * gdb_do_syscall: * @cb: function to call when the system call has completed * @fmt: gdb syscall format string * ...: list of arguments to interpolate into @fmt * * Send a GDB syscall request. This function will return immediately; * the callback function will be called later when the remote system * call has completed. * * @fmt should be in the 'call-id,parameter,parameter...' format documented * for the F request packet in the GDB remote protocol. A limited set of * printf-style format specifiers is supported: * %x - target_ulong argument printed in hex * %lx - 64-bit argument printed in hex * %s - string pointer (target_ulong) and length (int) pair */ void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...); /** * gdb_do_syscallv: * @cb: function to call when the system call has completed * @fmt: gdb syscall format string * @va: arguments to interpolate into @fmt * * As gdb_do_syscall, but taking a va_list rather than a variable * argument list. */ void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va); int use_gdb_syscalls(void); #ifdef CONFIG_USER_ONLY /** * gdb_handlesig: yield control to gdb * @cpu: CPU * @sig: if non-zero, the signal number which caused us to stop * * This function yields control to gdb, when a user-mode-only target * needs to stop execution. If @sig is non-zero, then we will send a * stop packet to tell gdb that we have stopped because of this signal. * * This function will block (handling protocol requests from gdb) * until gdb tells us to continue target execution. When it does * return, the return value is a signal to deliver to the target, * or 0 if no signal should be delivered, ie the signal that caused * us to stop should be ignored. */ int gdb_handlesig(CPUState *, int); void gdb_signalled(CPUArchState *, int); void gdbserver_fork(CPUState *); #endif /* Get or set a register. Returns the size of the register. */ typedef int (*gdb_get_reg_cb)(CPUArchState *env, GByteArray *buf, int reg); typedef int (*gdb_set_reg_cb)(CPUArchState *env, uint8_t *buf, int reg); void gdb_register_coprocessor(CPUState *cpu, gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg, int num_regs, const char *xml, int g_pos); /* * The GDB remote protocol transfers values in target byte order. As * the gdbstub may be batching up several register values we always * append to the array. */ static inline int gdb_get_reg8(GByteArray *buf, uint8_t val) { g_byte_array_append(buf, &val, 1); return 1; } static inline int gdb_get_reg16(GByteArray *buf, uint16_t val) { uint16_t to_word = tswap16(val); g_byte_array_append(buf, (uint8_t *) &to_word, 2); return 2; } static inline int gdb_get_reg32(GByteArray *buf, uint32_t val) { uint32_t to_long = tswap32(val); g_byte_array_append(buf, (uint8_t *) &to_long, 4); return 4; } static inline int gdb_get_reg64(GByteArray *buf, uint64_t val) { uint64_t to_quad = tswap64(val); g_byte_array_append(buf, (uint8_t *) &to_quad, 8); return 8; } static inline int gdb_get_reg128(GByteArray *buf, uint64_t val_hi, uint64_t val_lo) { uint64_t to_quad; #ifdef TARGET_WORDS_BIGENDIAN to_quad = tswap64(val_hi); g_byte_array_append(buf, (uint8_t *) &to_quad, 8); to_quad = tswap64(val_lo); g_byte_array_append(buf, (uint8_t *) &to_quad, 8); #else to_quad = tswap64(val_lo); g_byte_array_append(buf, (uint8_t *) &to_quad, 8); to_quad = tswap64(val_hi); g_byte_array_append(buf, (uint8_t *) &to_quad, 8); #endif return 16; } static inline int gdb_get_zeroes(GByteArray *array, size_t len) { guint oldlen = array->len; g_byte_array_set_size(array, oldlen + len); memset(array->data + oldlen, 0, len); return len; } /** * gdb_get_reg_ptr: get pointer to start of last element * @len: length of element * * This is a helper function to extract the pointer to the last * element for additional processing. Some front-ends do additional * dynamic swapping of the elements based on CPU state. */ static inline uint8_t * gdb_get_reg_ptr(GByteArray *buf, int len) { return buf->data + buf->len - len; } #if TARGET_LONG_BITS == 64 #define gdb_get_regl(buf, val) gdb_get_reg64(buf, val) #define ldtul_p(addr) ldq_p(addr) #else #define gdb_get_regl(buf, val) gdb_get_reg32(buf, val) #define ldtul_p(addr) ldl_p(addr) #endif #endif /* NEED_CPU_H */ /** * gdbserver_start: start the gdb server * @port_or_device: connection spec for gdb * * For CONFIG_USER this is either a tcp port or a path to a fifo. For * system emulation you can use a full chardev spec for your gdbserver * port. */ int gdbserver_start(const char *port_or_device); /** * gdb_exit: exit gdb session, reporting inferior status * @code: exit code reported * * This closes the session and sends a final packet to GDB reporting * the exit status of the program. It also cleans up any connections * detritus before returning. */ void gdb_exit(int code); void gdb_set_stop_cpu(CPUState *cpu); /** * gdb_has_xml: * This is an ugly hack to cope with both new and old gdb. * If gdb sends qXfer:features:read then assume we're talking to a newish * gdb that understands target descriptions. */ extern bool gdb_has_xml; /* in gdbstub-xml.c, generated by scripts/feature_to_c.sh */ extern const char *const xml_builtin[][2]; #endif